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Background: Radiofrequency catheter ablation (RFCA) therapy is the first-line
treatment for atrial fibrillation (AF), the most common type of cardiac arrhythmia
globally. However, the procedure currently has low success rates in dealing with
persistent AF, with a reoccurrence rate of ~50% post-ablation. Therefore, deep
learning (DL) has increasingly been applied to improve RFCA treatment for AF.
However, for a clinician to trust the prediction of a DL model, its decision process
needs to be interpretable and have biomedical relevance.

Aim: This study explores interpretability in DL prediction of successful RFCA
therapy for AF and evaluates if pro-arrhythmogenic regions in the left atrium
(LA) were used in its decision process.

Methods: AF and its termination by RFCA have been simulated in MRI-derived 2D
LA tissue models with segmented fibrotic regions (n = 187). Three ablation
strategies were applied for each LA model: pulmonary vein isolation (PVI),
fibrosis-based ablation (FIBRO) and a rotor-based ablation (ROTOR). The DL
model was trained to predict the success of each RFCA strategy for each LA
model. Three feature attribution (FA) map methods were then used to investigate
interpretability of the DL model: GradCAM, Occlusions and LIME.

Results: The developed DL model had an AUC (area under the receiver operating
characteristic curve) of 0.78 ± 0.04 for predicting the success of the PVI strategy,
0.92 ± 0.02 for FIBRO and 0.77 ± 0.02 for ROTOR. GradCAM had the highest
percentage of informative regions in the FA maps (62% for FIBRO and 71% for
ROTOR) that coincided with the successful RFCA lesions known from the 2D LA
simulations, but unseen by the DL model. Moreover, GradCAM had the smallest
coincidence of informative regions of the FA maps with non-arrhythmogenic
regions (25% for FIBRO and 27% for ROTOR).

Conclusion: The most informative regions of the FA maps coincided with pro-
arrhythmogenic regions, suggesting that the DL model leveraged structural
features of MRI images to identify such regions and make its prediction. In the
future, this technique could provide a clinician with a trustworthy decision
support tool.
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1 Introduction

Atrial fibrillation (AF), the rapid, uncoordinated contraction of the
atria, is a heart condition that affects 33 million people
worldwide—making it the most common type of cardiac arrhythmia
globally (Hart and Halperin, 2001; Chugh et al., 2014). Currently, the
precise mechanisms of AF are unclear. However, there is evidence that
ectopic electrical beats originating from the pulmonary veins (PVs) can
trigger AF (Chen et al., 1999). The triggers can then generate re-entrant
drivers (rotors) that sustain AF, and spatial fibrosis distributions in the
left atria (LA) have been demonstrated to facilitate such drivers
(Morgan et al., 2016; Roy et al., 2020). A common treatment for AF
is radiofrequency catheter ablation (RFCA) therapy. RFCA involves
using induced heat from a rapidly alternating current in a catheter to
ablate (isolate or destroy) the arrhythmogenic area of atrial tissue that
harbours triggers or rotors, thus restoring sinus rhythm and the
mechanical function of the heart (Townsend and Sabiston, 2001).
Presently, the success rate of RFCA is ~70% for paroxysmal
AF—which is relatively high (Oketani et al., 2012). However, the
procedure is much less successful when dealing with persistent AF,
which has a reoccurrence rate of ~75% post-intervention. Therefore,
with the high reoccurrence rate of AF, there is a need for improvements
within (Wang et al., 2017; Yubing et al., 2018).

Image-based computational modelling has been used to
understand the structure-function relationship that determines
re-entrant atrial drivers for AF with the aim of improving RFCA
outcomes. As a result, computational methods have been introduced
to improve RFCA outcomes, ultimately leading to the FIRM (Focal
Impulse and Rotor Modulation) mapping, which locates rotational
activity around a centre (rotor) from electroanatomical maps
(Narayan et al., 2012a). The CONFIRM trial showed patients
that underwent FIRM-guided ablation maintained a higher
freedom of AF (AF termination in 86% of patients) when
compared to patients with conventional ablation strategy (AF
termination in 20% of patients) (Narayan et al., 2012b).
However, the multicentre REAFFIRM trial did not show evidence
that FIRM-guided ablation strategy is superior to pulmonary vein
isolation (PVI) (Zhao et al., 2019).

With the recent rise of artificial intelligence (AI), machine and
deep learning (DL) have been applied to patient medical imaging
data and computational cardiac modelling with the aim to develop
more effective RFCA treatments. The applications of AI include
predicting AF reoccurrence post-RFCA and the origins of AF
triggers and ablation (Kim et al., 2020; Liu et al., 2020; Firouznia
et al., 2021; Roney et al., 2022). Furthermore, Luongo et al. have
applied machine learning to predict AF ablation targets, but used 12-
lead ECG data instead of medical imaging (Luongo et al., 2021).
Other studies have also leveraged the power of AI in AF by using DL
with ECG data to estimate atrial fibrosis and to classify AF from
atrial flutter or tachycardia (Nagel et al., 2021; Rodrigo et al., 2022).
Zololotarev et al. applied AI to identify AF drivers from multi-
electrode mapping, with the AI model then validated using optical
mapping; the results were comparable to the state-of-the-art with
higher computational efficiency (Zolotarev et al., 2020). Popescu
et al. applied DL for arrhythmic sudden death prediction from
clinical and imaging data, which proved successful and achieved a
concordance index of 0.83 and 0.74, and 10-year integrated Brier
score of 0.12 and 0.14, respectively (Popescu et al., 2022).

However, DL is limited by its black-box nature. This is an issue
when considering the European Union’s General Data Protection
Regulation (GDPR), as any algorithmic decision used in patient care
requires an explanation for transparency (Mourby et al., 2021).
Moreover, clinicians have also argued that if AI can outperform
human diagnosis, understanding the AI model’s decision process
will be beneficial in discovering new biological processes and
furthering medical knowledge (Watson et al., 2019). Moreover, it
will increase confidence in the AI-generated results, which means
the clinicians are more likely to trust and leverage them. Hence, this
has led to the growing field of deep learning interpretability for
medical imaging analysis, where methods such as concept learning
models, latent space interpretation and attribution maps have been
applied to many medical fields (Salahuddin et al., 2022).
Organisations have also expressed an interest in AI
interpretability, e.g., the Avicenna Alliance (AA) and the Virtual
Physiological Human Institute (VPHI). The AA and VPHI aims are
to promote the synergy of AI and in silicomodelling into healthcare,
while providing policymakers and regulators with directions
towards applying these technologies safely in clinics, including AI
interpretability (Geris et al., 2022).

Muffoletto et al. were the first to apply DL to directly informing a
clinician to treat AF using RFCA therapy and developed a
convolutional neural network (CNN) to predict suitable in silico
ablation strategies for a given patient, using synthetic tissue-based
atrial models with randomly distributed fibrotic patches. The
approach proved effective (79% accuracy) and illustrated the
proof-of-concept (Muffoletto et al., 2019). Ultimately, this led to
the approach being applied to MRI-derived data to predict the
patient-specific optimal RFCA strategy. As a result, the developed
CNN had a 100% accuracy for classifying optimal fibrosis- (FIBRO)
and rotor-based (ROTOR) strategies success and 33% accuracy for
the PVI strategy (Muffoletto et al., 2021).

Currently, research into interpretability for DL-based AF
management is very limited. For example, one study by
Alhusseini et al. used gradient-weighted class activation mapping
(GradCAM) to show that their feature attribution (FA) map closely
replicated rules used by clinicians. However, only one method was
validated within this study, and a comparison with other methods
was not investigated. Furthermore, the study used spatial maps of
the activation phase derived from electrocardiogram data from a
basket catheter. Hence, there has been no investigation into DL
interpretability for models which use medical imaging data to make
explainable predictions for cardiac arrhythmias and anti-arrhythmic
treatments (Alhusseini et al., 2020).

In this study, we present a novel qualitative and quantitative
comparison of established DL interpretability methods for medical
imaging and image-based cardiac modelling of RFCA, as well as new
quantitative metrics to assess interpretability of FA maps for the
image-based cardiac models.

2 Methods

2.1 Overview

We propose a DL approach to 1) accurately predict the
outcomes of RFCA therapy based on image-based modelling and
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simulations and 2) interpret the decision process of the DL model.
To achieve this, standardised 2D LA models with patient-specific
distributions of fibrosis were derived from late gadolinium-
enhanced (LGE) MR imaging data. Simulations of AF and its
termination with three RFCA strategies were performed, the DL
model was applied to predict the success of each strategy, and the
RFCA simulation results were compared with DL interpretability
maps to identify proarrhythmogenic locations. Three established
interpretability approaches were also compared qualitatively and
quantitatively to interpret the DL model’s predictions.

2.2 Data acquisition and pre-processing

The datasets used in this study were derived from 122 LGE
MRI patient scans: 86 datasets with spatial resolution of 0.625 ×
0.625 × 0.625mm3 were acquired from the Atrial Segmentation
Challenge at the STACOM 2018 workshop (Xiong et al., 2021);
additionally, 36 LGE MRI images were collected at St. Thomas’
Hospital London with resolution of 1.3 × 1.3 × 4mm3 (specifically,
18 AF patients were scanned both pre-and post-intervention)
(Chubb et al., 2018).

Generating 2D LA models with fibrosis first required
manual segmentation of patient LGE MRI data to produce
3D patient-specific endocardial LA surface meshes. The LGE
MRI image intensities were then mapped to these models and
the image intensity ratio thresholding technique was applied to
quantify and visualise LA fibrosis (Roy et al., 2020). Finally, the
3D LA fibrosis maps were unwrapped using the LA

standardised unfold mapping technique to produce models
in the 2D LA disk format for use as input to the DL network,
as shown in Figure 1A (Williams et al., 2017; Qureshi et al.,
2020).

Furthermore, to increase the size of the dataset, synthetic 2D
LA disks were generated by weighted-averaging of the patient
datasets to vary the fibrosis distribution and PVs. The creation of
synthetic disks consisted of three steps. First, 65 MRI images were
extracted from the STACOM 2018 dataset and were each
weighted by assigning a random weight (between 0 and 1) to
all voxels of a given image; the weighted-average of all images was
thresholded (Case xA in Figure 1B). This number was chosen as
less than 65 would result in low variability in the synthetic tissues
and more than 65 would result in most of the synthetic tissues
being covered in fibrosis. Supplementary Figure S1 illustrates that
selecting the 65 LA tissues in generating the synthetic LA tissues
would result in a mean fibrotic tissue percentage of approximately
50%. Thus, 65 corresponds to a folding point of this sigmoidal
dependence, and any number above 65 would lead to a majority of
tissue being fibrotic. Then the extracted fibrosis distribution was
further augmented by applying one or multiple affine
transformations (translation, rotation and flipping). The
fibrosis threshold value and the types of transformation were
randomly selected. Lastly, the PVs were varied by assigning one of
6 different variants, which included changing PV size and
position (Case xB in Figure 1B) (Muffoletto et al., 2021). This
resulted in a total of 199 synthetic 2D LA tissue models in
addition to the 122 patient-specific models, totalling 321 2D
LA tissue models.

FIGURE 1
DiagramofMRI-derived 2D LA tissue disk. (A). Workflowof 2D LA tissue generation pipeline. The figure illustrates the process of how the 2D LA tissue
models are obtained from LGE MRI by LA segmentation, thresholding fibrosis from healthy tissue and mapping onto 2D LA tissues. (B). Workflow for
generating synthetic tissues. 65 tissues were randomly selected from the total dataset of 122 real tissues. These 65 tissues were used to generate the
synthetic images by iterating overstages 1 to 4 (199 times) to create a virtual cohort of 199 tissues. ‘Case xA’ denotes the combination of data
augmentation techniques used to create the synthetic fibrosis distributions. ‘Case xB’ determines how the PV sizes and locations were varied from those
in the standardised discs.
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2.3 Atrial tissue modelling and AF simulation

Eq. 1 represents the Fenton-Karma semi-physiological model,
which consists of three ionic currents representing the overall ion
current in the electrical dynamics of atria cells; If i represents the fast
inward currentNa+, Iso is the slow outward current K+ and Isi is the
slow inward current Ca+ (Fenton and Karma, 1998):

Iion � If i + Iso + Isi (1)

Eq. 2 is the standard monodomain equation to describe electrical
wave propagation.

zVm

zt
� ∇.D∇Vm − Iion

Cm
(2)

Vm is the membrane potential, Cm is the membrane capacitance,
D is a tensor that represents the diffusion of the electrical
coupling within tissue. Eq. 2 with ion current determined in
Equation 1 was solved using the forward Euler method with a
finite-difference approximation of the Laplacian. Therefore,
Equation 1 and Equation 2 were solved using each 2D tissue
disk as a spatial domain to simulate electrical waves sustaining
AF. Such waves in the form of rotors were generated using the
standard cross-field protocol at 28 ms into the simulation (Tobón
et al., 2014). The numerical integration steps were 0.01 ms time
step and 0.3 mm spatial step. Additionally, healthy tissue had a D
value of 0.1 mm2s−1 to match the physiological value of
healthy myocardium tissue. Fibrotic tissue had D value of
0.015 mm2s−1.

The three ablation strategies were simulated to terminate
persistent AF: PVI, FIBRO and ROTOR strategies; details of
the simulations have been published previously (Muffoletto
et al., 2021). The FIBRO strategy involved ablating the
perimeter of the fibrotic tissue, while PVI consisted of ablating

the circumference of the PVs and ROTOR ablated the phase
singularities of the electrical wave. The ablation strategy was
deemed successful for a tissue if AF was terminated within
2000 ms and less than 40% of the tissue was ablated
(Muffoletto et al., 2021). Therefore, using the stated simulation
pipeline, the success of the three RFCA strategies was determined
for AF simulations in the 2D LA tissues (including patient MRI
derived and synthetic data). Furthermore, since multiple
strategies can be successful/unsuccessful for a given 2D LA
tissue, the classification task was multi-label.

2.4 Deep learning

We employed the CNN with hyperparameters (parameters
and number of convolutional and fully connected layers) based
on the study by Muffoletto et al. as the basis of our interpretability
framework (Muffoletto et al., 2021). The hyperparameters were
tuned by Muffoletto et al. by performing 24 experiments which
involved changing number of layers, filter size of convolutional
layers and dropout rate. The optimal hyperparameters were
chosen by selecting the DL model with the highest average
accuracy across a 5-fold cross-validation. The CNN consisted
of four convolutional layers of 32 × 32 filters, each followed by
Rectified Linear Unit (ReLU) activation and max pooling with a
pool size of two. These are followed by three linear layers (2048,
128 and 3 units, respectively) and another ReLU activation. A
Dropout layer followed this at a rate of 0.8 and a sigmoid function
(Paszke et al., 2019). Since we address a multi-label classification
problem (i.e., multiple ablation strategies), we modified the
loss function to be a mean-squared error tailored to perform
multi-label classification for the three ablation strategies
(Figure 2).

FIGURE 2
Diagram of CNN with parameters to predict RFCA simulation strategy success from 2D LA tissue.
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MSE yscore, y( ) � ∑
N

i�0

yiscore − yi

N
(3)

Eq. 3 is the mean-squared error function formulation, where
yscore is the predicted class score array and y is the RFCA strategy
success ground truth (where 1 = success and 0 = unsuccessful).
Here, N represents the number of classes/strategies (three in this
study) and i is the index of a class in the class score array. To train
and effectively test the CNN, a leave-one-out cross-validation was
used where the total dataset was split into two sets: a hold-out test
set and training set. The training set was then split into five folds,
where four folds were used to train the CNN, and the last fold was
used as a validation set to select the optimal CNNmodel state (i.e.
the model with the lowest loss during training) (Raschka, 2018;
Muffoletto et al., 2021). In total, there were 271 2D LA tissues in
the leave-one-out cross-validation dataset (96 MRI derived and
175 synthetic). Within each fold the DL model was trained for
100 epochs using an ADAM optimiser with a learning rate of 1e-4
(Kingma and Ba, 2014). For each fold, the optimal model was
tested on the hold-out test set of 50 2D LA tissues (26 MRI derived
and 24 synthetic) from the total dataset to evaluate the DL
model’s performance. Pre- and post-ablation images were not
split during cross-validation, as there was little similarity between
the respective fibrosis distributions (see Supplementary Materials
Section 2 and Supplementary Figure S2).

2.5 Interpretability

Three popular local post hoc interpretability methods were
used to interpret the CNN’s predictions - GradCAM, occlusions

and local interpretable model-agnostic explanations (LIME)
(Zeiler and Fergus, 2014; Ribeiro et al., 2016; Selvaraju et al.,
2017; Kokhlikyan et al., 2020). GradCAM and LIME were chosen
as they are widely used saliency maps in DL medical image
analysis (Magesh et al., 2020; Graziani et al., 2021; Patel et al.,
2021; Mahapatra et al., 2022), while occlusions is one of the first
saliency map methods used for DL computer vision. Each method
evaluates feature attribution using different approaches:
GradCAM uses gradient information, LIME uses an
interpretable model within a local space and the occlusions
method uses perturbations.

The DL model state from the most accurate fold of the leave-
one-out cross-validation was used to produce the FA maps for the
three methods on the hold-out test set. The GradCAM method was
applied to the last convolutional layer of the CNN. Each FAmap was
thresholded above the respective map’s average FA to highlight the
most informative features. Three metrics were evaluated to
quantitatively analyse the informative regions of each FA map:
Jacquard index (IoU), lesion percentage and non-arrhythmogenic

TABLE 1Mean lesion percentage, NAT percentage, IoU of the informative region and ablation lesions with errors (standard deviation) for each FAmapmethod and
RFCA strategy.

Ablation strategy Method Lesion percentage IoU NAT percentage

PVI LIME 0.44 ± 0.24 0.077 ± 0.023 0.32 ± 0.24

Occlusions 0.55 ± 0.15 0.065 ± 0.17 0.57 ± 0.15

GradCAM 0.47 ± 0.17 0.063 ± 0.029 0.60 ± 0.12

FIBRO LIME 0.57 ± 0.19 0.18 ± 0.09 0.47 ± 0.27

Occlusions 0.45 ± 0.14 0.19 ± 0.11 0.38 ± 0.20

GradCAM 0.62 ± 0.25 0.26 ± 0.11 0.27 ± 0.16

ROTOR LIME 0.62 ± 0.16 0.12 ± 0.07 0.63 ± 0.25

Occlusions 0.53 ± 0.16 0.14 ± 0.06 0.36 ± 0.16

GradCAM 0.71 ± 0.13 0.20 ± 0.08 0.25 ± 0.06

TABLE 2 Mean AUC score on independent hold-out test set (with standard deviation) for each RFCA strategy and type of data.

Ablation strategy MRI derived data MRI derived + synthetic data

PVI 0.67 ± 0.03 0.78 ± 0.04

FIBRO 0.85 ± 0.02 0.92 ± 0.02

ROTOR 0.62 ± 0.05 0.77 ± 0.02

TABLE 3 Mean area under the receiver operating characteristic curve (AUC)
score, recall, precision and F1-score on independent hold-out test set (with
standard deviation) for each RFCA strategy.

Ablation strategy AUC Recall Precision F1-
score

PVI 0.78 ± 0.03 0.35 ± 0.07 0.68 ± 0.28 0.42 ± 0.06

FIBRO 0.92 ± 0.02 0.89 ± 0.03 0.82 ± 0.02 0.85 ± 0.01

ROTOR 0.77 ± 0.02 0.93 ± 0.04 0.76 ± 0.02 0.84 ± 0.01
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TABLE 4 Mean AUC, recall, precision and F1 score (with standard deviation) of DL model trained with real data only and with synthetic and real data from a leave-
one-out cross-validation on a hold-out test (~20% of the respective dataset).

Ablation strategy MRI derived data MRI derived + synthetic data

AUC Recall Precision F1 score AUC Recall Precision F1 score

PVI 0.67 ± 0.03 0 1.0 0 0.78 ± 0.03 0.35 ± 0.07 0.68 ± 0.28 0.42 ± 0.06

FIBRO 0.85 ± 0.02 0.75 ± 0.08 0.70 ± 0.03 0.72 ± 0.04 0.92 ± 0.02 0.89 ± 0.03 0.82 ± 0.02 0.85 ± 0.01

ROTOR 0.62 ± 0.05 0.99 ± 0.02 0.64 ± 0.01 0.78 ± 0.02 0.77 ± 0.02 0.93 ± 0.04 0.76 ± 0.02 0.84 ± 0.01

Bold numbers signify the highest score from each FA method for each metric.

FIGURE 3
Diagram of 2D LA tissues with highlighted feature attributionmaps.White areas in the 2D tissues are healthy tissue and red areas are fibrosis. Ablation
lesion locations known from simulations are shown (yellow) for all three RFCA strategies, along with respective FA maps for LIME, GradCAM and
occlusions and highlighted thresholded informative regions (translucent green). Same colour scheme in used in Figures 7, 8 below.

FIGURE 4
Boxplot of Jacquard index (IoU) for each FA method (GradCAM, LIME and Occlusions) and RFCA strategy (PVI, FIBRO and ROTOR) on the hold-out
test set.
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tissue (NAT) percentage. The IoU was evaluated by calculating IoU
of the informative regions of a FA map and lesions of a given
ablation strategy. Lesion percentage was evaluated by calculating the
percentage of lesions of a given ablation strategy within the
informative regions.

The motivation for analysing the lesion percentage was to
determine if the DL model focused on clinically relevant features.
The number of the lesions (unseen by the DLmodel but known from
simulations–and known to clinicians when ablating a patient) found
in a FAmap’s informative region is a relevant metric, as such lesions
are associated with arrhythmogenic regions in atrial tissue. Thus,
PVI lesions isolate the area of the initial arrhythmogenic triggers,

FIBRO lesions aim to isolate the fibrotic tissue border where AF
reentrant drivers commonly reside, and ROTOR lesions directly
target such reentrant drivers. Therefore, the ability of DL model to
predict lesion locations (again, without seeing such lesions during
training) should help the clinician to understand and trust these
predictions.

Lastly, the NAT percentage was calculated by finding the
percentage of healthy tissue (with no lesions or fibrosis) within
the informative regions of a FA map. NAT percentage was
evaluated to assess how much of the clinically
irrelevant features were highlighted as informative by the DL
model.

FIGURE 5
Boxplot of lesion percentage for each FA method (GradCAM, LIME and Occlusions) and RFCA strategy (PVI, FIBRO and ROTOR) on the hold-out
test set.

FIGURE 6
Boxplot of NAT percentage for each FA method (GradCAM, LIME and Occlusions) and RFCA strategy (PVI, FIBRO and ROTOR) on the hold-out
test set.
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2.5.1 GradCAM
GradCAM uses the gradient from a given convolutional

layer to measure FA for a particular decision of interest.
GradCAM is an improvement of the class activation map
(CAM) method. CAM produces a localisation map for an
image classification model, utilising a specific architecture
where globally averaged pooled convolutional feature maps
are fed directly into a softmax layer. GradCAM improves on
CAM by being architecture-independent, and it can be applied
to any CNN. Furthermore, a study by Adebayo et al.
implemented a sanity check of GradCAM through a model
parameter and data randomisation test. It demonstrated that
GradCAM’s saliency maps could support tasks that require
explanations that are faithful to the model and the data
generation process (Adebayo et al., 2018).

αc � 1
z
∑
i

∑
j

zyc

zAij
(4)

Feature attribution, αcij (i and j are the indices of the feature in a
FA map), of a given class c is calculated in GradCAM by evaluating
the partial derivative of the score of class c and a feature from
activation map of a given convolutional layer Aij. The result of
evaluating the partial differential for each feature is then pooled
globally by dividing each element of the FA map by the
total number of features to find the final FA map (Selvaraju
et al., 2017).

2.5.2 LIME
The core idea of LIME is to explain predictions of any classifier

faithfully by learning an interpretable model locally around the

FIGURE 7
IoU, lesion and NAT percentage values for each interpretability method and ablation strategy with altered informative region threshold value. (A).
Informative region threshold value 25% above the average FA. (B). Informative region threshold value 25% below the average FA.
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prediction. LIME achieves this by generating simulated data points
around an instance through random perturbation and weighting
them as a function of proximity to the original data points, fitting a
sparse linear model to the predicted responses from the perturbed
points and using the sparse linear model as an explanation model
(i.e., weights of features in linear model).

ξ x( ) � argmin
g∈G

L f , g ,πx( ) +Ω g( ) (5)

L f , g , πx( ) � ∑
z,z′∈Z

πx z( ) f z( ) − g z′( )( )2 (6)

FA ξ(x) of given features x is calculated in LIME by
minimising the loss function L and complexity, Ω(g), of the
function g (a model from a class of possibly interpretable
models). In essence L is a function that measures how
unfaithful the function g is at approximating f (the model
being explained) in the local space defined by πx . Eq. 6 shows
how the loss function uses the L2 distance to measure how
unfaithful function g is at approximating f , where z is sample
from x, z is the set perturbed samples of x with associated labels
and z′ is perturbed sample from set z (Kokhlikyan et al., 2020).

2.5.3 Occlusions
Occlusions is a perturbation-based approach to calculate FA,

which involves perturbing the feature space with a rectangular
region and evaluating the difference of class score from a given
class prediction by the perturbation. FA is then assigned by looking
at the feature in the multiple rectangular regions it is in and
averaging the multiple class score differences (Ancona et al.,
2017). The occlusion FA method was based on an occlusion
sensitivity analysis used to validate a DL interpretability method
by Zeiler et al. (Zeiler and Fergus, 2014).

3 Results

3.1 Dataset analysis

In the dataset comprising of 122 LA tissues derived from MRI
data, the PVI strategy led to successful AF termination in only 11.6%
of cases, while 88.4% resulted in failed terminations. Meanwhile, the
FIBRO and ROTOR strategies resulted in 42.6% and 74.4%
successful terminations, respectively. Notably, FIBRO

FIGURE 8
Averaged LGE MRI intensities and FA maps on the hold-out test set. (A). Averaged and normalised LGE MRI intensity in the LA tissue disks. (B).
Averaged and normalised GradCAM FA map for the ROTOR ablation strategy. (C). Averaged and normalised GradCAM FA map for the FIBRO ablation
strategy. (D). Averaged and normalised GradCAM FA map for the PVI ablation strategy.
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demonstrated the most balanced AF termination outcomes, whereas
ROTOR and PVI exhibited a similar level of misbalance in the
outcomes. In the larger dataset consisting of 321 LA tissues,
including both MRI-derived and synthetic data, the PVI strategy
achieved successful AF termination in 27.1% of cases,
demonstration a positive impact of augmentation. The FIBRO
and ROTOR strategies also resulted in 58.3% and 75.7%
successful terminations, respectively.

3.2 Convolutional neural network
performance

The success of the FIBRO ablation strategy was predicted
most accurately by the CNN, as shown in Table 1, where the
FIBRO class has the highest AUC score and the most balanced
recall and precision scores. Furthermore, the FIBRO strategy
also had the highest AUC score when predicting ablation
success exclusively on the real data (Table 2). PVI had the
second-highest AUC score on mixed real and synthetic data, as
well as exclusively on real data. Meanwhile, ROTOR had a
comparable AUC score to PVI on the real and synthetic data

but performed worse exclusively on the MRI-derived data
(Table 2).

However, the CNN struggled to predict successful AF
termination cases by PVI, which is reflected in the low recall and
F1 score in Table 3. Even though there was a similar class imbalance
in ROTOR compared to PVI, the CNN was able to predict the
successful and failed AF termination cases to a reasonable degree
(see recall and F1 score in Table 3). Lastly, the CNN had a
significantly higher AUC score (p < 0.05) when trained and
predicted on a dataset comprised of synthetic and MRI derived
data compared to training exclusively on MRI derived data
(Table 4). This was confirmed using a one-sided t-test (PVI: p =
0.030; FIBRO: p = 3.5e-05; ROTOR: p = 6.15e-06). This was due to
the increased dataset size when combining the real and synthetic
data as the CNN has more training examples–effectively improving
the task’s generalisation. Notably, incorporating synthetic data has
improved accuracy in predicting the outcomes of PVI.When trained
exclusively on MRI-derived data, the model showed a zero F1-score
for PVI, attributed to significant class imbalance. This resulted in the
model predicting unsuccessful AF termination for all PVI cases,
explaining the precision score of 1.0. However, integrating synthetic
data into the dataset improved the model’s ability to classify

FIGURE 9
Averaged and normalised ablation lesions and GradCAM FA maps for FIBRO and ROTOR on the hold-out test set. (A). Ablation lesions for ROTOR.
(B). FA map for ROTOR. (C). Ablation lesions for FIBRO. (D). FA map for FIBRO.
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successful ablation for PVI (F1 score of 0.42 ± 0.06), due to the 15.5%
increase in successful PVI cases in the dataset. This allowed the
model to improve its classification of successful AF termination
by PVI.

3.3 Qualitative interpretability analysis

As shown in Table 1, GradCAM was characterised by the
highest lesion percentage and IoU metrics for the FIBRO and
ROTOR strategies. Additionally, Figure 3 shows that in FA
maps obtained with GradCAM for ROTOR and FIBRO, the
informative regions coincided with most ablation lesions.
Figure 3 also illustrates that GradCAM had the lowest NAT
percentage for the FIBRO and ROTOR strategies, as the FA
maps did not highlight large, but clinically irrelevant regions of
healthy tissue–whereas LIME and occlusions did. For the PVI
strategy, the occlusions method provided FA maps with the

greatest lesion percentage, and LIME provided FA maps with
the highest IoU score.

3.4 Quantitative interpretability analysis

Using the Wilcoxon signed-rank test, the ROTOR strategy
lesion percentage for GradCAM was significantly greater (p <
0.017 using Bonferroni correction) than that for occlusions, but
not for LIME (p = 3.1e-8 and p = 0.0253, respectively). Moreover,
for the FIBRO strategy, the lesion percentage for GradCAM was
significantly higher than that for the occlusions method, but again
not for LIME (p = 4.0 e-6, p = 0.06, respectively). However, the IoU
scores for GradCAM were significantly greater (p < 0.017) than
those for occlusions and LIME for ROTOR (p = 3.3e-6 and p =
2.1e-9, respectively) and FIBRO (p = 4.2e-6 and p = 1.6e-9,
respectively). GradCAM also had a significantly less NAT
percentage (p < 0.017) than occlusions and LIME for ROTOR

FIGURE 10
Correct and incorrect classification examples of FA maps (LIME, GradCAM and occlusions) for FIBRO.
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(p = 5.5e-05 and p = 2.3e-09, respectively) and FIBRO (p = 1.2 e-5
and 2.3e-6, respectively).

Therefore, GradCAM produced more interpretable FA maps
than LIME (for FIBRO and ROTOR) as the informative regions
were more focused on areas with a high number of ablation
lesions–reflected in GradCAM having a significantly greater IoU
score than LIME (Figures 4, 5). Furthermore, GradCAM was also
more interpretable in a sense that its FA maps highlighted less
regions that were non-arrhythmogenic, and hence it had a
significantly less NAT percentage than LIME and occlusions
(Figure 6).

For the PVI strategy, the occlusions method provided FA
maps with the greatest lesion percentage and LIME FA maps
had the highest IoU score. The difference in best FA map
methods in terms of lesion percentage and IoU score can be
seen in Table 1, as informative regions in the occlusions’ FA
maps cover a vast area highlighting the ablation lesions but are
not local to the PVs. Meanwhile, the LIME FA map highlights
areas around the PVs, but does not cover many ablation
lesions.

Supplementary Figure S3, S4, S5 show the difference in the mean
score of each interpretability metric for correct and incorrect
classifications of AF termination for each ablation strategy and FA
method on the hold-out test set. This analysis shows no clear or
consistent relationship between interpretability and model accuracy.
The mean interpretability scores reflect this, as they were similar
across the correct and incorrect classification groups. Additionally, the
mean interpretability score variability is inconsistent across each ablation
strategy FA method and interpretability metric - further illustrating no
relationship between interpretability and accuracy.

3.5 Feature attribution thresholding
sensitivity analysis

The findings presented above show little dependence on the
threshold between informative and uninformative regions. As
shown in Figure 7, when the threshold value is set to 25% above
and below the average feature attribution, Grad-CAM still has
the highest lesion percentage and IoU compared to LIME and

FIGURE 11
Correct and incorrect classification examples of FA maps (LIME, GradCAM and occlusions) for ROTOR.
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Occlusions for the ROTOR and FIBRO strategies. GradCAM
still had a lower NAT percentage for FIBRO and ROTOR when
the threshold value was 25% below the average FA. However,
occlusions had a lower NAT percentage for FIBRO and ROTOR
when the threshold value was above 25% of the average FA.
Occlusions had a lower lesion percentage and IoU, which shows
that GradCAM was more interpretable when the threshold was
25% above the average FA.

3.6 Population-level interpretability analysis

Figure 8 compares the average GradCAM FAmaps for ROTOR,
FIBRO and PVI with the average fibrosis density across the 2D LA
tissue disks. It shows that the high FA regions in the average FAmap
for ROTOR (Figure 8B) and FIBRO (Figure 8C) correspond with
dense fibrotic areas (Figure 8A). Furthermore, there was a similar
good correspondence between the average GradCAM FA maps for
ROTOR and FIBRO (Figure 9B,D) and the respective average
lesions across the 2D LA tissue disks (Figure 9A,C).
Unsurprisingly, the average GradCAM FA map for PVI
(Figure 8D) showed relatively small correspondence to areas with
high fibrosis density areas.

4 Discussion and conclusion

Predicting RFCA outcomes from imaging data is a challenging
task, as shown by Kim et al., who predicted AF recurrence post-
RFCA with a 0.61 accuracy from a CNN which used a combination
of MRI data and patient demographics (Kim et al., 2020). Moreover,
Roney et al. applied machine learning to predict in silico AF
recurrence after multiple ablation strategies (Roney et al., 2018;
Roney et al., 2020).

Therefore, developing a successful DL model to predict RFCA
outcomes in AF simulations is the natural first step to predict real
RFCA outcomes in AF patients. Hence, this study i) demonstrates
a multi-label classification CNN for the success of ablation
strategies in patient-specific simulations of AF, with AUC
scores of 0.92 ± 0.02 for FIBRO, 0.78 ± 0.04 for PVI and
0.77 ± 0.02 for ROTOR, and iii) explores different methods of
DL interpretability in the classification, with GradCAM shown to
provide the most interpretable FA maps for the ROTOR and
FIBRO strategy, suggesting that the DL model utilises pro-
arrhythmogenic regions to make its prediction. This is further
supported by the population-level interpretability analysis, as
average FA maps for ROTOR and FIBRO are focused on areas
with high fibrotic density. This can be explained by the fact that
the respective ablation lesions are primarily located within these
areas. Hence, the DL model can learn to predict AF termination
outcomes by implicitly leveraging pro-arrhythmogenic regions
related to a given strategy. Importantly, locations of the ablation
lesions have not been explicitly used in the CNN’s learning
process.

It is worth noting that classification of the PVI strategy was
difficult to interpret. A possible reason for this difficulty is that the
PVI strategy in the clinic is based on ablating PV triggers that
typically initiate AF. However, these initial PV triggers were not

present in the 2D LA tissue models. Therefore, the three FAmethods
could not produce interpretable maps in this case.

A possible explanation for why GradCAM performed better
than the other methods is that LIME is susceptible to unstable
generated interpretations due to random perturbations and feature
selection. Moreover, LIME and occlusions are not class
discriminative–meaning that they cannot localise the class (RFCA
strategy) within the feature space. GradCAM is gradient-based (does
not randomise parameters to obtain FA maps) and is class
discriminative, allowing it to localise pro-arrhythmogenic regions
more faithfully than LIME and occlusions (Selvaraju et al., 2017;
Zafar and Khan, 2021).

The RFCA strategy that has the highest magnitude of lesion
percentage and lowest magnitude of NAT percentage (ROTOR)
also had the lowest AUC score in testing (Table 3), showing that
the interpretability of a FA map does not increase with the
accuracy of the strategy’s prediction. This observation
demonstrates that the need for interpretability in RFCA
strategy prediction likely goes beyond FA, and in future
work, we will investigate the incorporation of confidence in
prediction outputs to enable our method to be used as a decision
support tool to help clinicians select the appropriate therapy.
Since Varela et al. showed that LA anatomy is a significant factor
in prediction of AF recurrence post ablation (Varela et al.,
2017a), the DL approach of the study should be extended to
3D LA images and simulations. Future work should also focus
on using exclusively real patient LA data and investigating
intrinsically interpretable DL models such as ICAM (Bass
et al., 2022).

Note that 2D LA disks were used in this study due to the
efficiency in providing the needed proof of concept and had
clear advantages over extremely computationally-intensive 3D
atrial simulations. Moreover, the standardised 2D unfolded LA
images allowed for generation of a large number of additional
synthetic images, which is crucial for training CNNs. Hence,
image-based 2D LA models provided a sensible balance between
realistic details (such as fibrosis distributions) and
computational efficiency (i.e., the ability to run a large
number of simulations and train the CNN). Previous work
has shown that atrial wall thickness is distributed more or
less evenly in the LA outside of PVs and that slow
conduction in fibrotic areas is the main determinant of the
rotor dynamics (Varela et al., 2017b; Roy et al., 2018).

Another worthwhile direction is applying an approach based on
counterfactual explanations, which alters the input’s feature space to
change the classifier’s prediction. Mertes et al. has applied this
approach to a generative adversarial network and showed its
superiority to LIME in an X-ray imaging study of pneumonia
(Mertes et al., 2022). This research utilised over 100 non-medical
experts for the evaluation, which ultimately should become a
standard for any interpretability study.

Our original approach to the evaluation is based on using a
large number of 2D LA tissue models with tractable features
(rather than a large number of experts) to understand the
predictions of the DL model. Simulations of the test set of
50 2D LA tissue models reveal the important features
determining the success of each given RFCA strategy, such as
the precise locations of ablation lesions and underlying structural
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features. This evaluation shows that GradCAM best characterises
if a DL model leverages relevant features in its predictions. The
fact that GradCAM highlights relevant features and does not
highlight healthy tissue devoid of such features is illustrated in
Figures 3, Figure 10, Figure 11 and supported by numerical
metrics calculated using all 50 LA tissue models and
summarised in Table 1.

The EU’s GDPR requires an explanation for any algorithmic
decision used in patient care; we believe our work represents a
significant step to meet this requirement. Most of the ablation
lesions in our study coincided with informative regions of the
GradCAM FA maps (specifically, for ROTOR and FIBRO, see
Figures 10,11), whereas healthy, non-arrhythmogenic tissue
(NAT) was outside of these informative regions. This suggests
that the DL model can learn from structural features of patient MR
images even without knowledge of the LA function. The
explanation is that the structural features constitute pro-
arrhythmogenic LA regions (e.g., fibrotic regions are well-
known for their ability to harbour rotors sustaining AF) that
need to be targeted by ablation. Such mechanistic explanations
should increase clinician’s confidence in using the DL predictions
in future.

This study’s analysis also suggests that there is no clear
relationship between a model’s interpretability and accuracy,
which opens future directions of research into the relationship
and interaction between a model’s performance and
explainability. Another interesting investigation would be into
how FA maps can be used as model feedback to improve its
performance. To our knowledge, no study has investigated the
application of interpretability feedback for DL model design and
development for biomedical applications. Bell et al. investigated
the trade-off between accuracy and explainability for black box
and interpretable models. They showed that the trade-off is
inconsistent, and in some cases models with high
explainability can also have high accuracy - but in others
higher explainability comes at the expense of low accuracy
(Bell et al., 2022).

Importantly, the purpose of FA maps is not to be directly
applied in the clinic to predict ablation lesions in a patient–but to
explain why the DL approach is making a certain prediction, and
to increase clinical confidence in this approach (Lipton, 2017).
The lesion percentage is a relevant metric as each RFCA lesion is
associated with an arrhythmogenic location of the atrial tissue.
The lesions are well defined from simulation of 2D LA models in
the current study (and known by a clinician when treating a
patient)—but the DL model does not learn the locations of the
ablation lesions during training. Hence, the ability of the DL
model to utilise these (unseen) lesion locations in its predictions
of the RFCA strategy from patient MRI provides foundation for
the development of interpretable AI. In the future, such AI
approaches can provide a clinician with decision support tools
that they understand and trust.
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