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Introduction: Preeclampsia is a disease that affects both the mother and child,
with serious consequences. Screening the characteristic genes of preeclampsia
and studying the placental immune microenvironment are expected to explore
specific methods for the treatment of preeclampsia and gain an in-depth
understanding of the pathological mechanism of preeclampsia.

Methods: We screened for differential genes in preeclampsia by using limma
package. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, disease
ontology enrichment, and gene set enrichment analyses were performed. Analysis
and identification of preeclampsia biomarkers were performed by using the least
absolute shrinkage and selection operator regression model, support vector
machine recursive feature elimination, and random forest algorithm. The
CIBERSORT algorithm was used to analyze immune cell infiltration. The
characteristic genes were verified by RT-qPCR.

Results:We identified 73 differential genes, which mainly involved in reproductive
structure and system development, hormone transport, etc. KEGG analysis
revealed emphasis on cytokine–cytokine receptor interactions and interleukin-
17 signaling pathways. Differentially expressed genes were dominantly
concentrated in endocrine system diseases and reproductive system diseases.
Our findings suggest that LEP, SASH1, RAB6C, and FLT1 can be used as placental
markers for preeclampsia and they are associated with various immune cells.

Conclusion: The differentially expressed genes in preeclampsia are related to
inflammatory response and other pathways. Characteristic genes, LEP, SASH1,
RAB6C, and FLT1 can be used as diagnostic and therapeutic targets for
preeclampsia, and they are associated with immune cell infiltration. Our
findings contribute to the pathophysiological mechanism exploration of
preeclampsia. In the future, the sample size needs to be expanded for data
analysis and validation, and the immune cells need to be further validated.
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1 Introduction

Preeclampsia, which is defined as new-onset hypertension and
proteinuria after 20 weeks of pregnancy, impaired organ function, or
subjective symptoms of preeclampsia in the absence of proteinuria,
affects 2%–8% of all pregnancies in developed countries (The
American College of Obstetricians and Gynecologists, 2020).
Three-fifths of maternal deaths in the United States can be
prevented and are often linked to missing diagnoses or delayed
diagnostics (Petersen et al., 2019). Preeclampsia is a systemic
hypertensive disorder that complicates pregnancy and is caused
by placental abnormalities and systemic inflammation.
Preeclampsia can lead to maternal, fetal, and infant mortality
(Hutcheon et al., 2011; Lisonkova and Joseph, 2013). Studies
have shown that there is a genetic predisposition for
preeclampsia and that it is significantly associated with genetic
variants associated with thrombosis, infection, oxidative stress,
and the renin-angiotensin system (Williams and Broughton
Pipkin, 2011; Jebbink et al., 2012; Rana et al., 2014). Therefore,
screening genes characteristic of preeclampsia is expected to help
explore specific treatment methods, gain insight into the
pathological mechanisms of preeclampsia, and contribute to the
use of tools to help determine pregnant women who are at high risk
of preeclampsia before clinical manifestations (McCarthy et al.,
2018; Henderson et al., 2021).

Recently, bioinformatics analysis has been used to identify new
genes as biomarkers for disease diagnosis and prognosis (Cao et al.,
2019). “Machine learning” generally refers to the process of fitting
prediction models to data or identifying information grouping in
data. Machine learning is essentially an attempt to mimic the ability
of humans to recognize patterns through computation but in a more
objective way (Greener et al., 2022). For preeclampsia, early
detection improves prognosis, but there are currently no reliable
screening tests to predict its development, especially in term
pregnancy when the disease burden is greatest. Many potential
biomarkers have been identified through exploratory studies
using established disease samples. Combining biomarkers from
multiple organ and cellular sources may yield the best predictive
results (MacDonald et al., 2022). To this end, researchers have been
exploring first-trimester biochemical markers that may help identify
women at risk of developing hypertensive disorders of pregnancy.
One study found that the placental immune function of patients
with preeclampsia was altered. Proteasomes, spliceosomes,
ribosomes, and mitochondria were abnormally active in the new
villi cytotrophoblast cell types (Zhang et al., 2021). In addition, a
protein encoded by a differentially expressed mRNA in maternal
serum, Follistatinlike 3 (FSTL3), has been reported to be able to
predict preeclampsia and FGR (Gong et al., 2021). Notably, studies
have been conducted to measure circulating cell-free RNA (cfRNA)
by liquid biopsy to study the development of pregnancy-related
complications in a non-invasive manner, and they have
demonstrated that cfRNA measurement can predict preeclampsia
in early pregnancy (Moufarrej et al., 2022). Similarly, another study
showed that cfRNA signatures from a single blood draw can track

pregnancy progression at the placental, maternal, and fetal levels
and robustly predict preeclampsia (Rasmussen et al., 2022). Despite
significant progress in early prediction of preeclampsia risk,
elucidation of the pathogenesis of preeclampsia remains a critical
and ongoing area of research. The uncovering of pathogenesis will
help to better understand the development of preeclampsia and
allow for better diagnosis and treatment of the disease.

Recent research has suggested that immune cell infiltration plays
an important role in the development of preeclampsia (Aneman
et al., 2020). The maternal–fetal interface is composed of decidual
stromal, decidual immune, and trophoblast cells (Yang et al., 2019).
In early pregnancy, precise regulation of the maternal immune
system aids in the successful implantation of the placenta
(LaMarca et al., 2013). Maintenance of a normal pregnancy
requires a balanced state of immune cells and cytokines from the
maternal-fetal interface, and an unbalanced immune response can
result in abnormal placental structure or angiogenesis (Sahay et al.,
2014; LaMarca et al., 2016). Fortunately, emerging technologies have
the potential to indicate imbalances that may lead to conditions such
as preeclampsia. CIBERSORT is a method that quantifies the
proportion of immune cells in preeclamptic and normal tissue
samples based on gene expression profiles (Newman et al., 2015).

In the present study, we explored the relationship between
immune cell infiltration and preeclampsia using CIBERSORT and
the differences in immune cell infiltration between preeclamptic and
normal pregnant women. We utilized two preeclampsia microarray
datasets from the Gene Expression Omnibus (GEO) database and
analyzed the differentially expressed genes (DEGs). We used a
machine learning algorithm to screen and determine
placentabiomarkers, and then validated these immune
infiltration-related candidate genes in other cohorts. Then, we
used placental samples from pregnant women to verify the
predictions. Our analysis approach is shown in Figure 1. Herein,
we discuss the association between the identified biomarkers and
infiltrating immune cells. Our findings provide new insights for the
exploration of the mechanisms underlying the development of
preeclampsia and new insights for its diagnosis and treatment.

2 Materials and methods

2.1 Microarray data

The GSE4707 and GSE10588 datasets were downloaded from the
GEO database (http://www.ncbi.nlm.nih.gov/geo/). GSE4707 was based
on GPL1708, with an Agilent-012391 Whole Human Genome Oligo
Microarray G4112A (Feature Number version), and placental biopsies
were obtained from ten patients with preeclampsia and four womenwith
normal pregnancies during Caesarean section. Chorionic tissue was
dissected from a standardized location approximately 2 cm beside the
umbilical cord insertion, from the middle layer of the placenta midway
betweenmaternal and fetal surfaces. In theGSE4707 dataset, therewas no
statistical difference in gestational age and weight in patients with
preeclampsia compared with normal mothers, but neonatal weight in
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the preeclampsia group was significantly lower than neonatal weight in
the normal group. GSE10588 was based on GPL2986 using ABI Human
Genome Survey Microarray Version 2, and placental biopsies were

obtained from 17 patients with preeclampsia and 26 women with
normal pregnancies. A central area of chorionic tissue was dissected,
and the maternal deciduas and amnionic membranes were removed.

FIGURE 1
Flow chart of the whole analysis.
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Scientists then dissected 1-cm-thick sections of placental villi from the
central area between basal and chorionic plates. In the GSE10588 dataset,
there were no statistical differences in maternal age, BMI, but patients
with preeclampsia had lower gestational age and higher cesarean delivery
rates compared to normal mothers. The probe in each data file was
modified to a gene symbol according to its annotations in the probe file. If
the same gene symbol corresponded to various probes, the diameter of
the probewas assessed as thefinal expression value. Then, the results were
merged for further analysis. Simultaneously, the function of the “SVA”
package of R version 4.2.0 was used to eliminate the batch effect (Leek
et al., 2012). We used the GSE160888 dataset according to Agilent-
045997 Arraystar human lncRNA microarray V3, which included
placental samples from four preeclampsia and four control cases. The
placenta specimen was resected from themiddle of the villous lobule.We
also used GSE96985 based on Agilent-078298 human ceRNA array V1.0
4 × 180K, which included placental samples from four preeclampsia and
three control cases. Using the method mentioned above, both datasets
were combined as a validation cohort. The GSE48424 dataset, which was
based on Agilent-014850 Whole Human Genome Microarray 4 × 44K
G4112F and includes whole blood samples from 18 preeclampsia and
18 control cases, was also downloaded.

2.2 Data processing and DEG filtering

The two datasets were combined into a metadata queue, and the
SVA package was used to eliminate the batch effect of the two
datasets. The R limma package (http://www.bioconductor.org/) was
used for background correction, normalization, and differential
expression between array analyses. We used a false discovery
rate-adjusted sample (false discovery rate adjusted; p < 0.05) and
| log2 Fold Change | > 1 as the threshold point for DEGs.

2.3 Functional enrichment analysis

To determine the main biological properties of DEGs, Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses were performed. The R packages
“ggplot2” (Wickham, 2011), “enrich Plot”, and “clusterProfiler” (Yu
et al., 2012) were used to create GO and KEGG enrichment plots.
Disease ontology (DO) enrichment analysis was also conducted onDEGs
using “clusterProfiler” and the “DOSE” software package in R (Yu et al.,
2012; Yu et al., 2015). Through Gene Set Enrichment Analysis
(GSEA), the most notable functional differences between the
preeclampsia and control groups were verified (Subramanian
et al., 2005). The study set c2.cp.go.v7.0. symbols, and the
GMT from the Molecular Marker Database (MSigDB) were
used as reference gene sets (Liberzon et al., 2015).

2.4 Diagnostic screening and correlation
analysis of candidate biomarkers

We used three machine-learning algorithms to screen for
important biomarkers of preeclampsia. The least absolute
shrinkage and selection operator (LASSO) is a regression analysis
algorithm that uses regularization to increase prediction accuracy. In

the “glmnet” software package in R, the LASSO regression algorithm
was used to select preeclampsia genes that were notably related to
normal samples (Engebretsen and Bohlin, 2019). Support vector
machine (SVM) is a popular machine-learning technique for
classification and regression (Nedaie and Najafi, 2018). We used
“E1071,” “Kernlab,” and “caret” to build the SVM model. To avoid
overfitting, we determined the optimal genes from the metadata
queue using the Recursive feature elimination (RFE) algorithm. The
LASSO and SVMwere used to select overlapping genes, and the level
of candidate genes was verified on the GSE160888 and
GSE96985 datasets. In addition, we established a random forest
(RF) model in the “RandomForest” package in R as a training model
to forecast the occurrence of preeclampsia. Moreover, ntrees and
mtry were set at 100 and 3, respectively. Next, a rosette model was
built with the “RMS” package in R to forecast the prevalence of
patients with preeclampsia. Calibration curves were used to
determine the agreement between predicted and actual values. A
clinical influence curve was drawn using decision curve analysis
(DCA) to evaluate whether model-based decision-making is
beneficial to patients (Iasonos et al., 2008). We used the “limma”,
“ggplot2”, “ggpubr”, and “ggExtra” packages in R to calculate and
plot the correlations between the four characteristic genes.

2.5 Diagnostic value of characteristic
biomarkers in preeclampsia

To validate the predictive value of previously screened
biomarkers, receiver operating characteristic (ROC) curves
were built via the “pROC” package based on mRNA
expression data using 30 preeclampsia and 27 control samples.
The area under the ROC curve (AUC) was used to judge the
diagnostic efficiency of preeclampsia and control samples, which
was further verified using the GSE160888, GSE96985, and
GSE48424 data files.

2.6 Discovery of immune cell subtypes

The CIBERSORT bioinformatics (https://cibersortx.stanford.
edu/) algorithm was used to analyze immune cell infiltration
from the preeclampsia gene expression profiles. Putative immune
cell abundance was predicted using a reference set of 22 immune cell
subtypes with 1000 permutations (LM22; Newman et al., 2015).
Correlation analysis and visualization of 21 infiltrating immune cells
were performed using the R package “Corrplot.” The Vioplot
software package was used to draw a violin diagram to observe
the difference in immune cell infiltration between patients with
preeclampsia and normal pregnant women.

2.7 Analysis of correlation between
identified genes and infiltrating immune
cells

Pearson’s correlation analysis was performed using R to
determine the correlation between the identified gene biomarkers
and the level of infiltrating immune cells. The resulting associations
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were visualized using the graphical techniques of the “ggplot2”
package.

2.8 Patient enrollment and data collection

Twenty-one pregnant women were selected from the
International Peace Maternal and Child Health Hospital affiliated
to Shanghai Jiao Tong University School of Medicine. Nine cases
were diagnosed as preeclampsia and twelve cases were normal
pregnant women. Preeclampsia was diagnosed according to the
ACOG Practice Bulletin (The American College of Obstetricians
and Gynecologists, 2020). All participants were singleton pregnant
women without other diseases affecting blood pressure, such as
hyperthyroidism, Cushing’s syndrome, and pancreatitis; serious
dysfunction of the heart, liver, and kidney; and acute
complications, such as diabetic ketoacidosis. All pregnant women
provided signed informed consent, and this study was approved by
the Ethics Committee of International Peace Maternal and Child
Health Hospital Affiliated to Shanghai Jiao Tong University School
of Medicine [Approval No.: GKLW-2017-81].

General information on the pregnant women, including age at
delivery and family history of hypertension, was collected through
face-to-face interviews. The pre-pregnancy body-mass index was
calculated from the height measured by nurses and the pre-
pregnancy weight reported by the pregnant women. Blood
pressure was measured during the second trimester.

The amniotic membrane was removed within 5 min after
delivery of the placenta. We dissected the middle layer of the
placenta from the middle of the maternal and fetal surfaces,
followed by washing with enzyme-free water to remove blood.
Then, the water was removed using filter paper, and the placenta
was quickly placed in an external rotating freezing tube, flash-frozen
in liquid nitrogen, and stored at −80°C for later use.

2.9 Expression of four characteristic genes in
placenta of control and preeclampsia
groups

The total RNA of the placenta was extracted using RNAiso Plus
reagent (9109, Takara, Shiga, Japan) according to the manufacturer’s
instructions. cDNAwas synthesized fromRNAusing the RTReagent Kit
and gDNAEraser (RR047A, Takara, Shiga, Japan). qPCRwas performed

on the QuantStudio 7 Flex system (Life Technologies, Carlsbad, CA,
United States). Three replicates of each sample were analyzed. To
quantify the relative mRNA expression, data were normalized to the
expression level of β-actin. Primer sequences are shown in Table 1.

2.10 Statistical analysis

R and SPSS26.0 were used for statistical analyses. Student’s t-test and
Mann-Whitney test were used for continuous, normally and non-
normally distributed data, respectively. The “glmnet” and
E1071 packages in R and ROC curve analysis were used for the
LASSO regression algorithm and the diagnostic efficacy of the
selected biomarker analysis, respectively. Pearson’s correlation
coefficient was used to study the relationship between gene biomarker
expression and immune cell infiltration. For quantitative data,
distribution was described in terms of mean ± standard deviation,
and an independent sample t-test was used for comparison between
groups. The median M [P25, P75] was used to describe data that did not
conform to normal distribution, and the rank sum test of independent
samples was used for comparison between groups. Enumeration data
were described in terms of the number of cases (%), and the Fisher’s exact
probability method was used for comparison of differences between
groups. All statistical analyses were bilateral, and p < 0.05 was considered
to indicate significance.

3 Results

3.1 Identification of DEGs in preeclampsia

Two GEO datasets (GSE4707 and GSE10588) were downloaded,
which together included 27 patients with preeclampsia and
30 normal pregnant women. After eliminating batch sub-effects,
the “limma” package was used to determine the DEGs. We created
heat maps with the screened differential genes, with red representing
upregulated genes in PE patients and blue representing
downregulated genes (Figure 2A). We also plotted volcano plots,
with red representing upregulated genes in PCOS patients and green
representing downregulated genes (Figure 2B). Seventy-three DEGs
were identified, of which 56 were significantly upregulated and
17 significantly downregulated.

3.2 Functional correlation analysis

GO analyses showed that DEGs were predominantly enriched in
reproductive structure development, reproductive system
development, and hormone metabolic processes (Figure 3A).
KEGG analyses indicated that DEGs were predominantly
enriched in cytokine-cytokine receptor interaction, cell adhesion
molecules, and the interleukin (IL)-17 signaling pathway
(Figure 3B). DO pathway enrichment analyses suggested that
diseases enriched by DEGs were largely associated with
endocrine system diseases, preeclampsia, and reproductive system
diseases (Figure 3C). GSEA results of preeclampsia showed that the
enriched pathways dominated myeloid cell homeostasis and
cadherin binding (Figure 3D).

TABLE 1 Sequences of primer sets for qRT-PCR.

Gene Forward primer Reverse primer

Leptin TTCTTGTGGCTTTGGCCCTA TGGATAAGGTCAGGA
TGGGGT

FLT1 ATTCCGAAGCAAGGT
GTGACT

AGAAGCTTGTAGGTG
GCAACA

SASH1 GGCCGGAAGTTGGTCAAAAC CAGGTTCTCCCGTGGCTTAG

RAB6C TGAAGACGGAAGACG
GAAGAC

CCAAAACCAGCCTGA
AAGACC

ACTIN GTCCACCGCAAATGCTTCTA TGCTGTCACCTTCACCGTTC
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FIGURE 2
Differentially expressed genes between placentas of patients with preeclampsia and controls. (A) Heatmap. (B) Volcano plot.

Frontiers in Physiology frontiersin.org06

Bai et al. 10.3389/fphys.2023.1078166

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1078166


3.3 Identification and validation of
biomarkers of diagnostic properties

Two different algorithms were used to identify promising
biomarkers of preeclampsia. First, 12 genes were identified as
diagnostic biomarkers of preeclampsia using the LASSO
algorithm based on the DEGs (Figure 4A). Then, the SVM-
recursive feature elimination algorithm was used to screen ten

characteristic genes from the DEGs (Figure 4B). Four
overlapping features (leptin [LEP], SAM and SH3 domain
containing 1 [SASH1], RAB6C, and fms-like tyrosine kinase
receptor-1 [FLT1]) were selected using the two algorithms
(Figure 4C). We also constructed an RF tree and screened out
two genes with a score greater than two according to their
importance score, namely LEP and SASH1 (Figures 4D, E). We
then used the GSE160888 and GSE96985 datasets to analyze their

FIGURE 3
Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Disease Ontology (DO), and Gene Set Enrichment Analysis (GSEA) were
used to identify the underlying biological processes of differential genes. (A)GO analysis of differential genes between preeclampsia and control samples.
(B) KEGG analysis of differential genes between preeclampsia and control samples. (C)DO enrichment analysis of differentially expressed genes between
preeclampsia and control samples. (D) Enrichment analysis by GSEA.
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levels. FLT1 levels in the placenta of patients with preeclampsia were
significantly upregulated (p = 0.014; Figure 5A). Furthermore, the
expression of LEP in the tissues of patients with preeclampsia was
higher than that in the control group and that of RAB6C was lower,
but no significant differences were observed (Figures 5B, C).
Furthermore, the SASH1 levels in the placenta of patients with

preeclampsia were significantly upregulated (p = 0.028; Figure 5D).
We then used the GSE48424 dataset, which contained 18 blood
samples from patients with preeclampsia and 18 blood samples from
control patients, to analyze the expression of these four genes. FLT1
expression in the blood samples of patients with preeclampsia was
higher than that in control patients, but the difference was not

FIGURE 4
Screening candidate biomarkers for the diagnosis of preeclampsia. (A) Adjustment of feature selection in the least absolute shrinkage and selection
operator model (LASSO). (B) Plot of biomarker selection by support vectormachine-recursive feature elimination (SVM-RFE) algorithm. (C) Venn diagram
screening LASSO for four diagnostic genes common to the SVM-RFE algorithm. Random Forest (RF) model construction. (D) Inverse cumulative
distribution of residuals is plotted to show the residual distribution of RF. (E) Importance scores of variables based on the RF model.
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FIGURE 5
Box plot validation of four candidate diagnostic genes and correlation analysis of four characteristic genes. (A–D) Validation of four candidate genes
for preeclampsia in human placenta using GSE160888 and GSE96985 datasets. (E–H) Validation of four candidate genes in peripheral blood using
GSE48424. (I–L) RT-qPCR was used to verify the expression of four characteristic genes in the placenta of the patients. (M–R)Correlation analysis of the
four characteristic genes in GSE4707 and GSE10588.
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significant (Figure 5E). The expression of LEP in the blood samples of
patients with preeclampsia was significantly higher than that in
control patients (p = 0.047; Figure 5F); the expression of RAB6C
was lower in the blood of patients with preeclampsia (Figure 5G). This
was consistent with the results validated in the placenta. However,
SASH1 showed the opposite results in the placenta and blood. The
expression of SASH1 was significantly increased in the placenta of
patients with preeclampsia but decreased in the blood (Figures 5D, H).

3.4 qPCR to verify the expression of four
characteristic genes in the placenta of
patients

We examined the expression of four genes in nine patients with
preeclampsia and 12 normal pregnant women. Basic information on
the patients is shown in Table 2. The expression of SASH1 was
significantly increased in patients with preeclampsia both in the
predicted and qPCR experiment results (Figures 5D, L). However,
we predicted that FLT1 expression would be significantly increased
in preeclampsia (Figure 5A), but there was no significant difference
in the qPCR results (Figure 5I). Both the predicted results and the
experimental verification showed that the expression of LEP in
patients with preeclampsia was higher and that of RAB6C was
lower than those in normal pregnant women, but there was no
significant difference (Figures 5B, J).

3.5 Correlation analysis between four
characteristic genes

We analyzed the correlations among the expression of FLT1,
LEP, SASH1, and RAB6C in GSE4707 and GSE10588. LEP was
positively correlated with FLT1 (R = 0.87, p < 2.2E-16;
Figure 5M), RAB6C (R = 0.65, p = 4.9E-08; Figure 5N), and
SASH1 (R = 0.73, p = 1.6E-10; Figure 5O). Furthermore, SASH1
was positively correlated with FLT1 (R = 0.64, p = 6.6E-08;
Figure 5P) and RAB6C (R = 0.57, p = 5.2E-06; Figure 5Q).
Finally, RAB6C was positively correlated with FLT1 (R = 0.64,
p = 8.3e-08; Figure 5R).

3.6Construction of nomogram model

A nomogram model for predicting the prevalence of
preeclampsia based on the two candidate genes was
constructed using the ‘RMS’ package (Figure 6A). The
calibration curve showed that the prediction ability of the
nomogram model was optimized (Figure 6B). The red line in
the DCA curve remained above the gray and black lines between
0 and 1, indicating that decisions based on the nomogram model
may be beneficial to patients with preeclampsia (Figure 6C). The
clinical influence curve showed that the nomogram model had a
good predictive ability (Figure 6D).

TABLE 2 Demographic data of the study population.

Control Preeclampsia P

N = 12 N = 9

Age (years) 30.33 ± 2.50 32.00 ± 4.03 0.295

Pre-pregnancy BMI 20.55 [19.32; 21.02] 23.20 [21.30; 24.50] 0.017

Family history of hypertension 1.000

No 10 (83.33%) 7 (77.78%)

Yes 2 (16.67%) 2 (22.22%)

Delivery gestational age (weeks) 38.58 ± 0.90 37.44 ± 1.33 0.045

SBP (mmHg) 112.58 ± 7.62 141.44 ± 8.26 <0.001

DBP (mmHg) 72.50 ± 6.79 84.44 ± 11.48 0.017

Quantification of urinary protein (g/24 h) - 0.42 [0.20; 1.00] -

Serum creatinine (μmol/L) 48.32 [43.50; 53.50] 55.00 [46.60; 60.80] 0.286

Aspartate aminotransferase (U/L) 16.50 [13.00; 21.00] 34.00 [18.00; 39.00] 0.009

Alanine aminotransferase (U/L) 8.00 [6.50; 10.00] 24.00 [16.00; 35.00] 0.003

The total protein (g/L) 64.62 ± 3.09 59.68 ± 3.17 0.002

Albumin (g/L) 37.24 ± 3.25 33.50 ± 3.64 0.026

Globulin (g/L) 27.38 ± 3.27 26.18 ± 3.44 0.431

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure.

Values in square brackets are upper and lower quartiles.
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FIGURE 6
Construction of the nomogram model. (A) Construction of a nomogram model based on four candidate genes. (B) Calibration curve showing the
predictive power of the nomogrammodel. (C) Decision curve. (D) Clinical impact of the nomogrammodel was assessed using the clinical impact curve.
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3.7 Diagnostic efficacy of functional
biomarkers in preeclampsia

The four biomarkers showed good diagnostic value for
preeclampsia and control samples in the GSE4707 and
GSE10588 datasets (Figure 7A). The AUC of FLT1 was 0.922
(95% confidence interval [CI] 0.839–0.986) and that of LEP was
0.967 (95% CI 0.915–0.999). The AUC of SASH1 was 0.954 (95%
CI 0.890–1.000) and that of RAB6C was 0.937 (95% CI
0.870–0.984). The GSE160888 and GSE96985 datasets
verified its recognition ability, with an AUC of 0.875 (95%
CI 0.571–1.000) for FLT1 and 0.714 (95% CI 0.411–0.946) for
LEP. The AUC of RAB6C was 0.589 (95% CI 0.286–0.875)
and that of SASH1 was 0.848 (95% CI 0.607–1.000),
indicating that the characteristic biomarkers had diagnostic
ability (Figure 7B). The GSE48424 dataset showed verified
recognition ability, with an AUC of 0.515 (95% CI
0.327–0.728) for FLT1 and 0.694 (95% CI 0.494–0.858) for
LEP. The AUC of RAB6C was 0.688 (95% CI 0.497–0.855),
and that of SASH1 was 0.577 (95% CI 0.370–0.759), indicating
that the characteristic biomarkers had diagnostic ability
(Figure 7C).

3.8 Immune cell infiltration

Only activated NK cells and resting dendritic cells were
statistically significant (p < 0.05; Figure 8A), whereas the other
cell types did not differ significantly between the placenta of normal
pregnant women and patients with preeclampsia. The correlation
between infiltrated immune cells is displayed in Figure 8B; Table 3.

3.9 Correlation analysis of expression of four
biomarkers with abundance of infiltrating
immune cells

FLT1 was positively correlated with the abundance of Tregs (r =
0.28, p = 0.034) but negatively correlated with that of activated NK
cells (r = −0.41, p = 0.001; Figure 9A). RAB6C was negatively
correlated with the abundance of M1 macrophages (r = −0.30,
p = 0.025), resting dendritic cells (r = −0.32, p = 0.014), and
activated NK cells (r = −0.43, p < 0.001; Figure 9B). LEP was
negatively correlated with the abundance of activated NK cells
(r = −0.32, p = 0.016; Figure 9C). SASH1 was negatively
correlated with the abundance of activated NK cells (r = −0.28,

FIGURE 7
Receiver operating characteristic (ROC) curves of the diagnostic effectiveness of four diagnostic markers. (A) FLT1, LEP, RAB6C, and SASH1 fitting
metadata cohort of GSE4707 and GSE10588. (B) Fitting ROC curves of FLT1, LEP, RAB6C, and SASH1 in the combined dataset of GSE160888 and
GSE96985. (C) Fitting the ROC curves of FLT1, LEP, RAB6C, and SASH1 in the GSE48424 dataset.
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FIGURE 8
Distribution and visualization of immune cell infiltration. (A)Comparison of 22 immune cell subtypes in patients with preeclampsia and controls. Blue
and red represent normal and preeclampsia samples, respectively. (B) Correlation matrix of 21 immune cell subtypes, with immune cell subtypes shown
on the horizontal and vertical axes. Immune cell subtype composition (higher, lower, and same relative levels are shown in red, blue, and white,
respectively).
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p = 0.034) and resting dendritic cells (r = −0.31, p = 0.018;
Figure 9D).

4 Discussion

Early diagnosis of preeclampsia can improve treatment options
and reduce associated morbidity and mortality (El-Dorf and Hagras,
2019). Many studies have used various biological samples, such as
maternal blood, urine, or placental tissue, collected during
pregnancy to determine the expression or concentration of
certain diagnostic biomarkers (e.g., He et al., 2020). Further
research is urgently needed to elucidate the pathophysiology of
preeclampsia and determine useful diagnostic and therapeutic
targets to improve diagnosis and treatment options. In the

present study, we screened LEP, FLT1, RAB6C, and SASH1 as
potential biomarkers for preeclampsia. In addition, our results
suggest that Tregs, monocytes, and activated NK cells may be
involved in the development of preeclampsia. These findings can
provide new insights into the pathogenesis of preeclampsia and
provide new clues for obstetricians to early identify high-risk groups
of preeclampsia.

In our study, placental gene enrichment in women with
preeclampsia was primarily associated with the following
pathways: reproductive structure development, reproduction
system development, hormone transport, hormone metabolic
process, and IL-17 signaling. DO analysis showed that the
associated diseases were mainly those involved in the endocrine
and reproductive systems and preeclampsia. Most of these outcomes
are related to diseases of the reproductive system. Inflammation is

TABLE 3 Correlation between immune cells.

Immune cell types Immune cell types Correlation coefficient (r) P

naive B cells activated dendritic cells 0.53 p < 0.001

M2 macrophages −0.33 p = 0.01

resting CD4 memory T cells −0.31 p = 0.02

resting dendritic cells −0.26 p = 0.047

Activated dendritic cells plasma cells 0.38 p = 0.004

M0 macrophages 0.37 p = 0.004

monocytes −0.29 p = 0.029

Eosinophils neutrophils −0.41 p = 0.002

M0 macrophages activated dendritic cells 0.37 p = 0.004

plasma cells 0.32 p = 0.01

resting mast cells 0.33 p = 0.01

M2 macrophages −0.41 p = 0.002

M1 macrophages gamma delta T cells 0.37 p = 0.005

activated CD4 memory T cells 0.28 p = 0.037

follicular helper T cells 0.51 p < 0.001

plasma cells −0.27 p = 0.04

M2 macrophages follicular helper T cells −0.43 p < 0.001

activated CD4 memory T cells −0.28 p = 0.037

Activated mast cells resting mast cells −0.58 p < 0.001

neutrophils −0.29 p = 0.028

Neutrophils gamma delta T cells −0.44 p < 0.001

activated NK cells −0.35 p = 0.007

gamma delta T cells −0.54 p < 0.0001

Activated NK cells gamma delta T cells 0.46 p = 0.003

resting NK cells −0.38 p = 0.004

Resting memory CD4 T cells follicular helper T cells −0.36 p = 0.007

naive CD4 T cells −0.31 p = 0.02
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the main characteristic and risk factor of preeclampsia and other
hypertensive disorders complicating pregnancy. Elevated
inflammatory mediators and leukocytes in peripheral blood and
placental tissue can lead to abnormal uterine blood vessels and
impaired placental function, especially in severe early-onset disease
(Robertson et al., 2019). Consistent with our KEGG results, previous
studies have reported that IL-17 is overexpressed in preeclampsia. In
addition, the overexpression of IL-17 has been reported to promote
the proliferation, migration, and invasion of trophoblast cells by
regulating the PPAR-α/RXR-α/Wnt signaling pathway; therefore,
IL-17 may be a potential therapeutic target for preeclampsia (Zhang
et al., 2022). This is consistent with our KEGG results.

We identified characteristic genes of preeclampsia as LEP, FLT1,
RAB6C, and SASH1 using the GEO database and verified them using
the GSE160888 and GSE96985 datasets. We also validated the four
genes in blood samples from the GSE48424 dataset. Consistent with
our findings, other studies have identified FLT1 as a diagnostic
biomarker gene (Yang et al., 2022). In the present study, FLT1
expression was significantly increased in the placentas of patients
with preeclampsia. FMS-associated tyrosine kinase 1 pseudogene 1
(FLT1P1) and FLT1 have been shown to regulate trophoblast
proliferation and angiogenesis in preeclampsia. Hence, the

occurrence and development of preeclampsia may be owing to
the abnormal regulation of FLT1P1 and FLT1 expression; this
indicates that FLT1P1 and FLT1 are promising biomarkers for
the diagnosis of preeclampsia (Chi et al., 2021). Leptin is
involved in cell differentiation, proliferation, and immunity in
various physiological states, and is mainly derived from placental
and adipose tissues (Inagaki-Ohara, 2019). The upregulation of
miR-18b-3p inhibits the expression of LEP and reduces the
occurrence of preeclampsia (Huang et al., 2021). In the present
study, the expression of LEP in the blood increased significantly in
patients with preeclampsia and tended to increase in the placentas of
patients with preeclampsia. Therefore, our study identified LEP as
an important gene for preeclampsia. SASH1 is a member of the SLY
family of signal adapter proteins (He et al., 2016). Previous studies
using RNA sequencing have found that SASH1 is upregulated in the
placenta of patients with preeclampsia, indicating that SASH1 plays
a vital role in this organ during preeclampsia (He et al., 2016).
Another study showed that SASH1 was significantly upregulated in
placentas with preeclampsia. The overexpression of SASH1 inhibited
trophoblast proliferation, migration, and invasion, but induced
trophoblast apoptosis (Liu et al., 2020). In our study, SASH1 was
screened as a characteristic gene of preeclampsia, and its expression

FIGURE 9
Correlation between FLT1 (A), RAB6C (B), LEP (C), and SASH1 (D) and infiltrating immune cells in preeclampsia.
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in the placenta of patients with preeclampsia was higher. However,
SASH1 showed a downward trend in the blood samples of patients
with preeclampsia. Finally, RAB6C expression in patients with
preeclampsia showed a downward trend in both placental and
blood samples. However, there are no reports on the relationship
between preeclampsia and RAB6C, which may hence be a novel
molecule worthy of further study. Moreover, our results show that
LEP, FLT1, RAB6C, and SASH1 were significantly positively
correlated, indicating a potential co-activation relationship among
them or the existence of similar biological roles. The role of this
correlation in preeclampsia requires further investigation.

Activated NK and resting dendritic cells showed significantly less
infiltration in preeclamptic tissues than in normal tissues. FLT1 was
negatively correlated with activated NK cells. LEP was negatively
correlated with activated NK cells. RAB6C was negatively correlated
with resting dendritic cells, and activated NK cells. SASH1was negatively
correlatedwith activatedNKcells and resting dendritic cells. DecidualNK
(dNK) cells are themost abundant immune cell type at thematernal-fetal
interface during early pregnancy and placental formation (Cornelius and
Wallace, 2019). dNK cells play a key role in spiral artery remodeling by
secreting IL-8, interferon-gamma-inducible protein-10, vascular
endothelial growth factor, and placental growth factor (Hanna et al.,
2006). Another study found that decidual arteries have a smaller lumen
diameter and damaged endothelium in NK cell-deficient mice
(Greenwood et al., 2000). The most important steps in the process of
placenta formation are trophoblast invasion and vascular remodeling.
Decreased trophoblast cell invasion and vascular conversion resulting in
poor placental perfusion may lead to the development of preeclampsia
(Brosens et al., 2011). It has been demonstrated that uterine NK cell
supernatant stimulates extravillous trophoblast invasion at 12–14 weeks
of gestation. Increased invasiveness correlates with increased
metalloproteinase-9 (MMP—9) secretion and decreased extravillous
trophoblast apoptosis. MMPs are proteolytic zinc-requiring enzymes
that include collagenases (Lash et al., 2010). Therefore, if the number of
NK cells decreases during this period, it may lead to impaired trophoblast
invasion and thus promote the development and progression of PE. dNK
cells may be a useful target for the treatment of preeclampsia to ensure
appropriate placental formation, vascular remodeling, and pregnancy
progression (Cornelius and Wallace, 2019). These results are consistent
with our findings; NK cell infiltration in the placenta of patients with
preeclampsia was reduced. As for the relationship between the four genes
FLT1, LEP, SASH1, and RAB6C and NK cells, no studies have been
reported so far, which can be further explored in the future. Currently,
there is some researches on the condition of dendritic cells in the placenta
of preeclampsia. It has been suggested that the total number of dendritic
cells in the placental bed of women with preeclampsia may be similar or
higher (Huang et al., 2008; Hsu et al., 2012). The proportion of mature
dendritic cells in the decidua of patients with preeclampsia was
significantly higher than that of healthy pregnant women (Zhang
et al., 2017). This is not consistent with our research. More studies
are needed to explore the role of immune cell infiltration in the
pathophysiological mechanism of preeclampsia.

This study has some limitations. First, some GEO datasets were
not very large, and future studies should be based on larger sample
sizes. Second, although four key genes have been identified as being
characteristic of preeclampsia, a larger sample size is needed to
validate this finding. Third, we did not identify subtypes of
preeclampsia. In the future, we will further differentiate between

the types of preeclampsia and perform flow sorting of the placenta to
verify the type of immune cells in it so that patients can be diagnosed
and managed appropriately.

In summary, LEP, FLT1, RAB6C, and SASH1 were identified as
potential biomarkers of preeclampsia. In addition, our findings suggest
that Tregs, monocytes, and activated NK cells may participate in
preeclampsia development. Thus, these immune cells are promising
targets for immunotherapy in patients with preeclampsia.
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