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Pulse rate variability (PRV), derived from Laser Doppler flowmetry (LDF) or
photoplethysmography, has recently become widely used for sleep state
assessment, although it cannot identify all the sleep stages. Peripheral blood flow
(BF), also estimated by LDF, may bemodulated by sleep stages; however, few studies
have explored its potential for assessing sleep state. Thus, we aimed to investigate
whether peripheral BF could provide information about sleep stages, and thus
improve sleep state assessment. We performed electrocardiography and
simultaneously recorded BF signals by LDF from the right-index finger and ear
concha of 45 healthy participants (13 women;mean age, 22.5 ± 3.4 years) during one
night of polysomnographic recording. Time- and frequency-domain parameters of
peripheral BF, and time-domain, frequency-domain, and non-linear indices of PRV
and heart rate variability (HRV) were calculated. Finger-BF parameters in the time and
frequency domains provided information about different sleep stages, some of
which (such as the difference between N1 and rapid eye movement sleep) were
not revealed by finger-PRV. In addition, finger-PRV patterns and HRV patterns were
similar for most parameters. Further, both finger- and ear-BF results showed
0.2–0.3 Hz oscillations that varied with sleep stages, with a significant increase in
N3, suggesting a modulation of respiration within this frequency band. These results
showed that peripheral BF could provide information for different sleep stages, some
of which was complementary to the information provided by PRV. Furthermore, the
combination of peripheral BF and PRVmay bemore advantageous than HRV alone in
assessing sleep states and related autonomic nervous activity.
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1 Introduction

Human sleep is a central nervous system (CNS) phenomenon (de Zambotti et al., 2018) and
is often analyzed in sleep-wake stages according to the American Academy of Sleep Medicine
(AASM) criteria: wakefulness (Wk), three stages of non-rapid-eye-movement (NREM; N1, N2,
and N3) sleep, and rapid-eye-movement (REM) sleep (Iber et al., 2007). Different sleep stages

OPEN ACCESS

EDITED BY

Aniruddha Sinha,
Tata Consultancy Services, India

REVIEWED BY

Colin K. Drummond,
Case Western Reserve University,
United States
Sebastian Zaunseder,
University of Augsburg, Germany

*CORRESPONDENCE

Takashi Abe,
abe.takashi.gp@u.tsukuba.ac.jp

SPECIALTY SECTION

This article was submitted to
Physio-logging,
a section of the journal
Frontiers in Physiology

RECEIVED 21 September 2022
ACCEPTED 13 January 2023
PUBLISHED 26 January 2023

CITATION

Fan Z, Suzuki Y, Jiang L, Okabe S, Honda S,
Endo J, Watanabe T and Abe T (2023),
Peripheral blood flow estimated by laser
doppler flowmetry provides additional
information about sleep state beyond that
provided by pulse rate variability.
Front. Physiol. 14:1040425.
doi: 10.3389/fphys.2023.1040425

COPYRIGHT

© 2023 Fan, Suzuki, Jiang, Okabe, Honda,
Endo, Watanabe and Abe. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Physiology frontiersin.org01

TYPE Original Research
PUBLISHED 26 January 2023
DOI 10.3389/fphys.2023.1040425

https://www.frontiersin.org/articles/10.3389/fphys.2023.1040425/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1040425/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1040425/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1040425/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1040425/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2023.1040425&domain=pdf&date_stamp=2023-01-26
mailto:abe.takashi.gp@u.tsukuba.ac.jp
mailto:abe.takashi.gp@u.tsukuba.ac.jp
https://doi.org/10.3389/fphys.2023.1040425
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2023.1040425


correspond to different CNS activity patterns, most commonly
measured using an electroencephalogram (EEG). Meanwhile,
autonomic nervous system (ANS) activity varies across EEG-
defined sleep stages because of the CNS-ANS coupling (de
Zambotti et al., 2018). Due to this, sleep state can also be evaluated
by assessing ANS activity.

Heart rate and heart rate variability (HRV) derived from an
electrocardiogram (ECG) are the most widely used indicators of
ANS activity during sleep (Shaffer and Ginsberg, 2017; de
Zambotti et al., 2018). Sleep staging using HRV alone has
improved its accuracy in previous studies (Imtiaz, 2021). Pulse rate
variability (PRV) is another surrogate parameter for HRV, and has
even been proposed to be a new biomarker (Yuda et al., 2020). PRV
uses techniques such as photoplethysmography (PPG) or laser
Doppler flowmetry (LDF) and is derived from signals recorded
from peripheral sites, such as fingers and ears, making it even
more convenient to measure than ECG-derived HRV (Allen, 2007;
Humeau et al., 2009; Tankanag et al., 2020). Sleep assessment using
these techniques provides low-cost, automatic, unobtrusive, and
home-based alternatives to the gold standard, polysomnography
(PSG; including EEG, electrooculogram, and electromyogram), in
terms of usability, if not yet of accuracy (Imtiaz, 2021), and has
many advantages, especially during the ongoing COVID-19
pandemic, when home-based care has become indispensable
(Ueafuea et al., 2021).

However, PRV/HRV do have certain limitations with regard to the
assessment of ANS activity and their use for sleep staging. For
example, the estimation of cardiac sympathetic modulation by
PRV/HRV power in the low-frequency (LF) range (0.04–0.15 Hz)
is controversial, although the power in the high-frequency (HF) range
(0.15–0.40 Hz) clearly reflects the vagal modulation. The lack of
mono-measurement of sympathetic modulation may weaken the
accuracy of sleep staging through ANS activity measured by PRV/
HRV. In addition, the differentiation ability of HRV differs between
specific pairs of sleep stages—for example, it is low between N1 and
REM sleep—which further lowers the overall accuracy of sleep staging
using HRV (Mitsukura et al., 2020). Meanwhile, PRV cannot identify
all the sleep stages (Imtiaz, 2021). Due to these considerations,
previous studies on sleep staging utilizing PRV/HRV often
included other sources of physiological signals, like body
movements, to increase classification accuracy (Imtiaz, 2021);
however, this necessitates using other sensing technologies.
Conversely, LDF can measure blood flow (BF) besides deriving
PRV, but no studies have combined the two for assessing sleep
state (Imtiaz, 2021).

LDF-estimated BF may provide additional information about
sleep state beyond that provided by PRV/HRV. ANS activity and
related processes during sleep may affect peripheral BF and PRV/HRV
differently. The two components of the ANS, the parasympathetic and
the sympathetic systems, have different roles in the cardiovascular
system. While the parasympathetic nervous system contributes to
heartbeat activity (Laborde et al., 2017), the sympathetic nervous
system (SNS) plays a role in heartbeat activity as well as a
dominant role in regulating vascular activity (Task Force of the
European Society of Cardiology and the North American Society of
Pacing and Electrophysiology, 1996; Lombard and Cowley, 2012).
Therefore, peripheral BF may be affected by the same factors like ANS
activity that also affect PRV/HRV, through the blood vessel network
from the heart, but more by SNS activity and by factors that affect

vascular activity alone, such as local (metabolic, myogenic, and
paracrine) controls (Sparks, 1999). Thus, some of the variabilities
in peripheral BF signals may come from sources that do not affect
PRV/HRV in the same way. In addition, peripheral BF signals may
vary even more than PRV/HRV due to the modulation by respiration
(Khandoker et al., 2011; Dehkordi et al., 2013; Liu et al., 2017). For
example, obstructive respiratory events in sleep apnea lead to more
changes in the pulse wave amplitude of peripheral BF than in the heart
rate derived from an ECG, which shows the effect of respiration on
peripheral vascular activity. Further, the SNS affects respiration-
modulated BF oscillations in the peripheral vessels through
vasomotion (Tankanag et al., 2020). Thus, peripheral BF may have
distinct characteristics during sleep and is worth investigating, as
examining the dynamics of peripheral BF may reveal its potential for
determining and predicting CNS-pattern-defined sleep stages.
However, few studies have suggested this possibility while
providing complete information on the differences between the five
sleep stages (Noll et al., 1994; Shiihara et al., 1999; Kobayashi et al.,
2003).

Therefore, the main purpose of this study was to investigate
whether and how peripheral BF can differ between the five sleep
stages. We hypothesized that peripheral BF would provide
information that can be used to distinguish between the sleep
stages. We expect that peripheral BF and PRV measured from a
single source will have advantages in sleep stage assessment, which
may have considerable implications in consumer-grade sleep
healthcare at home and in daily situations. As the device used to
measure peripheral BF in this study is a commercial device that is still
under development, we used PRV results for the validation of BF-
based assessments regarding the differences between sleep stages.

2 Methods

2.1 Participants

All individuals recruited and screened for inclusion in this study
self-reported as being physically and psychologically healthy. The
included participants satisfied the following criteria: 1) age between
20 and 60 years; 2) able to fill out the Japanese instruction documents,
consent forms, and survey forms; 3) able to sleep in the examination
rooms in the sleep lab; and 4) not currently being treated for any sleep
disorder. Participants were excluded if they were claustrophobic; had
uncontrolled diabetes; had a history of myocardial infarction; had
unstable angina, serious liver disease, or serious renal disease; were
pregnant or may have become pregnant; were lactating; or were judged
by the investigator to be inappropriate as participants. On the day of
the experiment, participants were also told to not consume alcohol and
report any medicine they had taken. The Ethics Committees of the
University of Tsukuba (ID: R01-101) approved the research protocol.
All participants provided written consent and received payment for
participation.

2.2 Apparatus and procedure

All participants who passed the screening stage underwent an 8-h
whole-night sleep in a sound-proof chamber, and their physiological
activities were recorded while they slept. PSG and ECG were
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performed, and BF, respiratory activity, and oxygen saturation (SpO2)
were measured. PSG was performed using the PSG-1100 system
(Nihon Kohden, Inc., Tokyo, Japan) according to the AASM
standards, with the sampling rate set at 250 Hz. For peripheral BF
measurement, customized sensors (KYOCERA Corporation, Kyoto,
Japan) with a sampling rate of 39.0625 Hz were placed on the right-
index finger and the right-ear concha. The sensors had been pre-
calibrated to a laser BF meter (RBF-101, PIONEER Corporation,
Tokyo, Japan). The originally measured signals are ratios that are
then calibrated by this medical BF meter to derive the BF signals (ml/
min). The measurement of peripheral BF was based on the LDF
method. LDF provides a continuous estimate of skin BF restricted to
the skin microcirculation and can be performed in different areas and
on different surfaces (Chaseling et al., 2020). The customized sensors
used in this study can simultaneously estimate heartbeat activity and
peripheral BF (and the derived PRV), thus providing more
information than PPG devices. One of the novel aspects and
advantages of these sensors is their small size, which makes them
convenient for measuring BF on small areas like the concha. Although
the sensors’ sampling rate is relatively lower than that of most recent
PPG devices (Korkalainen et al., 2020; Wu et al., 2020; Altini and
Kinnunen, 2021), they meet the requirement of this study, considering
that the spectral analysis was focused on less than 1 Hz. Cellphones
were used to store the BF data, which were then exported to a
computer for further analysis (Figure 1).

Respiratory activity was measured using a thermistor airflow
(AF) sensor, a nasal pressure cannula, and a chest/abdomen band
sensor compatible with the PSG-1100. SpO2 was also measured
using a sensor compatible with the PSG-1100. Additionally, we
validated the accuracy of actigraphy (MotionWatch 8, CamNtech,
Fenstanton, United Kingdom) compared to PSG (published
elsewhere). Participants were instructed to complete
questionnaires about their sleep habits before sleeping. After
waking up, they completed a questionnaire about their
experience of wearing the ear-BF sensor. Only PSG, ECG, BF,

and AF data were used in this study. The data were analyzed
using MATLAB (The MathWorks Inc., Natick, MA, USA), R (R
Foundation for Statistical Computing, Vienna, Austria), and JASP
(0.12.2; The JASP Team, Amsterdam, Netherlands).

2.3 Data acquisition and preprocessing

The sleep study was conducted between 8:00 p.m. and 8:00 a.m.
The average ambient temperature and humidity for all participants
were 22.8°C ± 1.4°C and 61.0 ± 12.6%, respectively. PSG, finger-BF,
ear-BF, AF, and other physiological activities were measured
simultaneously from the same start time, calibrated across devices.
The data points were aligned between these four signals according to
the start time and sampling rate. However, considering the availability
of the data measured from the finger and ear sites, some participant
data were excluded from further analysis. The exclusion criterion was
less than 2 h of BF data recorded at night.

PSG data recorded during the 8-h sleep after lights out were
analyzed at 30-s epoch by 30-s epoch (in total, 960 epochs for each
participant) by a registered polysomnographic technologist (Y. S.) for
the sleep stages Wk, N1, N2, N3, and REM according to the AASM
criteria (Iber et al., 2007). Finger- and ear-BF data and ECG data were
analyzed based on EEG-defined sleep stages. However, considering the
epoch length, most HRV indices require epochs longer than 1 min to
estimate heart rate (Shaffer and Ginsberg, 2017). We wanted to use
epochs that were as short as possible, while at the same time being long
enough for all important parameters to be calculated. Therefore, we
analyzed data based on 90-s epochs (in total, 320 epochs for each
participant); that is, one 90-s epoch contained three consecutive 30-s
epochs within the same sleep stage. Three consecutive epochs in the
same sleep stage can reflect a relatively stable sleep stage, thus ensuring
a stable relationship between the ANS and CNS in the same sleep
stage. However, in the case of the three non-consecutive epochs, the
90-s epochs were set to be NaNs (not a number).

FIGURE 1
The devices used to measure finger- and ear- BF.
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Before calculating the PRV/HRV indices, 90-s BF/ECG epochs
from each participant were preprocessed using a customized program
in MATLAB (see Supplementary Figure S1). Epochs were excluded
from further analysis if they met the following criteria: 1, contained
extreme raw signal amplitudes (distributed beyond three standard
deviations [SDs] of the median); 2, contained extreme peak pulse wave
amplitudes (distributed beyond three SDs of the median); 3, contained
wrongly detected peaks for more than 10% of the total detected peaks
of the pulse waves. These criteria were used to ensure that the 90-s
epochs contained no significant artifacts, only pulsate signals with
acceptable quality for peak detection and PRV/HRV calculation.

Data were first detrended and filtered using a one-dimensional
median filter to remove the spike noise during the recording. Epochs
with large amplitudes beyond three SDs of the median value of the
highest amplitudes were excluded to remove epochs with significant
artifacts. In addition, epochs with peaks of the heartbeat/pulse wave of
BF/ECG (filtered using the default band-pass filter of 0.5–2 Hz
embedded in the FieldTrip toolbox) (Oostenveld et al., 2011)
beyond three SDs of the median value of all the peaks were also
excluded to ensure that the quality of the beat signal was optimal. The
epochs were then visually inspected to confirm their quality. The
usability of the data after the preprocessing is shown in Supplementary
Table S1.

To derive the inter-beat intervals (IBIs) from the BF/ECG signals,
peak detection was conducted on the waveforms of both ECG and BF
signals using the “findpeaks” function in MATLAB. A pre-detection
was first conducted to determine the parameter “MinPeakDistance” in
“findpeaks”. ECG/BF signals were filtered using the default band-pass
filter embedded in the FieldTrip toolbox with a band-pass frequency of
0.5–1.5 Hz. Peak detection was then performed using the default
setting of “findpeaks” to determine the peaks and their locations
(timings) from the filtered ECG/BF signals. For both BF and ECG
signals, “MinPeakDistance” was set to 0.6*mean IBIs (differences in
peak timings). BF signals were first filtered using the default high-pass
filter embedded in the FieldTrip toolbox with a high-pass frequency of
0.5 Hz for the formal peak detection. After that, the signals were
filtered using the “designfilt” function in MATLAB and a twelve order
Butterworth low-pass filter with a cutoff frequency of 2.9297 Hz
(0.15*sampling rate/2). We then used “findpeaks” to detect the
peaks and their locations from the filtered BF signals, with
“MinPeakDistance” determined using pre-detection, and
“MinPeakHeight,” another parameter, set to zero. ECG signals were
decomposed down to level 5 using the default ‘sym4’ wavelet by the
“modwt” function in MATLAB and then reconstructed by the
“imodwt” function in MATLAB using only the wavelet coefficients
at scales 4 and 5 (https://ww2.mathworks.cn/help/wavelet/ug/r-wave-
detection-in-the-ecg.html). This was done to enhance the R peaks in
the ECG waveform. The reconstructed ECG signals were then
subjected to peak detection using “findpeaks” with
“MinPeakDistance” determined using pre-detection and
“MinPeakHeight” set to 0.15*maximum amplitude of the
reconstructed signals. These parameter settings were optimal for
peak detection in this study, as confirmed by a visual inspection of
the detection results. Epochs with wrong peak detections of more than
10% (average of three wrong detections within one 30-s epoch) were
excluded manually (Supplementary Table S2). Finally, ectopic BF IBIs
(ECG IBIs were found to be of good quality during manual removal of
wrong peak detections), which varied by more than 20% from the
previous one were replaced with the mean value of the four

neighboring IBIs centered on the ectopic one; this was based on
the method typically adopted in clinical practice and human and
animal research for HRV analysis (Altini et al., 2016; Betti et al., 2018;
Karey et al., 2019). However, the first two were replaced with the mean
value of the four subsequent IBIs, whereas the last two were replaced
with the mean value of the four previous IBIs, a method similar to that
used in a previous study (Karey et al., 2019).

We then calculated time-domain, frequency-domain, and non-
linear PRV/HRV metrics related to ANS activity (Shaffer and
Ginsberg, 2017). We selected several commonly used parameters in
all three domains (Supplementary Table S3). In the time domain, the
SD of all the normal-to-normal (NN) intervals (SDNN; i.e., typical
IBIs resulting from sinus node depolarization, which are free from
artifacts), the root mean square of successive differences between
adjacent NN intervals (RMSSD), and percentage of pairs of adjacent
NN intervals differing by more than 50 ms (pNN50) are indices often
chosen to reflect ANS activity (Task Force of the European Society of
Cardiology and the North American Society of Pacing and
Electrophysiology, 1996; Shaffer and Ginsberg, 2017). The latter
two indices measure cardiac vagal modulation (Shaffer and
Ginsberg, 2017; de Zambotti et al., 2018). In the frequency domain,
generally within 0.4 Hz, the HRV spectral power in the very-LF range
(<0.04 Hz) is less likely to be interpreted. The HRV spectral power in
the LF range (0.04 Hz–0.15 Hz) is often reported to reflect sympathetic
activity; however, this conclusion is controversial (de Zambotti et al.,
2018). In contrast, the HF range (0.15–0.4 Hz) reflects vagal
(parasympathetic) activity (Task Force of the European Society of
Cardiology and the North American Society of Pacing and
Electrophysiology, 1996; Shaffer and Ginsberg, 2017; de Zambotti
et al., 2018). LF andHF are usually normalized by dividing them by the
total power (LF +HF). The normalized LF and HF (LFn and HFn) and
the LF/HF ratio also reflect ANS activity (Iber et al., 2007; de Zambotti
et al., 2018). There are also non-linear measures for assessing ANS
activity using HRV and without assuming linearity and stationarity of
the IBI time series. Such measures include detrended fluctuation
analysis (DFA), which is widely used for detecting short- and long-
range correlations in non-stationary time series (Peng et al., 1994;
Peng et al., 1995; Shaffer and Ginsberg, 2017), and entropy measures,
such as approximate entropy (ApEn) (Pincus, 1991; Shaffer and
Ginsberg, 2017; Udhayakumar et al., 2017), which measures the
predictability of fluctuations in the time series. These measures
may assess non-linear HRV patterns related to more complex
functioning, such as sleep. All indices, except for DFA to measure
short-range fluctuations (DFA1), DFA to measure short-range
fluctuations (DFA2), and ApEn, were calculated using a
customized MATLAB script according to their definition. For
DFA1, DFA2, and ApEn with more complex calculations, the
scripts from the references (Lee, 2021; Magris, 2021) were used.

The power spectra of BF, PRV, and HRV were analyzed using the
“plomb” function in MATLAB. Since the HRV and PRV time-series
data points were sampled at different times, the frequency coordinates
differed among epochs when calculating the power spectra. This made
it impossible to average the power spectra across epochs in the same
sleep stage or compare the power spectra across sleep stages. Thus,
interpolation was conducted after using “plomb” to unify the
frequency coordinates. However, interpolation was not conducted
on the BF power spectra. The power of a particular band within
0.2–0.3 Hz was extracted, normalized by dividing by the HF, and
compared. This frequency band is within the HF band (0.15–0.4 Hz),
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in which sleep stages modulate HRV power (Naji et al., 2019;
Whitehurst et al., 2020). There are three reasons for focusing on
this narrower band. First, we noted (without a hypothesis beforehand)
that all the group results of the BF, PRV, and HRV spectra showed this
peak frequency band. Second, previous studies have shown that
stimulation around 0.25 Hz promotes sleep (Bayer et al., 2011;
Perrault et al., 2019; van Sluijs et al., 2020). Third, the effects of
respiration around 0.2–0.3 Hz on cardiovascular activity have been
investigated in previous studies (Krasnikov et al., 2013; Tankanag
et al., 2020).

To provide information on the dynamics of BF, typical time-
domain parameters, including the mean, SD, and the coefficient of
variance (CV) of BF volume (ml/min) during 90-s epochs in different
sleep stages, were calculated using the raw, unfiltered BF data, but with
epochs corresponding to PRV data after preprocessing. Further,
frequency-domain parameters corresponding to PRV, including the
LFn, HFn, LF/HF, and normalized power of the 0.2–0.3 Hz band, were
also calculated.

For each index calculated for all participants, values larger than
three SDs of the group means were set as missing values. Participants
with missing values in either of the five stages were excluded from the
group analysis. Thus, the group analysis for each dependent variable
may have had a different set of participants.

2.4 Statistical analysis

We investigated the changes in each BF, AF, HRV, and PRV
parameter across the sleep stages separately for each recording site
(heart, finger, or ear) using the Bayesian analysis approach. The
Jarque-Bera test (Jarque and Bera, 1987) with a significance level of
0.01 was used to test the normality of the distribution of each index
across individuals. For indices that met the normality criteria, we
performed parametric analysis. The Bayesian Wilcoxon signed-rank
test was used as a non-parametric version of Bayesian pairwise
comparison for indices that did not meet the normality criteria.
The Bayes factors were derived and interpreted using a
classification scheme (Kass and Raftery, 1995; Lee and
Wagenmakers, 2013; Quintana and Donald, 2018). The advantage
of using the Bayes factor is that it shows the amount of evidence for the
null hypothesis (H0) or the alternative hypothesis (H1) or insufficient
evidence for either hypothesis (Dienes, 2016). Therefore, the Bayes
factor can provide the amount of evidence for H1 against H0 (or
H0 against H1). For example, the Bayes factor B10 shows the level of
the possibility of H1 against H0, and its value is classified into different
categories of evidence (Supplementary Table S4, adapted from Lee and
Wagenmakers, 2013; Quintana and Donald, 2018). We also used the
frequentist test to obtain complementary information (Supplementary
Table S5, S6).

3 Results

Data were obtained from 45 participants (13 women; mean age,
22.5 ± 3.4 years). Specifically, the finger-BF data of 38 participants
(10 women; mean age, 22.6 ± 3.7 years), ear-BF data of 42 participants
(13 women; mean age, 22.6 ± 3.5 years), and the PSG, ECG, and AF
data of 45 participants remained after applying the exclusion criteria.
In addition, for each index investigated as follows, values larger than

three SDs of the group means were set as missing values, and
participants with missing values in either of the five stages were
excluded from the group analysis. Thus, the group analysis for
each dependent variable may have a different set of participants.
For example, for mean heat-IBI, data of only 40 participants
(12 women) remained for group analysis.

3.1 Comparison of the changes in parameters
of finger- and ear-BF signals across different
sleep stages

3.1.1 Time-domain indices
We investigated the time-domain and frequency-domain (in the

following paragraphs) parameters of finger-BF and ear-BF, expecting
that BF signals would provide information for the differentiation of
sleep stages. Figure 2 shows the indices of finger-BF and ear-BF in the
time domain, including the mean amplitude, SD, and CV of BF. The
results revealed that sleep stages modulated finger-BF. Particularly,
finger-BF showed a robust difference in mean amplitude and CV
between Wk and REM sleep. The mean finger-BF in Wk was larger
than that in REM sleep. In contrast, CV, reflecting the relative
fluctuation, was larger in REM sleep than in Wk. However, except
for some weak evidence, ear-BF was not significantly modulated by the
sleep stages (see also Supplementary Table S6).

3.1.2 Frequency-domain indices
Figure 3 shows the normalized low-frequency power (LFn),

normalized high-frequency power (HFn), and low-frequency
power/high-frequency power (LF/HF) of raw finger-BF and ear-BF.
The results revealed that sleep stages modulated both finger- and ear-
BF. Similarly, finger-BF showed robust differences in LFn and HFn
between Wk and REM sleep, N1 and REM sleep, and N3 and REM
sleep. LFn, HFn, and LF/HF of finger-BF prominently highlighted
REM sleep over all other stages. Ear-BF was also modulated by the
sleep stages, with N3 being highlighted instead, although the evidence
for this was weak.

3.1.3 Comparison of the changes in 0.2–0.3 Hz
oscillations of BF spectra across different sleep
stages

We examined a particular BF band within 0.2–0.3 Hz oscillations
based on the reasons described in the Methods section. A
representative BF signal modulated in a 0.2–0.3 Hz oscillation
during N3 is shown in Figure 4A. We noted a peak power within
the HF band (0.15–0.4 Hz), specifically around 0.2–0.3 Hz, as shown
in Figure 4B; Figures 5A,B show the grand averages of the power
spectra of raw finger- and ear-BF, which also had a peak around
0.2–0.3 Hz. Furthermore, the 0.2–0.3 Hz band power was modulated
by sleep stages; Figures 5D,E show the power in the 0.2–0.3 Hz band
normalized by HF to highlight the peak power for each recording site
(referred to as BF_Pow_02_03; see the dark area in Figures 5A,B)
across sleep stages. The results showed that for both finger- and ear-
BF, BF_Pow_02_03 was higher in N3 sleep than in REM sleep andWk.
In NREM sleep, BF_Pow_02_03 was higher in N3 than in N1;
however, the evidence for finger-BF was weak. We then extracted
the data for N1–N3 and conducted a trend analysis, one of the sub-
analyses of the analysis of variance in JASP. The results showed a
linear trend in finger-BF (p = 0.001) and ear-BF (p = 0.001). Finger-BF
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was consistent with ear-BF with respect to BF_Pow_02_03 across all
three NREM sleep stages; both had the highest value in N3. BF_Pow_
02_03 (in 0.2–0.3 Hz) showed its advantage over HFn (in 0.15–0.4 Hz)
for highlighting N3, suggesting the necessity of focusing on this
narrower 0.2–0.3 Hz band.

3.2 0.2–0.3Hz oscillations of AF spectra
across different sleep stages and their
correlation with BF

We observed special 0.2–0.3 Hz oscillations in BF within the
0.15–0.4 Hz respiratory frequency band. This band of oscillations

may be modulated by respiration activity. Therefore, we analyzed
the AF data and investigated the correlation between the BF and AF
activities (Supplementary information) to gain more insight into the
mechanism underlying the 0.2–0.3 Hz oscillations in BF. Figures 5C,F
show the power spectra of AF and the power in the 0.2–0.3 Hz band
(referred to as AF_Pow_02_03; see the dark area in Figure 5C), which
was normalized by the HF (see Supplementary Figure S2 and
Supplementary Table S6 for more information on the LFn, HFn,
and LF/HF of AF). The results showed that AF_Pow_02_03 also
seemed to be a good indicator for distinguishing between sleep stages.
Further, correlations between the 0.2–0.3 Hz power as well as the peak
frequency for BF and for AF were significant in several sleep stages,
especially in N2 and N3, suggesting a close relationship between

FIGURE 2
The indices of finger-BF and ear-BF in the time domain, including the mean (A, B), SD (C, D), and CV (E, F) of BF, across the different sleep stages. The
violin plot with dots shows the distribution of the individual data points. The line chart with error bars shows the group mean and the ±1 standard error of the
mean. The numerical values are the Bayes factors. The values show anecdotal (1–3), moderate (3–10), strong (10–30), or extreme evidence (>100) against the
H0 of no difference between pairs of sleep stages (for other information, see Supplementary Table S6). Bayes factors <1 are not listed. BF, blood flow; SD,
standard deviation; CV, coefficient of variance.
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peripheral BF and respiration that may be modulated by sleep stage
(see Supplementary Figure S3).

3.3 Comparison of changes in finger- and ear-
PRV and HRV indices across different sleep
stages

Next, we compared PRV indices derived from peripheral BF across
different sleep stages to assess whether they showed similar changes as
HRV. Figure 6 shows the mean heart-, finger-, and ear-IBIs across the
sleep stages. These results showed that the mean IBI differed across

sleep stages, providing information for differentiating all pairs of
different sleep stages, except N1 versus REM, for all three
recording sites (see also Supplementary Table S6). The mean IBI
was higher (i.e., heart rate was lower) in NREM sleep (specifically,
N2 and N3) than in REM sleep, and in both NREM and REM sleep
than in Wk. This revealed similar patterns across the sleep stages for
the mean heart-IBI, mean finger-IBI, and mean ear-IBI.

3.3.1 Time-domain indices
Figure 7 shows the HRV, finger-PRV, and ear-PRV indices in the

time domain, including SDNN, RMSSD, and pNN50. The PRV/HRV
indices in the time domain showed that the finger indices patterns

FIGURE 3
The indices of finger-BF and ear-BF in the frequency domain, including the LFn (A, B), HFn (C, D), and LF/HF (E, F) of BF, across the different sleep stages.
The violin plot with dots shows the distribution of the individual data points. The line chart with error bars shows the group mean and the ±1 standard error of
the mean. The numerical values are the Bayes factors. The values show anecdotal (1–3), moderate (3–10), strong (10–30), very strong (30–100), or extreme
(>100) evidence against the H0 of no difference between the pairs of sleep stages (for other information, see Supplementary Table S6). Bayes
factors <1 are not listed. LFn, normalized low-frequency power; HFn, normalized high-frequency power; LF, low-frequency power; HF, high-frequency
power; BF, blood flow; AF, airflow.
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were very similar to the heart indices patterns. Specifically, the
SDNN for HRV and finger-PRV were lower in N3 sleep than in
REM sleep andWk. For NREM sleep, SDNN was lower in N3 than in
N2 and N1, and lower in N2 than in N1 (weak evidence for finger-
PRV). Ear-SDNN showed similar results but with weaker evidence.
The RMSSD for HRV and finger-PRV were higher in NREM sleep
(N2 and N3) than in Wk. For NREM sleep, moderate evidence
observed from Bayes factors showed that heart- and finger-RMSSD

were higher in N2 than in N1 and N3. Ear-RMSSD also showed
anecdotal evidence to be highest in N2. Similarly, the pNN50 for
HRV and finger-PRV were higher during NREM sleep (N2 and N3)
than during Wk and REM sleep. For NREM sleep, heart- and finger-
RMSSD were higher in N2 than in N1. Overall, the sensitivity of ear-
PRV in time-domain indices may be lower than that of HRV or
finger-PRV, as reflected by the smaller Bayes factors between the
different sleep stages.

FIGURE 4
BF modulated by oscillations within the 0.2–0.3 Hz band (A) A representative epoch of the raw BF signal modulated by 0.2–0.3 Hz oscillations during
N3 recorded from a representative participant. The red dotted curve represents the oscillating signal filtered from the raw BF signal with a band-pass
frequency of 0.2–0.3 Hz; however, it has been shifted upwards to make it easier to read. The blue curve is the raw BF signal (B) The normalized power
spectrum of a representative participant at different sleep stages. It shows a peak in the 0.2–0.3 Hz frequency band during N3. BF, blood flow.

FIGURE 5
The normalized power spectra and the normalized power in the 0.2–0.3 Hz band of finger-BF, ear-BF, and AF, across the different sleep stages (A–C)
The normalized power spectra for finger-BF (A), ear-BF (B), and AF (C) (D–F) The normalized power of the 0.2–0.3 Hz band for finger-BF (D), ear-BF (E), and
AF (F). Therewas a linear trend of power increase in the 0.2–0.3 Hz bandwith the deepening of sleep fromN1 toN3 for both finger- and ear- BF. The violin plot
with dots shows the distribution of the individual data points. The line chart with error bars shows the groupmean and the ±1 standard error of themean.
The numerical values are the Bayes factors. The values show anecdotal (1–3), moderate (3–10), very strong (30–100), or extreme (>100) evidence against the
H0of no difference between pairs of sleep stages (for other information, see Supplementary Table S6). Bayes factors <1 are not listed. BF, blood flow; HF, high-
frequency power.
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3.3.2 Frequency-domain indices
Figure 8 shows the indices of HRV, finger-PRV, and ear-PRV in

the frequency domain, including LFn, HFn, and LF/HF. As with the

results of the PRV/HRV indices in the time domain, the finger indices
in the frequency domain exhibited very similar patterns to those of the
heart indices. The ear indices showed the smaller Bayes factors

FIGURE 6
Mean IBIs across the different sleep stages for the heart (A), the finger (B), and the ear (C). The violin plot with dots shows the distribution of the individual
data points. The line chart with error bars shows the groupmean and the ±1 standard error of themean. The numerical values are the Bayes factors. The values
show anecdotal (1–3), moderate (3–10), strong (10–30), very strong (30–100), or extreme (>100) evidence against the H0 of no difference between pairs of
sleep stages (for other information, see Supplementary Table S6). Bayes factors <1 are not listed. IBI, inter-beat interval.

FIGURE 7
The indices of HRV (A, D, G), finger-PRV (B, E, H), and ear-PRV (C, F, I) in the time domain, including SDNN (A–C), RMSSD (D–F), and pNN50 (G–I), across
the different sleep stages. The violin plot with dots shows the distribution of the individual data points. The line chart with error bars shows the groupmean and
the ±1 standard error of themean. The numerical values are the Bayes factors. The values show anecdotal (1–3), moderate (3–10), strong (10–30), very strong
(30–100), or extreme (>100) evidence against the H0 of no difference between pairs of sleep stages (for other information, see Supplementary Table S6).
Bayes factors <1 are not listed. HRV, heart rate variability; PRV, pulse rate variability; SDNN, standard deviation of all the normal-to-normal (NN) intervals;
RMSSD, root mean square of successive differences between adjacent NN intervals; pNN50, percentage of pairs of adjacent NN intervals differing by more
than 50 ms; IBI, inter-beat interval.
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between sleep stages. Specifically, LFn for HRV, finger-PRV, and ear-
PRV were lower in NREM sleep (N2 and N3) than during REM sleep
and Wk. For NREM sleep, LFn was lower in N3 than in N2 and N1,
and lower in N2 than in N1 (except for ear-LFn). The HFn results were
opposite to the LFn results, whereas LF/HF results were similar to the
LFn results.

3.3.3 Non-linear measurements
Figure 9 shows the non-linear indices of HRV, finger-PRV, and

ear-PRV, including ApEn, DFA1, and DFA2. The non-linear finger
and ear indices (DFA1 and DFA2, other than ApEn) showed very
similar patterns to those of the heart indices. Specifically, ApEn for
HRV and finger-PRV were lower in NREM sleep (N1 and N2) than
in Wk and lower in N2 than in REM sleep. However, in NREM
sleep, evidence showed that finger-ApEn was higher in N3 than in
N2 and N1, which is contrary to the result for heart-ApEn.
DFA1 and DFA2 showed similar results. For all three recording
sites, DFA1 and DFA2 were lower in NREM sleep (N2 and N3)
than in REM sleep and Wk; however, the ear-PRV indices showed
weaker evidence. In NREM sleep, they were lower in N3 than in
N2 and N1, and in N2 than in N1. In contrast, DFA1 showed
higher values in N1 than in Wk for finger-PRV with moderate
evidence.

4 Discussion

This study investigated peripheral BF and PRV across different sleep
stages and compared PRV with HRV during sleep. The time- and
frequency-domain parameters of peripheral BF could also provide
information regarding the different sleep stages, especially REM
sleep. We observed significant peaking of oscillations around
0.2–0.3 Hz, especially during N3, for both the peripheral BF signal and
the derived IBI signal (see Supplementary Figure S4). For finger- and ear-
BF, finger- and ear-PRV, and HRV, there was an increase in oscillations
within the 0.2–0.3 Hz bandwith the deepening ofNREM sleep (N1 toN3).
This increase was highest in N3. Comparisons of the time-domain,
frequency-domain, and non-linear PRV/HRV indices across the sleep
stages revealed that the patterns of finger-PRV indices were consistent with
those of most HRV indices, especially for the time-frequency-domain
indices. This confirmed that BF and PRVwere beingmeasured correctly by
the customized sensors used in this study. However, differences existed
between finger-PRV and HRV indices, especially in non-linear metrics
such as ApEn. Ear-PRV could also provide information for differentiating
sleep stages, comparable to the information provided by some of the HRV
indices. In some respects, peripheral BF + PRV may provide more
information than HRV alone. Therefore, further investigation is
required on the potential of peripheral BF +PRV for sleep state assessment.

FIGURE 8
The indices of HRV (A, D, G), finger-PRV (B, E, H), and ear-PRV (C, F, I) in the frequency domain, including LFn (A–C), HFn (D–F), and LF/HF (G–I), across
the different sleep stages. The violin plot with dots shows the distribution of the individual data points. The line chart with error bars shows the groupmean and
the ±1 standard error of themean. The numerical values are the Bayes factors. The values show anecdotal (1–3), moderate (3–10), strong (10–30), very strong
(30–100), or extreme (>100) evidence against the H0 of no difference between pairs of sleep stages (for other information, see Supplementary Table S6).
Bayes factors <1 are not listed. HRV, heart rate variability; PRV, pulse rate variability; LF, low-frequency power; HF, high-frequency power; LFn, normalized
low-frequency power; HFn, normalized high-frequency power; IBI, inter-beat interval.
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4.1 Peripheral BF dynamics across sleep
stages

Normal human sleep is associated with hemodynamic changes,
primarily mediated by changes in the ANS. Specifically, during NREM
sleep, sympathetic activity decreases, and parasympathetic (vagal) activity
increases with the development of slow-wave sleep (N3); however, both
these changes are reversed during REM sleep (Trinder et al., 2001;
Narkiewicz et al., 2016). These distinct changes during different sleep
stages are reflected in heart rate and PRV/HRV calculated from the IBI
signal. In the present study, the mean IBI, an index of changes in the
balance of the two ANS components, increased (i.e., heart rate decreased)
during NREM sleep, which deepens from N1 to N3. However, it
decreased during REM sleep (more specifically, phasic REM sleep) but
remained higher than the mean IBI in Wk (Somers et al., 1993; Trinder
et al., 2001; Hanak and Somers, 2011). The mean finger- and ear-IBIs
showed differences between nearly all pairs of different sleep stages except
for N1 and REM sleep.

Sleep stages also modulate PRV indices with different ANS activity
patterns. Frequency-domain indices, including LFn, HFn, and LF/HF,
showed nearly the same patterns across sleep stages as the mean IBI.
They also showed differences between most pairs of different sleep
stages, except betweenWk, N1, and REM sleep. Although LF reflects a

mix of sympathetic and parasympathetic power and HF reflects the
vagal tone, the calculation of LFn, HFn, and LF/HF makes them
equivalent in terms of information on the patterns of ANS activity
across sleep stages (Laborde et al., 2017; de Zambotti et al., 2018).
Time-domain indices, including pNN50, are correlated with RMSSD
andHF; therefore, the two indices in the time domain (for finger-PRV)
showed similar patterns. In contrast, LF contributes significantly to
SDNN; thus, the SDNN pattern for finger-PRV was similar to that of
LFn (de Zambotti et al., 2018). The non-linear indices of both finger-
and ear-PRV, specifically DFA1 and DFA2, measure the fluctuations
of IBIs. Thus, they provide as much information for differentiating
between sleep stages as the frequency-domain indices that measure the
oscillations of IBIs. The patterns of HRV/finger-PRV indices
(including SDNN, LFn, HFn, and LF/HF) were consistent with
those reported in a recent study (Liu et al., 2017). However, that
study did not provide significant test results for the comparisons
between the different sleep stages.

Besides PRV, the ANS may modulate peripheral BF differently
during different sleep stages. For example, the peripheral arterial tone
(PAT) signal from BF, an index of sympathetic vasoconstrictor
mechanisms (Pépin et al., 2009; Lanfranchi and Somers, 2010),
decreases from Wk to NREM sleep and reaches its nadir during
REM sleep (Lavie et al., 2000). The decreasing pattern of the PAT

FIGURE 9
The indices of HRV (A, D, G), finger-PRV (B, E, H), and ear-PRV (C, F, I) in non-linear measurements, including ApEn (A–C), DFA1 (D–F), and DFA2 (G–I),
across the different sleep stages. The violin plot with dots shows the distribution of the individual data points. The line chart with error bars shows the group
mean and the ±1 standard error of the mean. The numerical values are the Bayes factors. The values show anecdotal (1–3), moderate (3–10), strong (10–30),
very strong (30–100), or extreme (>100) evidence against the H0 of no difference between pairs of sleep stages (for other information, see
Supplementary Table S6). Bayes factors <1 are not listed. HRV, heart rate variability; PRV, pulse rate variability; ApEn, approximate entropy; DFA, detrended
fluctuation analysis; IBI, inter-beat interval.
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signal suggests a similar decreasing pattern for BF across sleep stages
because they share similarities in the assessment of peripheral pulse
waves (Grote and Zou, 2017). The mean amplitude of peripheral BF in
the present study confirmed that skin BF at the finger gradually
decreases from Wk, to NREM sleep, and to REM sleep (see
Figure 2A). In addition, because REM sleep is associated with a
largely variable sympathetic tone (Lanfranchi and Somers, 2010),
peripheral BF during this stage should be variable as well. This was
also confirmed by the CV and frequency-domain results of finger-BF
in the present study. Furthermore, previous studies have shown that
the modulation of BF by sleep stages (e.g., REM sleep with higher
sympathetic activity) may be different between the peripheral and
cerebral regions. While peripheral BF may decrease in REM sleep
compared with NREM sleep (Lavie et al., 2000), cerebral BF shows a
marked increase instead (Hanak and Somers, 2011; Klingelhófer,
2012). Therefore, peripheral BF has its own characteristics during
sleep, and these characteristics may be different across sleep stages.
Indeed, compared with PRV in the present study, peripheral BF
activity was highlighted in REM sleep. In particular, peripheral BF
provided distinct information for the differences between REM sleep
and other stages, such as Wk and N1, which all PRV indices and most
HRV indices could not provide. Peripheral BF + PRV may be able to
differentiate all the sleep stages and provides good indices for
measuring ANS activity, including parasympathetic and
sympathetic activity. In some respects, they may compare favorably
with HRV because HRV indices (e.g., LFn) do not have mono-
measures for sympathetic tone. However, peripheral BF indices in
the time-frequency domain may be candidates for assessing SNS
activation.

4.2 Similarities and differences between PRV
and HRV regarding ANS activity during sleep

With every heartbeat, blood is transferred from the heart through the
blood vessel network to peripheral areas, such as fingers. Because of this
close relationship, previous studies have attempted to reconstruct ECG
signals from the pulse wave signals of blood in tissues (Zhu et al., 2019).
Although many external factors can affect the consistency between PRV
and HRV, the physiological natures of peripheral BF and ECG signals
leads to inevitable differences between them. One critical intrinsic factor is
the pulse transit time (PTT), which is the time required for the blood to
travel from the heart to the peripheral site where the BF is measured.
Therefore, it is expected that traveling through different blood vessel
networks to different sites, such as the finger and ear, may affect the PTT
and could affect the signals recorded and the information they provide. In
addition, the two components of the ANS, the parasympathetic and
sympathetic, have different roles in the heart and vasculature (Lombard
and Cowley, 2012). While the SNS plays a dominant role in regulating
vascular activity, the parasympathetic nervous systemmajorly contributes
to cardiac activity. For example, many HRV indices, such as RMSSD,
pNN50, and HF, reflect vagal tone. Other HRV indices, such as LF, reflect
a mix of vagal and sympathetic activity (Laborde et al., 2017), suggesting a
major role of vagal tone in HRV. However, peripheral BF and PRV may
be affected by factors that affect HRV through the blood vessel network
and by factors that directly affect vascular activity, such as the SNS (Task
Force of the European Society of Cardiology and the North American
Society of Pacing and Electrophysiology, 1996; Lombard and Cowley,
2012) or changes in the local vasculature (Heathers, 2013; Mejía-Mejía

et al., 2020). Thus, variations in peripheral BF and PRV can come from
different sources that do not affect HRV in the same way. This may also
explain why some indices, such as ApEn, showed a trend of difference
between PRV andHRV. This may be because PRVmay bemore complex
than HRV, even during N3. Therefore, the differences between PRV and
HRV require further investigation.

4.3 Determining different sleep stages using
peripheral BF + PRV

Compared with ECG/HRV, peripheral BF/PRV can be measured
in a much more convenient, straightforward, low-cost, and non-
invasive way, such as using LDF or PPG, and at more recording
sites. PPG can also be used to measure BF, but indirectly, which is not
recommended according to some previous studies. On the other hand,
LDF is the default method to measure BF because it relies on the
Doppler shift directly related to the tissue BF, which could also explain
the high sensitivity of LDF for measuring BF (Lindberg, Tamura, and
Öberg, 1991; Wright, Kroner, and Draijer, 2006). PRV, derived from
LDF or PPG, has been used to predict sleep stages with acceptable
accuracy in previous studies (Dehkordi et al., 2014; Imtiaz, 2021).
However, the peripheral BF signal itself is often ignored, and only
some of the PRV features are used, which may be the reason for the
lack of high accuracy. Some researchers have also tried to utilize both
the peripheral BF or the corresponding PPG signal and PRV to
automatically score sleep stages. However, the algorithms used in
these studies extracted features that cannot be easily related to the
physiological origins of the sleep stages (Uçar et al., 2018). The present
study may have provided new features for determining different sleep
stages and understanding their physiological origins. Although there
are various models for sleep stage classification using PRV/HRV
(Imtiaz, 2021), this study provides additional and essential sleep
architecture information from peripheral BF for these models to
use. With more related information, sleep staging will be expected
to have higher accuracy.

4.4 The 0.2–0.3Hz BF oscillations during
sleep

HFn (0.15–0.40 Hz) reflects respiratory sinus arrhythmia used to
measure parasympathetic (vagal) activity, and the 0.2–0.3 Hz oscillations
arewithin theHFn frequency band. This frequency band is consistent with
the so-called Traube-Hering waves, which refer to blood pressure
oscillations in time with breathing (Barnett et al., 2020). A plausible
explanation is that the band may reflect the respiratory modulation of
peripheral BF and PRV/HRV (see Supplementary Figure S4). Both finger-
and ear-BF showed an apparent peak power in the 0.2–0.3 Hz band, which
increased with the deepening of sleep, e.g., fromN1 to N3. In addition, the
relative power in the 0.2–0.3 Hz band of both finger- and ear-BF
correlated with that of respiratory activity. Previous studies have also
reported that respiratory events modulate the pulse wave amplitude of
peripheral BFmore than ECG/HRV (Haba-Rubio et al., 2005; Khandoker,
Karmakar, and Palaniswami, 2011). PRV can reflect the coupling effect
between respiration and vasculature. However, although there have been
studies on the effects of respiration around 0.2–0.3 Hz on cardiovascular
activity (Krasnikov et al., 2013; Tankanag, Krasnikov, and Mizeva, 2020),
no studies have been conducted to investigate this band of oscillations
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during sleep, especially by comparing it among sleep stages. The results of
the present study showed that oscillations occur in the 0.2–03 Hz band
during sleep and that sleep stages modulate these oscillations. Specifically,
the 0.2–0.3 Hz oscillations were largest during N3 (deep sleep) and were
reflected in peripheral BF, PRV, and HRV.

Sleep affects breathing patterns and ANS activity, thus affecting
peripheral BF and PRV. For example, during N3, both peripheral
BF and PRV showed 0.2–0.3 Hz oscillations, and the 0.2–0.3 Hz
oscillations of peripheral BF were correlated with those of AF.
Conversely, changes in breathing patterns and ANS activity may
modulate sleep. Supposing the 0.2–0.3 Hz oscillations can be
affected by external stimulation, such as sensory stimulation
(e.g., rocking), this pathway may modulate sleep. A recent study
conducted using 0.25 Hz rocking stimulation successfully entrained
spontaneous neural oscillations with benefits for sleep and memory
(Perrault et al., 2019). Several other similar studies also focused on
rocking frequency within 0.2–0.3 Hz (Shibagaki et al., 2017; Omlin
et al., 2018; van Sluijs et al., 2020), which is why we proposed
focusing on this narrow band instead of on HF. The present study
provides consistent evidence for using stimulation of
approximately 0.25 Hz to facilitate sleep. However, the causal
effects of stimulation in the 0.2–0.3 Hz band on peripheral BF
activity during sleep have not been investigated yet; thus, future
studies are needed to clarify this aspect.

4.5 Limitations of this study

Although measurement of peripheral BF/PRV is much more
convenient, factors that affect PRV rather than HRV include
interruptions during recording, noise/artifacts in the recorded signals,
errors in detecting the fiducial points, and physiological factors such as
the PTT and changes (or respiration factors leading to changes) in blood
pressure. The recording interruptions and noise/artifacts mainly come
from unstable attachment of the sensors to body areas (e.g., ear concha)
and are related to body movement. Several measurements and a certain
number of epochs from individual data were excluded from analysis
because of noise/artifacts during acquisition (Supplementary Table S1)
and interruptions during recording. Body movements and posture can
easily affect the right-index finger and right-ear concha sites. Thus, the
first limitation of this study was the movement artifacts that affect the
quality of peripheral BF and PRV data. The noise/artifacts problem may
be solved with further development of these sensors, especially the ear
sensor. Future device designs should increase the signal-to-noise ratio and
robustness to recording interruptions. Further, owing to the noise/
artifacts, the quality of fiducial point detection was affected.
Nevertheless, despite the immerits of data integrity and quality, this
study still provided the possibility for PRV to be equivalent to HRV in
some parameters and the possibility that peripheral BF provides
additional sleep architecture information.

The second limitation of this study was the evaluation of systolic
peaks to detect the fiducial point for PRV as an analogy to the actions
of R peaks for HRV. However, this method shows the lowest
agreement between PRV and HRV. This may not have greatly
affected this study, because finger-PRV showed considerable
consistency with HRV. However, ear-PRV must have been
significantly affected. Even during preprocessing, we discovered
that detecting the fiducial point was complex for many epochs of
ear-BF because of noise/artifacts. Therefore, external factors such as

technical design and noise/artifacts, including movement artifacts that
affected peripheral BF + PRV, and not intrinsic factors, such as the
nature of peripheral BF and ECG, may have affected the consistency
between the two.

The third limitation is that we only recruited healthy participants in
this study. No patients, for example, those with sleep apnea, were
included. Thus, this study cannot be directly compared with previous
studies on patients (Khandoker et al., 2011; Liu et al., 2017). However, the
healthy sleep status of the participants was self-reported, which does not
exclude the possibility that there may have been undiagnosed sleep
disorders present. Further, although participants were told to refrain
from taking alcohol and medicines on the day of the experiment, it is
possible that they may be under medication or taking supplements that
influence sleep, ANS function, and peripheral function. Thus, future
studies should include more strict screening, especially when comparing
healthy populations with patients.

The fourth limitation is that we only conducted the experiment
during the nighttime. HRV is modulated by the circadian rhythm
(Stein, 2007), which suggests that the dynamics of peripheral BF and
PRV during sleep stages observed in this study may differ between
daytime naps and nighttime sleep. Nevertheless, the present study has
proved that peripheral BF + PRV provides much information about
sleep stages, which may be more than that provided by HRV alone,
supporting the prospect of peripheral BF + PRV as a new biomarker
(Yuda et al., 2020), although this conclusion should be further
explored in future studies.

The fifth limitation is the statistical power to detect differences in
HRV, PRV, and peripheral BF indices between stages. Several factors
affected this, including individual differences in the sample, sample
size, noise/artifacts, and data integrity as discussed above. For this
reason, Bayesian analysis was applied, parallel to frequentist tests for
obtaining more information, especially in the case of non-significant
differences, which is a merit of Bayesian analysis.

5 Conclusion

In conclusion, the peripheral BF signal and derived IBI signal (for
the calculation of PRV) provide considerable information about the
sleep state, specifically, the sleep stages. Time-domain and
frequency-domain parameters of peripheral BF, and time-domain,
frequency-domain, and non-linear PRV indices provide ample
information about the sleep stages, possibly more than HRV
alone. Accordingly, peripheral BF + PRV should be considered a
new biomarker instead of a surrogate of ECG/HRV, and its potential
for monitoring and predicting sleep state should be further explored.
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