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As a model organism, Drosophila is uniquely placed to contribute to our
understanding of how brains control complex behavior. Not only does it have
complex adaptive behaviors, but also a uniquely powerful genetic toolkit,
increasingly complete dense connectomic maps of the central nervous system
and a rapidly growing set of transcriptomic profiles of cell types. But this also
poses a challenge: Given the massive amounts of available data, how are
researchers to Find, Access, Integrate and Reuse (FAIR) relevant data in order to
develop an integrated anatomical and molecular picture of circuits, inform
hypothesis generation, and find reagents for experiments to test these
hypotheses? The Virtual Fly Brain (virtualflybrain.org) web application & API
provide a solution to this problem, using FAIR principles to integrate 3D images
of neurons and brain regions, connectomics, transcriptomics and reagent expression
data covering the whole CNS in both larva and adult. Users can search for neurons,
neuroanatomy and reagents by name, location, or connectivity, via text search,
clicking on 3D images, search-by-image, and queries by type (e.g., dopaminergic
neuron) or properties (e.g., synaptic input in the antennal lobe). Returned results
include cross-registered 3D images that can be explored in linked 2D and 3D
browsers or downloaded under open licenses, and extensive descriptions of cell
types and regions curated from the literature. These solutions are potentially
extensible to cover similar atlasing and data integration challenges in vertebrates.
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1 Introduction

Understanding the circuit basis of behavior is one of the grand challenges facing the
biomedical sciences and has major implications for human society and health. Massive amounts
of data that are relevant to this challenge are now available across multiple species. Dense
connectomes covering a significant portion of the Drosophila central nervous system are
available (Scheffer et al., 2020) and ongoing efforts are increasing coverage (Dorkenwald et al.,
2020). Single-cell transcriptomic profiles, integrated with morphology and functional profiles,
are available for a majority of cell types in the optic lobe (Kurmangaliyev et al., 2020; Özel et al.,
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2021) and more sparsely in other nervous system and brain regions
(Davie et al., 2018; Li et al., 2022). InDrosophila, transgenic techniques
(Luan et al., 2006; Pfeiffer et al., 2010) and libraries of transgenes
(Jenett et al., 2012; Tirian and Dickson, 2017) allow precise targeting of
neuron types to manipulate and measure their activity, enabling the
genetic dissection of circuit function.

While this opens up unprecedented opportunities for
understanding the circuit basis of behavior, it also poses new
challenges: How can researchers know when they have data about
one of the thousands of new cell types being identified and
characterized in the literature and as part of large-scale analyses?
How can they explore these massive new datasets, in conjunction with
the literature, to generate hypotheses and form an integrated picture of
the anatomical and molecular nature of circuits? How can researchers
share their data in a way that conforms to FAIR standards (Wilkinson
et al., 2016) and easily reuse the data of others?

Virtual Fly Brain (VFB) (Milyaev et al., 2012) provides a solution
to these problems by integrating massive amounts of data derived
from diverse techniques and multiple sources along with curated
information from the literature. All this content is available via a
web application and an API. The web application facilitates finding
and integrating information about brain regions, neuron types and
individual registered images, via sophisticated text search, point and
click interaction with 3D images and graph visualizations and via
semantic queries (e.g., finding neurons by type and location). All data
is integrated following FAIR principles and we provide tools to enable
users to share and integrate their data on VFB following these
principles. VFB integrates images, connectomics and
transcriptomics data by using two strategies - semantic and image-
based.

Semantic integration is facilitated by the Drosophila Anatomy
Ontology (DAO) (Costa et al., 2013), curated from the literature, and
increasingly from data-driven identification of cell types. The DAO
serves both as a queryable store of knowledge about Drosophila
neuroanatomy, cell types and their classifications, and a source of
terms for annotating data across modalities including images,
connectomics, transcriptomics and expression patterns. Standard
parcellation schemes have been developed for all Drosophila central
nervous system regions and stages including adult brain and ventral
nerve cord (Ito et al., 2014; Court et al., 2020). These parcellation
schemes provide a standard reference for CNS regions defined in the
DAO. Following FAIR data standards, all data on VFB is accessible via
an identifier, in the form of a URL, that is globally unique, persistent,
and resolvable.

Image-based integration makes use of standard templates (see
Figure 1) onto which image data is registered (morphed), allowing
hundreds of thousands of images from multiple imaging modalities to
be co-registered so that they can be viewed and analyzed
programmatically in a common coordinate space. Cross-
registration has made it possible to design search algorithms to
compare neurons, including NBLAST (Costa et al., 2016), which
provides a similarity score for any two cross-registered neuron
tracings based on how similar their morphology and location are.
These and other alignment-style queries are key to solving another
problem—that of defining neuron types in ways that allow them to be
identified from data using quantitative criteria rather than, as
traditionally, using qualitative criteria and human judgment. A
similar problem was solved in genomics by the use of BLAST in
combination with versioned genome builds, annotated with gene

models. Registered 3D neuron images can be mapped to a type
using NBLAST, as long as we have a set of reference images for
neuron types. While the concept of a gene is hard to define non-
controversially (Portin and Wilkins, 2017), and gene model
annotation can be error prone and controversial (Koonin and
Galperin, 2003), there is enough shared understanding and
agreement to use sequence similarity to map genomic and
transcriptomic sequence data to specific genes. The concept of cell
type is even more controversial (Bates et al., 2019; Zeng, 2022), but
neurobiologists typically group cells sharing morphological,
connectomic, functional and developmental properties together
under a common name, and generally refer to such groupings as
types. For neurons in the Drosophila nervous system, shared location
and morphology is highly indicative of shared developmental origin,
connectivity and response properties (Bates et al., 2019). Neurons with
shared location and morphology can be consistently identified across
individuals and are present in numbers from 1–1000 per brain
hemisphere (Bates et al., 2019). Shared morphology is therefore a
strong indicator of cell type.

Clustering neurons with similar morphology based on NBLAST
score identifies many previously identified types (Costa et al., 2016)
indicating that NBLAST can be used reliably in many cases to identify
neuronal type. In the case of sequence data, annotated reference
genomes provide a reference standard for gene identity. While we
have no equivalent standard reference for cell type morphologies, the
availability of large connectomics projects with annotated neuron
types, assessed at least in part using morphology via NBLAST scores,
has provided us with a good de facto standard. For example, the largest
of these published to date (Scheffer et al., 2020) is represented on VFB
along with mappings to >1,100 known types and assigned a further
3864 provisional types based on NBLAST similarity—all cataloged
and classified using DAO neuron type terms. VFB can therefore
support cell type identification from data using NBLAST for a
large and growing set of neuron types, assigning standard
aoverlapping functionality such as NeuronBridge (Clements et al.,
2022) and neuprint (Clements et al., 2020), are to support data-
discovery across many sources, to make first-pass exploration of
complex data easy and to link that data to the literature. For
further analysis, users can download data, or follow links from data
on VFB to the same data on these other resources with their own data
downloads, data exploration and search tools.

We believe that this initial data discovery and exploration step will
become increasingly important as more and more single-cell
transcriptomics and connectomics datasets become available.
Consistent semantic annotation across diverse datasets on VFB is
key to achieving this. Not only does this support matching of cell types
across datasets, it also allows for sophisticated queries that group data
in biologically relevant ways, for example by gross classification,
location or connectivity of annotated neurons.

2 Methods

2.1 Curation

VFB curators work closely with FlyBase, the EBI single cell expression
atlas curators and data providers to curate information from the literature
and annotate data in a timely manner. Literature curation captures
information about neuron types and transgene expression and takes
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advantage of FlyBase curation, including community curation efforts and
text-mining pipelines (Bunt et al., 2012; Halperin et al., 2012; Larkin et al.,
2021) to easily identify and prioritize papers that contain data of high
priority for VFB curation. Data curation standardizes the annotation of
neuron types and transgenes in data using the same ontology and feature
identifiers as FlyBase.

2.2 Semantic integration

2.2.1 Ontologies and semantic schemas
VFB is built around the Drosophila Anatomy Ontology (DAO)

(Costa et al., 2013), a manually curated, query-able classification of
Drosophila anatomical structures and cell types expressed in Web
Ontology Language (OWL) (World Wide Web Consortium, 2012).
DAO is built using community standards (Jackson et al., 2021) and
tooling (Matentzoglu et al., 2022) for sustainable, scalable ontology
development. Neuroanatomy is represented in DAO using a standard
schema that supports recording neuronal location, connectivity,

lineage and function and incorporates basic spatial reasoning
(Osumi-Sutherland et al., 2012). We have extended this schema to
incorporate relations for recording brain regions in which a neuron
type has its major inputs and outputs, for example, that the synaptic
input onto DA1 uniglomerular antennal lobe projection neurons is
concentrated in the DA1 glomerulus (Stocker et al., 1990; Bates et al.,
2020a) distinguishing these from small numbers of inputs and outputs
that occur on almost all parts of any neuron in connectomics data.
Using this schema and information curated from over 1000 papers, the
DAO represents 13,000 neuroanatomical structures and cell types,
including over 9800 terms for neuron types (e.g. DL1 adPN) and more
general neuron classifications (e.g. “cholinergic neuron”,
“uniglomerular antennal lobe projection neuron”). The neuron
types include over 3800 that are predicted from connectomics data
(Scheffer et al., 2020) and over 2750 types for which we have curated
lineage, which is reflected in links to neuroblast (e.g. develops from
BAl3p neuroblast), lineage clones (e.g. part of BAl3p lineage clone)
and classifications (e.g. BAl3p lineage neuron). This ontology and
OWL schema, along with an OWL schema for representing image

FIGURE 1
Templates and content. VFB has templates that integrate image data into common coordinate spaces and many more that serve as references for
datasets in their native space The first four rows of the table provide details of the most up-to-date integrative templates on VFB: the JRC2018 unisex adult
brain template (Bogovic et al., 2019) has the largest number of aligned images, which include over 26,500 EM images fromCATMAID FAFB (Zheng et al., 2018)
and the Janelia Hemibrain (Scheffer et al., 2020) combined, over 70,000 images showing expression patterns or fragments of expression patterns from
sources including FlyCircuit (Chiang et al., 2010; Shih et al., 2015) and Janelia FlyLight (Meissner et al., 2022) and 46 painted neuropil domains (painted by
Kazunori Shinomiya); The JRC2018 adult ventral nerve cord (VNC) template (Bogovic et al., 2019) has over 2,000 EM images from CATMAID FANC (Phelps
et al., 2021), over 18,000 images of expression patterns from sources including FlyLight and 21 painted domains (Court et al., 2020) The Seymour L1 template
has nearly 3,500 EM images from CATMAID L1 (Ohyama et al., 2015); The Wood2018 template has 255 painted domains (David Wood and Volker Hartenstein,
unpublished). The rest of the table provides details of three of the available reference templated on VFB: the McKellar2020 adult head template has painted
domains showing the adult pharyngeal musculature (McKellar et al., 2020); the hemibrain has the hemibrain connectome in its native space, alongwith amore
detailed parcellation scheme (Scheffer et al., 2020); the Ito half-brain is the original reference template and parcellation scheme for the BrainName standard
(Ito et al., 2014).
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metadata and image registration (Osumi-Sutherland et al., 2014), are
also used to classify and record the properties of cell types depicted in
3D images, connectomics and transcriptomics data on VFB. This
means that the same OWL queries can be used both to query for data
about individual neurons, and also to drive searches for neuron types
based on their classification and properties (see, for example, the
compound query in Figure 4).

The common OWL schema is also used to drive a system of
semantic tags - short, informative pieces of text (e.g., cholinergic,
larval, synaptic_neuropil) that appear as badges attached to ontology
terms and data on the VFB site (Figures 2, 4–8) and are used to drive
filters for text search (Figure 3).

The DAO is also used to annotate transgene expression patterns
and single cell RNAseq data in FlyBase—the latter as part of a
collaboration between FlyBase and the EBI single cell expression
atlas. We convert all of this into a standard OWL representation
for import into VFB. The spatial reasoning built into the DAO allows
us to provide a highly enriched set of results when users query for
transgenes expressed in an anatomical structure—returning
transgenes expressed in neurons that have some part in this
structure or any of its substructures (Milyaev et al., 2012; Osumi-
Sutherland et al., 2012).

While OWL has many advantages for standardization and
querying, it cannot serve all VFB use cases. OWL is not designed

FIGURE 2
General layout and browsing. (A) The Slice Viewer allows users to view single slices of the Z-stack of the displayed elements. (B) The 3D Viewer shows
entities in 3D space, allowing zoom and rotation. (C) The Template ROI Browser shows the neuropil regions of the current template (arranged hierarchically)
and allows these to be added to the display. (D) The Layers tool acts as a color key for all the entities currently loaded and features a set of controls allowing
content to be removed, hidden or recolored. (E) The term info shows details of a selected entity, in this case a cell type. Available images of this cell type
are shown as thumbnails and can be added to the viewer by clicking the thumbnail. Split-GAL4 lines that target this cell type are also shown in the Term Info.
Cell types also have a description based on published information. Term Info for a different entity can be shown by clicking on something in the Term Info or
Layers panes, searching or using the left/right arrows above the Term Info pane. Arrowhead at top right indicates the search tool.
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for fast, tunable text search with autosuggestion. For this VFB uses an
Apache SOLR document store. It is also not ideally suited for
automatically generating graph and tree visualizations or for
maintaining and updating image annotations. The graph database
Neo4J (Neo4j Graph Data Platform, 2020) is ideal for both of these use
cases and provides a parallel system for graph pattern queries (e.g. for
image metadata) that is simpler and more flexible than SPARQL
(McCarthy et al., 2012), the standard graph-pattern query language for
OWL. We developed a standard translation between OWL and Neo4j,
covering a limited subset of OWL, optimized for readability and
queryability and supported by a Java Library (Tan et al., 2021).
This allows us to maintain a curation database in Neo4J (VFB-KB)
and a front-facing Neo4j server for generating trees (Figure 2C),
graphs (Figure 8) and graph queries for the VFB web-app and API.

2.2.2 Data integration pipeline and servers
The VFB extract transform and load (ETL) pipeline extracts data

from diverse sources (FlyBase (Gramates et al., 2022), CATMAID
(Saalfeld et al., 2009), NeuronBridge (Clements et al., 2022), NeuPrint

(Clements et al., 2020)) into ROBOT templates (Jackson et al., 2019)
specifying their transformation to OWL following our standard
schemas. We then load the resulting OWL files into a triple store,
along with the various ontologies used in data annotation (also in
OWL) and an OWL version of our curation database (VFB-KB). The
triple store integrates all of this content around a common set of
persistent URLs that serve as identifiers for ontology terms, data
instances etc, merging and deduplicating references to these
entities. Downstream of the triplestore, a pipeline adds semantic
tags using OWL and SPARQL queries, and loads the front-facing
servers.

2.3 Image integration and NBLAST

Unregistered images were registered using CMTK with nine
degrees of freedom followed by a non-rigid registration (Rohlfing
andMaurer, 2003; Jefferis et al., 2007). If necessary, data was moved to
the left side of the brain by flipping and then applying a mirroring

FIGURE 3
Search. Clicking themagnifying glass in the top right of the page will open the Search tool. Searching based on synonyms is supported and semantic tags
on the right of each result provide extra information. Filters can be accessed by clicking on the lines on the right. (A)With no filters applied, results for “Or49a
ORN” are a mixture of images (marked with *) and cell types from adult and larval stages. (B) To restrict results to larval neuron types, excluding images, filters
can be applied to narrow down the results list, choosing a positive filter (green) for Larva and Neuron, and a negative filter (red) for Image.
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FIGURE 4
Compound Queries. The Term Info pane (A) shows queries available in the TermInfo of “wedge projection neuron”. Clicking on the query for available
images of “wedge projection neuron” bring up a results table (B)which can be further refined by clicking “RefineQuery” underneath. The query interface (C,D)
shows the original query and allows a second query to be run to find items that fit both sets of criteria, in this case images of neurons that also have some part in
the lateral horn. Images in the subsequent results table (E) can be added to the viewer by clicking the checkboxes on the right.
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registration (Bates et al., 2020b). We made use of standard bridging
registrations wherever possible to cross-register images from external
templates, or between templates on VFB. For images registered to
templates not hosted on VFB or where we needed to move between
templates on VFB, we made use of bridging registrations wherever
possible (Bates et al., 2020b).

The NBLAST implementation in Navis (Bates et al., 2020a) was
used to generate a complete NBLAST matrix comparing all single
neuron skeletons in VFB, including skeletons from the Janelia
hemibrain (Scheffer et al., 2020), FAFB (Zheng et al., 2018) and
FlyCircuit (Chiang et al., 2010) datasets) with each other and with
all split-GAL4 expression patterns in the VFB database registered to
the JRC2018 adult unisex brain template (Bogovic et al., 2019). Most
neuron types are present as bilaterally symmetric pairs. To match the
same type on opposite sides of the brain, each neuron-to-neuron
NBLAST was performed and then repeated with one of the neurons
mirrored along the midline and only the highest of these two scores
was retained. Split-GAL4 expression patterns almost always label the
same neuron(s) on both sides of the brain, so we used NBLAST to
compare a union of each neuron and its mirror image across the
midline to each split-GAL4 expression pattern. For NBLAST between
neurons and from neurons to split-Gal4 expression patterns, mean

scores were calculated so that a single score represents each pairwise
comparison, regardless of direction. This biases the results towards
sparse expression patterns, minimizing off-target expression and
avoids promoting high scoring matches from neuron fragments to
whole neurons, as the score for whole neuron to fragment in these
cases will be low. In cases where a neuron is known to be truncated at
the edge of a sample, the neuron being compared to it is also truncated
to the same boundary before the mean NBLAST score is calculated.
Queries on VFB (Figures 5–7) use precomputed NBLAST scores for
neuron to neuron and neuron to Split-Gal4 as well as color depth MIP
scores (Otsuna et al., 2018) fromNeuronBridge (Clements et al., 2022)
for neuron to neuron, neuron to Split-GAL4 and neuron to
MultiColor FlpOut (MCFO) images of expression patterns. All
scores are stored in the VFB Neo4j database. NBLAST scores are
stored as a sparse matrix where scores below 0.25 are removed and the
remaining scores are limited to the top 20 for any given neuron or
expression pattern.

To test the efficacy of NBLAST and CDMIP similarity score
queries in finding targeting split-GAL4 combinations for neuron
types, we used associations between neuron types and split-Gal4
combinations curated from the literature and for which we have
images (746 associations). We first found all individual neurons of

FIGURE 5
Typing neurons using NBLAST. (A) TermIinfo for a neuron from FlyCircuit (Chiang et al., 2010) with no curated type other than “neuron”. (B)NBLAST query
results for neurons similar morphology to the untyped query neuron. The top five results are all typed as “adult wedge projection neuron 2”. (C) image
comparing the morphology of the query FlyCircuit neuron [“Cha-F-600036 (VFB_00007511)” in green] and the ‘adult wedge projection neuron 2’
“WEDPN2B_R (FlyEM-HB:916828438) [VFB_jrchk7yi]" WEDPN2B_R in magenta).
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each type for which a known targeting split Gal4 combination exists.
For each type for which a known targeting split-Gal4 combination
exists, we found the highest NBLAST or CDMIP score between
individual neurons of this type and images of each Split-GAL4
combination in the database. To measure recall for a realistic
browsing scenario, we tested whether known targeting split-GAL4
combinations were returned in the first 20 hits. We calculated

precision across all returned results. This strategy prevents results
from being overwhelmed by false positives in cases where there are
many neurons or split-GAL4 combinations of a single type.

The VFBwebsite is driven by a customized version of the Geppetto
web framework (Cantarelli et al., 2018). The 2D slice viewer improves
on the neuron/expression image overlap of the previous (Milyaev
et al., 2012) VFB 1.0 viewer to allow multiple signal overlaps with true

FIGURE 6
Identifying Split-GAL4 combinations that potentially target a query neuron. (A) TermInfo for a neuron, “WEDPN2B_R”, type “adult wedge projection
neuron 2” (WEDPN2), from the hemibrain dataset. This neuron will be used for an NBLAST search. (B) NBLAST query results showing Split-GAL4 driver line
results and NBLAST scores. The third result (with the checked tickbox) was selected for further investigation (panels C and D). (C) Image of the query neuron
skeleton (yellow) and Split-GAL4 expression pattern point cloud (blue) overlap. (D) A search for neuron types that this Split-GAL4 combination is known
to target, curated from the literature, finds the type of the neuron used for the NBLAST search (WEDPN2), supporting the NBLAST query result in this case.
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color blending. To achieve this, webGL 2D canvas color blending was
used in combination with auto-assigned, maximally spread, LAB-
space signal colors. This ensures the maximum possible color
differentiation with a new feature allowing the user to select any
point on the image showing all signals present at that point. This
allows VFB to deliver a desktop stack scrolling experience by
preemptively buffering neighboring slices for all displayed items
and supporting mouse gestures for navigation through the stack.

2.4 Visualizing circuits and part-trees

A Neo4j query is used to automatically generate a browsable tree
(template ROI browser, Figure 2C) for each template, based on the
painted domains associated with it.

The circuit browser uses an implementation of Yen’s k-Shortest
Path algorithm in the Neo4j Graph Data Science package v2.1 (https://
neo4j.com/docs/graph-data-science/current/algorithms/yens) to find
the k shortest, most highly weighted paths between two selected
neurons in a connectome, filtering out connections with a weight
below a specified threshold. The weight is stored as a Neo4j edge
property and corresponds to the number of synaptic connections in a
given direction between two neurons, where one presynaptic density
to one T-bar corresponds to a single connection. Yen’s algorithm
calculates the lowest weighted paths, so we need to invert the weights.
In our current implementation we calculate inverted weight by
subtracting from 5000, a weight just above the highest weighted
synaptic connection (4299 connecting DPM_R (FlyEM-HB:
5813105172) to APL_R (FlyEM-HB:425790257). We are likely to
adopt a less arbitrary solution in future, but based on expert
feedback, this tuning provides useful, intuitive results.

3 Results

3.1 Organization of data

Images on Virtual Fly Brain are cross registered to a growing
set of standard 3D image templates covering all central nervous
system regions and post-embryonic stages (Figure 1). Integrative
templates for adult brain, adult ventral nerve cord and larval
nervous system at instars 1 and 3, integrate cross-registered
image data from many data sources. For example, our main adult
brain template has almost 100,000 cross-registered images
from 64 datasets, including connectomics data from electron and
light microscopy images of neurons, lineage clones and expression
patterns. These come from a mixture of small-lab datasets and
large datasets imported via well-established pipelines from
external databases including FlyCircuit (Chiang et al., 2010;
Shih et al., 2015), Flylight (Meissner et al., 2022), CATMAID
(Saalfeld et al., 2009) (multiple instances hosted on VFB servers)
and neuPrint (Clements et al., 2020). Where they provide useful
reference, VFB also includes templates for single datasets in their
native space, including dense connectomes, standard parcellation
references and images depicting the relationship of the CNS to
musculature. In summary, this cross referencing of data at the
image level underpins a central feature of VFB to support the
integration and comparison of many disparate datasets from
across the Drosophila community.

To support FAIR sharing, in particular, simple and consistent
ways to access and reference data, every image on VFB is assigned
a globally unique, persistent, resolvable identifier in the form of a
URL. This is important not only for hosted data that has no
associated identifiers, but also for the large numbers of images that
are assigned local identifiers on other resources, as these local
identifiers are not globally unique or easily resolvable without
further information. For example, the multiple CATMAID
instances hosted by VFB have clashing neuron IDs, so these
IDs are not sufficient to resolve data on CATMAID without
additional information about which CATMAID instance the
neuron ID came from. In contrast, the VFB-assigned URL
resolves to the relevant, persistent page on VFB, from which
data can be downloaded and can also be used to access data via
our API. Both site and API provide mappings to IDs and links to
data on external sites.

3.2 Exploring neuroanatomy

The VFB web app consists of a set of widgets for exploring and
displaying information about neuroanatomy, which can be
arranged as desired, using an internal windowing system.
Figure 1 shows the default layout and features content related to
our running example—the neuron WEDPN2 (adult wedge
projection neuron 2). A pair of image browsers displays the
same content in 2D (Figure 1A) and 3D (Figure 1B), in this
case images of a WEDPN2 neuron (green), the wedge brain
region (pale blue/grey) and the expression pattern of a split-
GAL4 combination that targets WEDPN2 (pink). A foldable
parts tree (Figure 1C) can be used to select and color brain
regions, in this case the wedge is selected and coloured. A layers
tool (layers, Figure 1D) serves as both a key to displayed content,
associating colors with image names and types, and a control panel
for selecting, removing, hiding or recoloring content. Finally, a
term Information window (Figure 1E) displays detailed
information about selected content, as well as a set of queries
allowing access to extended information. In this case, the selected
content is a neuron type with symbol WEDPN2 (reflecting the
typical way this neuron type is referred to), and a longer, more
descriptive name that uniquely distinguishes it in the context of all
Drosophila anatomy. Term information also includes, alternative
names (synonyms), classification (e.g., WEDPN2 is classified as a
wedge projection neuron, GABA-ergic neuron and a BAlp3 lineage
neuron), relationships to other anatomical classes, a referenced
description, examples images (2D projection), curated split-GAL4
drivers and queries.

All selected 3D images can be downloaded separately or in bulk,
with downloads incorporating licensing and references, allowing users
to use these in their own analysis in combination with local data.

Virtual Fly Brain makes it easy to find and integrate information
about brain regions, neuron types and individual registered images via
a range of different entry points: text search; point and click selection
from images; queries for neurons by their location and properties; and
data driven search.

3.2.1 Text search
Users can search for neuroanatomical structures, driver expression

patterns, cell-types or images starting from almost any name found in
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the literature using an intelligent, autocomplete-based search system
(Figure 3) accessed from the header of all VFB pages (Figure 2, yellow
arrowhead). Search works irrespective of the order of words used and
covers curated synonyms as well as official names and symbols from

DAO (Figure 3A). A set of search filters (Figure 3B) allows users to
restrict search content positively or negatively by type (e.g., neuron,
anatomy, expression pattern), stage (e.g. adult, larva) or data type (e.g.
image).

FIGURE 7
Identifying potential GAL4 drivers using color depth MIP scores (A) query results for the neuron “WEDPN2B_R”, showing hits tomultiple MCFO images of
driver line results and color depth MIP scores. The second (sparse MCFO expression) and fourth (dense MCFO expression) results (checked tickboxes) were
selected for further investigation (panels (B) and (C), respectively). (B) Image of the query neuron (green) and expression pattern point cloud from a sparse line
(magenta) overlap. (C) The same query neuron (green) also overlaps with the expression pattern point cloud of a dense line (magenta).
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3.2.2 Point-and-click selection from images
Users can browse and select brain regions by pointing and clicking

on the 2D slice browser or the tree browser, triggering display of
reference information about the brain region and giving access to
queries for neurons by location.

3.2.3 Queries for neurons by their location and
properties

VFB can also be used to explore neuroanatomy and find and select
content viamore sophisticated queries tailored to the content selected
and driven by both data and information curated from the literature.
For example, starting from a brain region, users can search innervating
neuron types or images and can intersect these queries to refine them.
Figure 4 shows an example of this type of query, finding images of
wedge projection neurons that have some part in the lateral horn.
Queries for neurons also include queries by lineage, e.g. WEDPN2 can
be found from a query for components of ‘adult BAlp3 lineage clone’.

3.3 Data-driven search

In addition to semantic search, VFB features neuron structure
searches that find images depicting neurons with similar location and
morphology to that depicted in an input image. These searches are
driven by NBLAST similarity scores (Bates et al., 2020b), precomputed
by VFB, and color-depth Maximum Intensity Projection (color-depth
MIP) scores (Otsuna et al., 2018), provided by NeuronBridge
(Clements et al., 2022). The Janelia hemibrain (Scheffer et al.,
2020) and FAFB (Zheng et al., 2018) and the many studies that

have traced neuronal circuits in these, provide de facto reference image
datasets for identifying neuron types using NBLAST.

Figure 5 shows an NBLAST search for potential types for an
untyped neuron (Cha-F-600036) from the FlyCircuit dataset (Chiang
et al., 2010). Multiple high scoring matches to typed neurons support
the assignment of this neuron as a type of WEDPN2 neuron. Searches
like this will become a critically important tool as we enter an era of
comparative connectomics as resources to manually annotate new
data cannot keep pace with high throughput data collection. For
example, the FlyWire (Dorkenwald et al., 2020) project is generating a
minimally annotated, dense reconstruction of the FAFB brain. Making
sense of this data will require cross-sample mapping of neuron types
via algorithms like NBLAST.

3.4 Finding transgenic driver lines

In order to genetically dissect neural circuit function, Drosophila
neurobiologists need to precisely target specific types of neurons to
experimentally manipulate their activity. This is typically achieved
using a split-GAL4 driver system that initiates downstream expression
at the intersection of two transgene expression patterns (Luan et al.,
2006). In these types of experiments, the biggest bottleneck is finding
combinations of driver lines that precisely target the neuron type of
interest.

VFB features over 99,000 queryable records, curated from the
literature, associating transgenes and split combinations, recorded
using FlyBase Identifiers, with the anatomical structures and cell types
in which they are expressed, curated using the DAO. This includes

FIGURE 8
Circuit browser. A circuit diagram of paths between “WEDPN2B_R” and “VP2_adPN_R”. Rectangles represent neurons with the symbols of classes at the
top, names of individual neurons at the bottom and colors corresponding to gross classifications in the middle. The legend for these gross classifications can
be seen in the top-right [note theWDPN2 is classed as both cholinergic and glutamatergic based on antibody staining evidence (Dolan et al., 2019)]. Pathways
are ordered from “strongest” at the bottom to “weakest” at the top. Arrows show the direction of synaptic connectivity and numbers outside of brackets
show the number of synapses annotated for each connection. Numbers inside brackets show the number of synapses in the opposite direction.
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1508 split-GAL4 combinations targeting almost 700 types of neuron.
These are displayed in the Term Information window for each neuron
type, for example, WEDPN2 is targeted by split-GAL4 combination
“R66A08 ∩ R85A07” (Figure 2E). Novel combinations of hemidrivers
can potentially be found from among the curated records linking full
transgene expression patterns to neuron types. However, these results
only scratch the surface of untested split-GAL4 driver combinations
from among the millions that are possible.

VFB also features over 43,000 registered 3D images of transgene
expression patterns covering 16,876 transgenic driver lines, including
over 2700 covering 579 split-GAL4 combinations. As well as full
expression pattern images, VFB also hosts almost 50,000 images of

stochastically generated subsets of neurons from full GAL4 expression
patterns and split-GAL4 combinations, generated by a variety of
techniques, including Multi-Color Flip Out (MCFO) (Nern et al.,
2015).

VFB can be used to query for potential split driver combinations
targeting any neuron type for which an image is available, using
NBLAST scores (Figures 6B–D) or color-depth maximum intensity
projection (CDMIP) similarity scores (Otsuna et al., 2018) from
NeuronBridge (Clements et al., 2022) (Figure 7). In the example
shown in Figure 6C, one of the top three hits from an NBLAST
search (R66A08 ∩ R85A07) is confirmed by information curated from
the literature. Analysis of the ability of NBLAST queries from neurons

FIGURE 9
Single Cell RNAseq (not yet live) (A) Each transcriptional cluster is linked to a cell type in the Drosophila Anatomy Ontology (curation done by Single Cell
Expression Atlas and FlyBase) facilitating searches based on cell type (typically more general types than we have for connectomics data). (B) Each gene
expressed in more than half of the cells in a cluster will be viewable in VFB with its expression level and extent (proportion of cells in cluster that transcript was
detected in) and semantic tags representing the gene’s function (based on GO and Gene Group annotations from FlyBase).
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to return associations between neuron types and split combinations
curated from the literature, shows that 53% of curated matches are
returned in the top 20 (aggregating individual images by neuron type
and Split-Gal4 combination), with a precision of 26% (calculated using
all returned results). The same analysis using CDMIP scores gives
much lower recall (16%) in the top 20 hits and precision (19%),
calculated using all returned results. Given the high false positive rate,
results need to be screened by eye. Each potential driver line can be
loaded onto the stack browser together with the query neuron to
manually check the quality of the match (Figure 6D). Figure 7 shows
CDMIP search returning images of subsets of neurons in MCFO
images of full driver expression patterns, potentially finding new
hemidriver combinations. Where multiple driver lines are identified
that have little overlap, this can form the basis for an intersectional
approach to target a neuron type more precisely.

3.5 Exploring connectomics

VFB includes connectomics data from multiple sources, encoded
as directional pairwise links between individual neurons, with weight
recorded as the number of synaptic connections. Where available, we
also record directional pairwise links between neurons and the brain
regions they innervate, again including weight as number of synapses.
These data are used to generate direct reports of connectivity for
specific neurons. The latter is also used to drive queries for neuron
images by region (Figure 4).

Our circuit query tool allows users to find the shortest, most highly
weighted paths between any two neurons in the same connectome
(Figure 8). Users can specify a minimum weight for connections and
the number of paths to return. For ease of viewing, the results are
arranged in a graph with rows and columns, with the first and last
columns being the start and end neurons specified in the query.
Neurons in the circuit between these two, are arranged in order of
the numbers of hops from the starting neuron. Higher ranking paths
(by length and weight) are displayed in lower rows. Edges display
weight (forward and reverse). Nodes (neurons) display type and gross
classification (e.g. cholinergic, olfactory). All nodes are selectable, for
display of term information, classification, images etc.

3.6 Exploring single cell transcriptomics

One of the major strengths of VFB’s semantic approach is the
ease with which very different data types can be cross-integrated.
VFB is working with FlyBase and the EBI single-cell atlas to
annotate neuron types in single-cell transcriptomics data using
the DAO. This allows queries for associated transcriptomics data
from any cell type term or class in VFB. Figure 9A shows the results
of a query for transcriptomics data for olfactory receptor neurons.
The results table returns clusters, the datasets they are from and
their cell type annotations. Figure 9B shows an example of
summary expression data for one of these clusters, from the Fly
Cell Atlas dataset (Li et al., 2022). For each gene these results show
the level of expression, the proportion of expressing cells in the
annotated cluster and semantic tags summarizing gene function,
derived from Gene Ontology Molecular Function and Gene Group
annotations in FlyBase (Figure 9B). Links from datasets to the EBI
Single Cell Expression Atlas allow further exploration of data and

download of cell-by-gene matrices and associated annotations for
local analysis.

4 Discussion

4.1 Summary

VFB helps users build an integrated picture of the anatomical and
molecular nature of neurons and the circuits they form by providing
access to a wealth of curated information and data viamultiple search
and query systems and reports. A user might start with the name of a
neuron type from the literature (Figure 3) and from there find a
description, links to further papers (Figure 2), downloadable 3D
images (Figures 2, 4), a list of known and potential driver
combinations to use to target the neuron type (Figures 5–7)
connectomics data (Figure 8), transcriptomics data (Figure 9). Or
they might start from a phenotype caused by a particular split-GAL4
driver and from there, want to find neurons where this split-GAL4
driver is known, or predicted, to be expressed along with connectomics
and transcriptomics reports for these neurons from multiple
sources. They might be interested to find circuit paths between two
neurons they believe to be targeted by two different split driver
combinations that cause similar phenotypes when used to silence
target neurons (Figure 8). In all cases, VFB supports rapid data
discovery across datasets and provides a fast, accessible starting
point for basic data exploration, while also supporting more
advanced data exploration and analysis by providing data
downloads and links to and identifiers for the same data in other
tools and resources. Following FAIR data standards, all hosted data is
downloadable under open licenses, with tracked provenance and rich
metadata.

4.2 Relationship to other resources

Virtual Fly Brain adds unique value through comprehensive semantic
and image-based data integration and inclusion of curated information
from the literature. Related resources have some overlaps in functionality,
but also have their own distinct functionalities and often include data that
fall outside the current scope of VFB. VFB facilitates access to these
resources via an extensive and flexible system of link-outs that link to the
same data or entities on external sites. We are tightly integrated with
FlyBase, which we link out to for all information on genetic features
(genes, alleles, transgenes). We provide direct links from data on VFB to
the same data on the sites of major data-providers (FlyCircuit (Chiang
et al., 2010; Shih et al., 2015), FlyLight (Meissner et al., 2022),
NeuronBridge (Clements et al., 2022), neuPrint (Clements et al., 2020)
and CATMAID (Saalfeld et al., 2009)), which, while limited to their own
data, each provide distinct query tools and additional meta-data over that
captured by VFB. In the case of CATMAID, VFB is also the sole host for
official, public facing CATMAID servers for multiple connectomics
datasets, providing a vital service to the community by archiving these
data sets in their original form as they are released, as well as integrating
them into VFB.

VFB also provides a home for many datasets from independent
labs that are not integrated by other resources and so would otherwise
be inaccessible. This includes many independently generated Split-
GAL4 datasets, registered image data for neuroblast lineage clones
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covering the adult brain, kindly contributed by the labs of Kei Ito and
Tzumin Lee (Ito et al., 2013; Yu et al., 2013) and a dataset of 3D images
of pharyngeal muscles, innervating motor neurons and split-GAL4
drivers (McKellar et al., 2020).

We also link out to related resources including InsectBrain DB
(Heinze et al., 2021), which hosts 3D parcellation schemes and neuron
images for brains of many insects and larvalbrain.org, which hosts
reference information for larval anatomy and expression patterns. We
currently do not link to Fruit Fly Brain Observatory/FlyBrainLab (Lazar
et al., 2021), which is focussed on facilitating simulation, because their
dynamically generated content pages do not easily support linking.

4.3 Future plans

VFB is built around a unique combination of curated knowledge and
data, united by a common semantic schema: the same classifications and
relationships are used to record the properties of types of neurons and
individual instances of neurons; relationships between individuals can be
associated directly with data, such as synapse number or NBLAST
similarity score. Future extensions to VFB will continue to leverage
this combination to provide unique functionality. For example, future
versions of the connectomics browser will feature aggregation of synaptic
strength to neuron types. We will continue to expand the inclusion of
queryable data relevant to curated knowledge in VFB, including
incorporating lineage inferred from primary neurite location and
neurotransmitter predicted from the application of machine learning
to electron microscopy data (Eckstein et al., 2020).

4.3.1 Leveraging data to improve annotation;
leveraging annotation to test algorithms

VFB increasingly combines curated knowledge claims with data
relevant to those claims. For example, we include both curated claims
about typing of individual neurons and the Split-Gal4 lines that target
them as well as similarity scores that support these claims. This is
potentially useful for finding mis-annotated data—e.g., if a neuron
annotated as a specific cell type has a very low similarity score to all
other neurons annotated to that type, the annotation is likely to be
wrong and can be flagged as low reliability. In developing tools that use
similarity scores, such as the proposed split finder service (described
below), curated information can serve as a reference set to test and
tune the tool, as demonstrated in the results described in Section 3.4.

4.3.2 Split finder service
Currently, users wanting to find split-GAL4 drivers for neuron

types on VFB can start from a neuron type and search for drivers
curated as expressed in that neuron, based on the literature, or
navigate down to an individual neuron to search by precomputed
NBLAST or color-depth MIP scores. The latter functionality partially
overlaps with that of NeuronBridge (Clements et al., 2022). We will
extend NBLAST scores on VFB to include all MCFO images from
FlyLight. Taking advantage of VFB semantics, we are working on a
unified split-finder tool that supports a one click-search from neuron
type for candidate split driver combinations and hemidrivers based on
a combination of associations curated from the and similarity scores.
Results will be viewable as color depth MIP images as these are faster
to screen by eye for matches (Otsuna et al., 2018).

4.3.3 Supporting comparative connectomics
In the near future, VFB will ingest multiple large connectomics

datasets with variable coverage and accuracy of neuron type
annotation. BLAST-like algorithms, in the short-term NBLAST for
morphology, but longer term supplemented by CBLAST (Scheffer
et al., 2020) for connectivity and potentially methods that use
subcellular features (Schubert et al., 2019; Zinchenko et al., 2022),
will be critical to help users to interpret this data by facilitating
prediction and assignment of neuron types. For example, a user
finding paths between untyped neurons from FlyWire using our
circuit browsing tool will be able to use NBLAST to find predicted
types for neurons in the circuit, where these exist in other reference
data sets. We will also investigate adding precomputed predicted
neuron types based on NBLAST scores, with appropriate caveats,
as a way of making browsing more efficient.

We are also about to release a service allowing registered neuron
skeletons to be uploaded to the VFB site for viewing in the context of
other 3D data and running NBLAST to predict neuron type.

4.3.4 Integrating connectomicswith transcriptomics
The ability to resolve neuronal cell types in Drosophila single cell

RNAseq data to the same granularity as achieved when typing by
morphology and connectomics is improving as larger numbers of cells
are profiled (Bates et al., 2019) as developmental data is integrated, and
with the help of bulk scRNAseq data for cells marked with Split-GAL4
drivers and mappings from these to cell types (Davis et al., 2020;
Kurmangaliyev et al., 2020; Özel et al., 2021). The fruits of these
approaches are most apparent in the optic lobe where we now have
transcriptomics profiles of 200 cell types and the first integrated
analysis across transcriptomic and connectomic data is now
available (Kurmangaliyev et al., 2020; Özel et al., 2021).

While VFB currently only has limited scRNAseq data available (see
Figure 9), the number of annotated datasets is growing rapidly thanks to a
collaboration with FlyBase and the EBI single cell expression atlas. As the
number of datasets and cell types covered by transcriptomics and
connectomics data and mapped to split-GAL4 lines increases, mapping
between datasets for combined analysis will become increasingly challenging.
Providing uniform, standardized annotation of cell types and their
classifications across all these data types and datasets puts VFB in a
strong position to facilitate these combined analyses. The VFB web
application provides mechanisms for browsing connections and finding
paths in the connectomics data (Figure 8) and for rapidly navigating from
this to transcriptomic profiles. More sophisticated analyses will be facilitated
by accessing this data through the VFB_connect API.

4.3.5 Improving 3D image visualizations
To limit load on user’s laptops, the 3D browser uses maximum

projection point-cloud renderings of expression. While enabling
multiple expression patterns to be overlaid, this approach is not
ideal as it can throw away fine details and can fail to adequately
reflect graded expression. We are working to transition the site to a full
resolution display of graded expression data, taking advantage of
advances in bandwidth and laptop GPUs.

4.3.6 Adding anatomical context
VFB is in the process of ingesting multiple 3D datasets depicting

the relationship of the nervous system to its inputs and outputs,
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including a complete 3D larva reconstructed from transmission
electron microscopy data from serial sections and reconstruction of
a fly leg, complete with muscles, sense organs and their innervating
neurons from X-ray holographic nano-tomography data (Kuan et al.,
2020).

4.3.7 Improved links to the literature
While VFB already extensively links neuron types to relevant

literature via curation, we are improving this using a natural language
processing pipeline in order to provide, as far as possible, a complete
and accurate coverage of literature links for all neuron types.

4.3.8 User data upload
An interface allowing users to upload and annotate their own

registered image data, receiving a globally unique, persistent,
resolvable identifier in return, is currently in beta testing.

5 Conclusions

Virtual Fly Brain enables its users to search, browse, view, and
download diverse, cross-integrated data relevant to developing and
testing hypotheses about the circuit basis of complex behaviors in
Drosophila. As the volume and diversity of both small and large
Drosophila neurobiology datasets increases, and these are
incorporated into VFB, the role of VFB as a data integrator will
become increasingly important, especially for solving the problem of
identifying neuron types in poorly annotated datasets and for finding
reagents to target these neurons.

Similar data integration issues are faced in large atlasing projects in
other species, including major planned atlases of mouse, human and
non-human primates (Kaiser, 2022). The solutions developed by VFB
are likely to prove useful in these cases too.

The semantic integration pipeline developed for VFB has already
been re-used to underpin the Allen Brain Atlas cell type explorer
(https://knowledge.brain-map.org/celltypes) a multi-modal single cell
transcriptomics atlas of the mammalian primary motor cortex (Tan
et al., 2021). It is also being re-used to drive autocomplete in the Cell
Annotation Platform (http://celltype.info).
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