
A fully-mapped and
energy-efficient FPGA accelerator
for dual-function AI-based analysis
of ECG

Wenhan Liu, Qianxi Guo, Siyun Chen, Sheng Chang, Hao Wang,
Jin He and Qijun Huang*

School of Physics and Technology, Wuhan University, Wuhan, China

In this paper, a fully-mapped field programmable gate array (FPGA) accelerator is
proposed for artificial intelligence (AI)-based analysis of electrocardiogram (ECG). It
consists of a fully-mapped 1-D convolutional neural network (CNN) and a fully-
mapped heart rate estimator, which constitute a complementary dual-function
analysis. The fully-mapped design projects each layer of the 1-D CNN to a
hardware module on an Intel Cyclone V FPGA, and a virtual flatten layer is
proposed to effectively bridge the feature extraction layers and fully-connected
layer. Also, the fully-mapped design maximizes computational parallelism to
accelerate CNN inference. For the fully-mapped heart rate estimator, it performs
pipelined transformations, self-adaptive threshold calculation, and heartbeat count
on the FPGA, without multiplexed usage of hardware resources. Furthermore, heart
rate calculation is elaborately analyzed and optimized to remove division and
acceleration, resulting in an efficient method suitable for hardware
implementation. According to our experiments on 1-D CNN, the accelerator can
achieve 43.08× and 8.38× speedup comparedwith the software implementations on
ARM-Cortex A53 quad-core processor and Intel Core i7-8700 CPU, respectively. For
the heart rate estimator, the hardware implementations are 25.48× and 1.55× faster
than the software implementations on the two aforementioned platforms.
Surprisingly, the accelerator achieves an energy efficiency of 63.48 GOPS/W,
which obviously surpasses existing studies. Considering its power consumption is
only 67.74 mW, it may be more suitable for resource-limited applications, such as
wearable and portable devices for ECG monitoring.

KEYWORDS

electrocardiagram (ECG), convolutional neural network (CNN), field programmable gate
array (FPGA), signal processing, artificial intelligence (AI)

1 Introduction

Cardiovascular disease (CVD) has been one of the most critical threats to human health, as
more than 30% of global deaths are proven relevant to it (WHO, 2021). Electrocardiogram
(ECG) is an efficient diagnostic tool for CVD, which has been widely used and investigated by
various medical institutions for decades. Nowadays, the development of the healthcare industry
results in an increasing demand for continuous CVD monitoring outside hospitals, such as
home-based or community-based monitoring (Faruk et al., 2021). In these scenarios, wearable
or portable devices are employed to acquire ECGs. To alleviate the burden of cardiologists,
intelligent algorithms are expected to further analyze these ECGs and alert users if necessary.
The algorithms can be deployed on local devices (i.e., wearable or portable devices) and remote

OPEN ACCESS

EDITED BY

Muhammad Usman,
Chosun University, Republic of Korea

REVIEWED BY

Muhammad Sohail Ibrahim,
Zhejiang University, China
Nalesh S.,
Cochin University of Science and
Technology, India

*CORRESPONDENCE

Qijun Huang,
huangqj@whu.edu.cn

SPECIALTY SECTION

This article was submitted to
Computational Physiology and Medicine,
a section of the journal
Frontiers in Physiology

RECEIVED 25 October 2022
ACCEPTED 23 January 2023
PUBLISHED 06 February 2023

CITATION

Liu W, Guo Q, Chen S, Chang S, Wang H,
He J and Huang Q (2023), A fully-mapped
and energy-efficient FPGA accelerator for
dual-function AI-based analysis of ECG.
Front. Physiol. 14:1079503.
doi: 10.3389/fphys.2023.1079503

COPYRIGHT

© 2023 Liu, Guo, Chen, Chang, Wang, He
and Huang. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Physiology frontiersin.org01

TYPE Original Research
PUBLISHED 06 February 2023
DOI 10.3389/fphys.2023.1079503

https://www.frontiersin.org/articles/10.3389/fphys.2023.1079503/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1079503/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1079503/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1079503/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2023.1079503&domain=pdf&date_stamp=2023-02-06
mailto:huangqj@whu.edu.cn
mailto:huangqj@whu.edu.cn
https://doi.org/10.3389/fphys.2023.1079503
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2023.1079503

servers. In particular, remote deployment requires ECG data
transmission via the Internet, which may cause delays in response
and privacy violations. Thus, local deployment of algorithms has
attracted much attention and exploration, since it makes on-device
analysis possible and provides privacy protection (Raza et al., 2022). In
addition, local analysis is not influenced by Internet access. This means
that it can provide a more stable service for users.

There have been considerable studies on intelligent algorithms for
ECG analysis. Conventional algorithms always concentrate on time-
domain characteristics. The core challenge for conventional
algorithms may be the precise detection and calculation of fiducial
points or segments in ECG waveforms, such as R-peak detection, ST-
segment detection, and QRS-interval calculation (Merdjanovska and
Rashkovska, 2022). Heart rate calculation is one of the most common
applications based on conventional algorithms. It usually performs
R-peak detection at first. Then heart rate can be calculated based on
RR-intervals. Several robust R-peak detection algorithms have been
widely employed in heart rate calculation, such as Pan-Tompkins
algorithm (Pan and Tompkins, 1985), Hamilton algorithm (Hamilton,
2002), Kalidas algorithm (Kalidas and Tamil, 2017), Neurokit
algorithm (Makowski et al., 2021), etc. With the help of heart rate
calculation, wearable or portable devices can alert users if the heart rate
is out of the normal range. Recently, artificial intelligence (AI) has
shown an impressive development. Its representative technique, deep
learning (DL), has been applied in many fields, including ECG analysis
(Liu et al., 2021). Specifically, multiple layer perceptron (MLP),
convolutional neural network (CNN), and recurrent neural
network (RNN) are widely adopted to diagnose CVDs using ECG,
and achieve promising performances in detection of various CVDs
(Liu et al., 2021). In general, these DL models have typical complex
hierarchical architecture and require high-performance hardware to
perform. Considering wearable and portable devices are usually
developed using low-power edge devices with limited
computational resources (Seneviratne et al., 2017), rapid on-device
inference of DL models is a crucial challenge for a comprehensive
CVD monitoring based on ECGs.

To accelerate ECG analysis on edge devices, a fully-mapped field
programmable gate array (FPGA) accelerator for dual-function ECG
analysis is proposed. The algorithms of ECG analysis include CVD
diagnosis based on a lightweight 1-D CNN and heart rate estimating
based on a self-adaptive R-peak detection. This is why the analysis is
termed as a dual-function one. The motivation to develop this dual-
function system is that the two algorithms are complementary as
mentioned above. Implementing these two algorithms on FPGA
provides a more comprehensive analysis and acceleration. In detail,
the main contributions and advantages of this study are as follows:

(1) A fully-mapped implementation of 1-D CNN on FPGA is
proposed to accelerate CVD diagnosis using ECGs. Unlike the
existing studies, this study maps the full architecture of a 1-D
CNN to FPGA rather than developing multiplexed computing
units. Moreover, the virtual flatten layer is designed to effectively
bridge the feature extraction stage (convolutional and pooling
layers) and classification stage (fully-connected layers) of the
CNN. Overall, this implementation achieves impressive
acceleration and energy efficiency in our experiments.

(2) A self-adaptive heart rate estimator is developed on FPGA to
accelerate heart rate calculation and complement the 1-D CNN in
function. It consists of pipelined transformations, self-adaptive

threshold, and heart rate calculation. Note that the calculation of
the heart rate requires an accumulation of RR-intervals and a
division between the number of sampling points in a minute and
the average RR-interval. But the proposed method can remove the
accumulation and division in hardware. It is also a fully-mapped
hardware design as no unit is performed in a multiplexed manner.
All these effective approaches make the heart rate estimator
demonstrate high performance in deviation and acceleration.

(3) The implementations have good generalizations and
compatibility. Both of the algorithms are evaluated on an ECG
database containing more than 10,000 patients and they show
good performances in CVD diagnosis and heart rate calculation.
Furthermore, all the implementations are developed using Verilog
HDL rather than high-level synthesis (HLS) tools relying on
specific manufacturers (e.g., Xilinx, Intel, Lattice, etc.). This
makes our implementations have good compatibility with
devices from different manufacturers.

The rest of this paper is organized as follows. Section 2 introduces
studies related to this work. Section 3 describes database, algorithms,
and details about FPGA. In Section 4, evaluations on algorithm
generalization and FPGA acceleration are explained. A brief
discussion is performed in Section 5. Finally, Section 6 concludes
the whole paper.

2 Related works

FPGA may be an appropriate choice to realize high-speed ECG
analysis. It provides various configurable hardware units like logic
elements, on-chip random access memory [RAM, which can also be
configurated as read-only memory (ROM)], high-speed input/output
pins, registers, and digital signal processing (DSP) block. By
programming these hardware units, algorithms can be
implemented in a parallel manner and performed in a pipeline
manner. This allows FPGA to effectively accelerate algorithms.
Although graphic processing units (GPU) also provide parallel
acceleration for algorithms, FPGA is proved to be much more
energy efficient (Ma et al., 2018), which can satisfy the power
constraint of edge devices. In (Panigrahy et al., 2015), Panigraphy
et al. employed Xilinx Virtex-5 FPGA to develop a heart rate
monitoring system. They designed a new R-peak algorithm and
evaluated its performance on the MIT-BIH database. Similarly,
Agrawal et al. (Agrawal and Gawali, 2017) also implemented a
peak detection algorithm on Xilinx Virtex-5 FPGA. Their approach
can detect not only R peaks but also P and T peaks. To facilitate heart
rate variability (HRV) analysis, Abdullah et al. (Abdullah and Abd,
2016) proposed a simple FPGA-based system to detect RR-intervals of
ECGs. Nevertheless, these studies just used FPGA to perform their
algorithms, no specific advantage of FPGA (high speed, high
flexibility, etc.) over other platforms was revealed. In (Chen et al.,
2020), Chen et al. designed a high-performance R-peak detection
algorithm. They implemented it on Intel Cyclone-V FPGA and
evaluated acceleration performance, which is a more
comprehensive study than the aforementioned ones. However, their
FPGA implementation only accelerated the algorithm by 13%
compared with software implementation using Matlab. A more
efficient FPGA-based accelerator for ECG analysis was proposed by
Gu et al. (2016). Compared with software implementation using

Frontiers in Physiology frontiersin.org02

Liu et al. 10.3389/fphys.2023.1079503

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1079503

Matlab, it achieved a 6.69× speedup on feature extraction including
R-peak detection and other fiducial points detection. But quantitative
performance evaluations for the algorithms were not carried out (Gu
et al., 2016).

Apart from the aforementioned applications, FPGA can also be
employed to deploy and accelerate AI-based algorithms (especially
various neural networks like MLP and CNN) for ECG analysis. Wess
et al. (2017) used principal component analysis (PCA) and 3-layer
MLP to detect arrhythmia. To deploy the MLP on a Xilinx Zynq
FPGA, they optimized the non-linear activation functions by
piecewise linear approximation. This method can reduce the
amount of required resources by more than 80%. Similarly, Zairi
et al. (2020) and Wang et al. (2017) also employed 3-layer MLPs to
classify arrhythmia based on ECG beats, but they used discrete wavelet
transform (DWT) for feature extraction. Moreover, the DWT and the
MLP were jointly deployed on FPGAs to implement complete
monitoring systems. Although impressive accuracies of arrhythmia
detection were reported in these three representative MLP-based
studies, only small-scale datasets were used to evaluate and
optimize the algorithms. This may be difficult to reveal the actual
feasibility of their systems. Furthermore, shallow neural network like
3-layer MLP has an inferior generalization to deep neural network in
theory (LeCun et al., 2015). For deeper models, Wei et al. (2021)
designed a 15-layer 1-D CNN to classify ECG beats into five classes,
and a similar model is also explored (Lu et al., 2021). In detail, they
developed generic convolutional and pooling layer processing units,
and performed these units in a multiplexed way to complete CNN
inference. This manner may be inspired by the FPGA accelerator
design for CNN in computer vision (Ma et al., 2018). Although it can
reduce resource consumption, it is not flexible enough to fully utilize
the specific superiorities of FPGA (Gong et al., 2018). In addition,
communications between computational units and on-chip/off-chip
memories are too frequent in this manner, which may result in
considerable power consumption (Ma et al., 2018). Overall, the
aforementioned works focused on either ECG classification using
neural networks or heart rate estimating based on R-peak
detection. Although a neural network can detect CVDs for an
ECG, it cannot directly estimate actual heart rate. On the other
hand, heart rate can be estimated using an R-peak detection
algorithm, but this algorithm cannot model the complex
relationships between ECGs and corresponding CVDs.
Implementing only one aspect on FPGA may be insufficient for
real-world healthcare. The main purpose of this study is to address
these limitations. It aims to implement a heart rate estimator and
CNN-based ECG classifier in a fully-mapped manner. The CNN and
heart rate estimator are intentionally designed to have their own
hardware modules. There is no resource sharing between the CNN
and the heart rate estimator. Furthermore, each unit of CNN or heart
rate estimator has its own hardware module. Its advantages can result
in impressive acceleration and power efficiency, which are presented
in Section 4.

3 Materials and methods

3.1 Chapman ECG database

In this study, a large-scale ECG database (Zheng et al., 2020)
proposed by Chapman University and Shaoxing People’s Hospital is

used to develop and evaluate our algorithms. It contains 10,646 patients’
12-lead records lasting 10 s, and the sampling rate is 500 Hz. Cardiologists
have categorized the database into 11 rhythm classes, while a merged 4-
class classification is recommended by (Zheng et al., 2020) to evaluate the
generalization of a classification algorithm. These four classes include
atrial fibrillation (AFIB), general supraventricular tachycardia (GSVT),
sinus bradycardia (SB), and sinus rhythm (SR). Totally, the database has
2,225 AFIB patients, 2,307GSVT patients, 3,888 SB patients, and 2,225 SR
patients. Notably, a record is found to last only 3.85 s so it is removed here.
As result, 10,645 records are used in this study.

Data preprocessing consists of 2 phases. First, all the records are
downsampled from 500 Hz to 250 Hz. This can reduce computational
burden and 250 Hz is enough to reveal ECG characteristics
(Merdjanovska and Rashkovska, 2022). Second, each record is
normalized by z-score. Given an ECG record x, normalized record
z can be obtained by:

z � x − μ

δ
(1)

where μ and δ are the average value and standard deviation of x,
respectively. In this study, lead II is used to facilitate algorithm
development, as it is the most widely used lead in ECG analysis
(Merdjanovska and Rashkovska, 2022). Moreover, the database
provides the actual heart rate for each record. This can be used for
the evaluation of the heart rate estimator.

3.2 Algorithms

3.2.1 1-D CNN
An overview of the proposed 1-D CNN architecture is shown in

Figure 1. This CNN consists of four convolutional layers, four max-
pooling layers, one flatten layer, and one fully-connected layer. The
input of the CNN is a 10-s ECG record which contains 2,500 samples,
while the output is a 4-element vector corresponding to the four target
classes.

In particular, 1-D convolutional layer accounts for the most
computation of the CNN. Let Ic be the input, ωc be the kernel, bc
be the bias of a 1-D convolutional layer, respectively, the output Oc is
obtained by:

Oc l[] n[] � f ∑Nc−1

n�0
∑Mc−1

m�0
∑Kc−1

k�0
Ic l + k[] m[] × ωc k[] n[] + bc n[]⎛⎝ ⎞⎠ (2)

where Kc is the length of the kernel. Mc and Nc are the numbers of
input and output feature maps, respectively. Activation function f (_)
denotes rectified linear unit (ReLU) here. By training on large-scale
datasets, convolutional layers are capable of extracting critical features
related to specific CVDs, while max-pooling layers are employed to
reduce feature dimension and achieve translation invariance. Actually,
the max-pooling operation is to find the maximum value in a sliding
window. It can be formulated as:

Op l[] n[] � max
r�0,1,...,Pw−1

Ip l × Pw + r[] n[] (3)

where Ip and Op are the input and output feature maps of the max-
pooling layer, respectively. Pw denotes pooling size, i.e., the size of the
sliding window. Convolutional and max-pooling layers are
alternatively stacked to accomplish the feature extraction stage of
the CNN. Then all feature maps are flattened to a feature vector V by

Frontiers in Physiology frontiersin.org03

Liu et al. 10.3389/fphys.2023.1079503

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1079503

the flatten layer. The fully-connected layer projects the feature vector
to the final 4-element (corresponding to the four target classes) vector
Y by:

Y n[] � softmax ∑Mv

m�0
V m[] × ωf m[] n[] + bf n[]⎛⎝ ⎞⎠ (4)

FIGURE 1
An overview of the proposed 1-D CNN. Conv: Convolutional layer; Maxp: Max-pooling layer; Flat: Flatten layer; FC: Fully-connected layer; AFIB: atrial
fibrillation; GSVT: general supraventricular tachycardia; SB: sinus bradycardia; SR: sinus rhythm.

FIGURE 2
The method of the proposed heart rate estimator. (A) The diagram. (B) An example of the transformations presented in the diagram.

Frontiers in Physiology frontiersin.org04

Liu et al. 10.3389/fphys.2023.1079503

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1079503

whereMv denotes the length ofV, ωf and bf are the weight and bias of the
fully-connected layer, respectively. Here activation function softmax (_)
refers to the softmax function, which can generate a probability
distribution for the target classes. The class with the maximum
probability is regarded as the predicted class for the input ECG. As
softmax is a monotonically increasing function, the class with the
maximum probability must have the maximum value after the
multiplications and accumulations in (4). Removing softmax does not
influence the final predicted class. Additionally, exponent arithmetic is
used in softmax, it is not suitable for hardware implementation. Thus,
softmax is not implemented on FPGA in practice.

3.2.2 Heart rate estimator
The basic workflow of heart rate calculation is to count R-peaks,

calculate themean RR-interval in a specific time range (10 s in this study),
and then estimate the possible number of R-peaks in a minute. Although
heart rate calculation is simple in methodology, it has been widely used in
wearable and portable devices nowadays (Jeong et al., 2019). It provides a
quantitative insight for heart activity frequency, which the 1-D CNN
cannot. The diagram of the proposed method is shown in Figure 2.

The purpose of the first three steps is to transform an ECG to a
signal with simpler waveforms, which is suitable for R-peak detection.
Differentiation, rectification, and integration can be formulated as:

D t() � dx t()
dt

� x t() − x t − 1() (5)
R t() � D t()| | (6)

S t() � ∑W
w�0

R t + w() (7)

where x denotes the input ECG record, D, R, and S denote the
output of differentiation, rectification, and integration,
respectively. W is the size of the sliding window when
performing integration. It is set to 16 here. Figure 2 also plots
an example of the three transformations. Regardless of negligible
tiny waves, the final output signal S only contains sharp peaks
corresponding to R peaks. Furthermore, the self-adaptive threshold
THR is generated according to S:

THR � γ · max
t�0,1,...,Ms

S t() (8)

where Ms is the length of S, and γ is a hyperparameter to control the
sensitivity of the threshold. It is set to 0.375 by trial and error. If the
amplitude of a peak in S exceeds THR, it will be deemed to indicate an R
peak in the raw ECG. It is worth noting that THR is not a fixed threshold
and it varies according to the processing ECG. This is why it is termed a
self-adaptive threshold. Additionally, the refractory period is introduced
to reduce false detection. If the distance between two adjacent R-peak
candidates is less than 0.24 s, only one candidate will be retained.

After R peaks are located, RR intervals can be calculated. A RR interval
denotes the distance between two adjacent R peaks. Heart rate (beats per
minute, BPM) is calculated using the average RR interval of the record:

BPM � 60 · fs

1
N − 1

∑N−1
i�1 RRi

� 60 · fs · N − 1()∑N−1
i�1 RRi

(9)

whereN refers to the number of R peaks in the record. Therefore, there
are (N-1) RR intervals, and RRi denotes the i-th RR interval. The
sampling rate is represented by fs. It is equal to 250 Hz in this study.

3.3 Hardware design

3.3.1 Model quantization
Usually, quantization can cause performance degradation compared

with the model using float parameters, due to the information loss. A
higher number of quantization bits can produce less performance
degradation, as it can maintain more information of the original model
(float). Meanwhile, a higher number of quantization bits requires more
hardware resources to store parameters and perform calculations, as the
number of bits for each parameter representation increases. Similarly, a
lower number of quantization bits results in more performance
degradation and less hardware resource cost. In particular, 8-bit
quantization is the most commonly used method to quantize a neural
network (Nagel et al., 2021). Thismeans that each float value is represented
by an 8-bit integer. Thus, 8-bit quantization is employed in this study.

For 1-D CNN, the parameters of each trainable layer (convolutional
layer or fully-connected layer) are quantized by layer-wise symmetrical
quantization. Themodel is trained using float weights in advance. Then the
quantization is performed to make the weights and the input data become
8-bit integers. Once the input data and weights become integers, the feature
maps derived from the calculations between input data andweights become
integers, too. For the activation, theReLU function is used. It only contains a
comparison operation (> 0 or not). This can be directly applied to integers,
and no additional quantization is performed for it. Given aω containing the
float parameters of a trainable layer, it is quantized by:

�ω � ⌈ ω

ω| | max
· 27 − 1() + 1

2
⌉ (10)

where |ω|max is the maximum absolute value in ω. Moreover, float
ECG data are quantized in a similar way. However, a convolutional
layer can produce results exceeding the range of 8-bit
representation by multiplications and accumulations. To
guarantee that the input of the next convolutional layer can be
represented by 8-bit integers, a rescaling is performed on the
output of each convolutional layer:

O′ l[] n[] � O l[] n[]
2nb

� O l[] n[] → nb(),

nb � ⌈log2max X O| |
27 − 1

⌉ (11)

�O l[] n[] �
− 27 − 1(),O′ l[] n[]< − 27 − 1()
O′ l[] n[],− 27 − 1()≤O′ l[] n[]≤ 27 − 1()
27 − 1(),O′ l[] n[]> 27 − 1()

⎧⎪⎨⎪⎩ (12)

where O∈RL×N is the raw integer output of a convolutional layer.
Function maxX|O| is to find the maximum value ofO across the whole
dataset X. Note that,O [l][n] divided by 2nb is equivalent to performing
nb-bit arithmetic right shift (→ nb) on O [l][n], so it is suitable for
hardware implementation. Eq. 12 further truncates the output to
ensure that it is in the target range.

For the heart rate estimator, only the calculation of the self-
adaptive threshold [refer to (8)] requires quantization, as it uses
float hyperparameter γ = 0.375. This can be replaced by arithmetic
right shift and addition:

THR � 0.375 · S max � 1

22
+ 1

23
()S max

� S max

22
+ S max

23
� S max → 2() + S max → 3()

(13)

Frontiers in Physiology frontiersin.org05

Liu et al. 10.3389/fphys.2023.1079503

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1079503

where Smax is the maximum value of S. Due to this conversion,
multiplication is replaced by simpler operations (i.e., arithmetic right
shift and addition), which can result in a more efficient hardware
implementation. Indeed, quantization of the algorithms may lead to
performance degradation. This will be explored in the next section.

3.3.2 Fully-mapped 1-D CNN
Asmentioned above, a fully-mapped designmeans that each layer/

operation has its own hardware module on FPGA. Its advantages lie in
two aspects. First, it allows to maximize the parallelism of operations,
as mutual dependencies caused by multiplexed usage are removed.
This can benefit the accelerating performance. Second, it reduces
communications between computational units and memories, as
parameter re-configuration required in multiplexed usage is
eliminated. This can reduce the power consumption of the design
(Gong et al., 2018; Ma et al., 2018). Detailed implementations are
described in the following.

1) Fully-mapped 1-D convolutional layer. Each channel of the
input feature map has an independent input port. As a data stream, it
is fed into its own convolutional unit including parallel multipliers and
adder trees. As the kernel size of each convolutional layer is 5, there are
five multipliers in a convolutional unit. For each multiplier, it consists
of a combinational logic circuit of multiplication and a D-trigger for
the result buffer for a better timing performance. For each clock cycle,
it acquires two values to performmultiplication of them and stores the
result in the D-trigger. Then it takes an additional clock cycle to output
this result. There is a queue register for data buffering before the
multiplication. This queue register stores five values from the input
stream. For each clock cycle, the register loads a new value and
removes the oldest value. Each value in the register can be directly
obtained using its index. Also, the weights are stored in the registers
that can be directly extracted by using an index (like an array data
structure). Thus, the data access of the input data and weights does not
cause additional latencies. Then the multiplications are conducted by

FIGURE 3
The hardware design of a fully-mapped 1-D convolutional layer. CU: convolutional unit.

Frontiers in Physiology frontiersin.org06

Liu et al. 10.3389/fphys.2023.1079503

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1079503

five multipliers in a parallel manner. For accumulation, a 3-level adder
tree is developed. The adders at the same level can work in parallel, and
the adders at different levels work in a pipelined manner. However, if
the adder tree is treated as a whole, it works serially as the input data is
fed into it as a stream. The number of the output port is determined by
the number of output channels. ReLUs can be easily implemented by
comparers (an input value vs. 0). In summary, this fully-mapped
design parallelizes a convolutional layer at the channel level.
Furthermore, it unrolls each convolutional operation using parallel
multipliers and adder trees. The high parallelism can enable high-
performance acceleration in theory. Figure 3 shows the design of the
convolutional layer.

To generate the whole output feature map, the convolutional layer
must process the whole input feature map. Since the operations can
cause latencies, resulting in more clock cycles to yield the whole
output. In general, the number of clock cycles of the i-th convolutional
layer can be calculated as:

Cycleic � Li
c + 1mul + ⌈log2Kc⌉ + ⌈log2Ni

c⌉ + Pi
c + 1relu + 1rescale (14)

where Li c is the length of the input feature map, Kc is the length of the
kernel, and Ni c is the number of output feature maps. 1mul and 1relu
are the 1-cycle latencies of the multipliers and ReLUs, respectively.
Since a rescaling should be performed to maintain the 8-bit output, it
leads to 1-cycle latency (1rescale). The third element denotes the latency
of the adder tree in a convolutional unit (CU) as shown in Figure 3,
whereas the fourth element refers to the latency of the adder tree in the
summation of multiple CU. Pi c denotes the padding size before the
convolution, resulting in additional Pi c clock cycles.

2) Fully-mapped 1-D max-pooling layer. A convolutional layer
(including activation) and a max-pooling layer can constitute a basic
unit of the 1-D CNN. The output of the convolutional layer can be
directly fed into the max-pooling layer for subsampling. Similarly, a
max-pooling layer is also parallelized at the channel level. There is a
max-pooling unit for each input/output channel. Particularly, the
max-pooling operation requires to find the maximum value in a
specific window containing pool_size samples. As input data are fed
into the unit as a stream, a loop counter (0 ~ pool_size) is employed to

locate the pooling windows. With the help of a register for maximum
value storage, pooling results can be obtained after traversing all
samples in the window. It is worth noting that the data rate is
divided by pool_size after pooling, as pool_size samples only
generate one output sample. To maintain the same data rate for
the following layers, the output of a max-pooling layer is buffered to
block RAMs at first. Then the output is read from these RAMs at the
same data rate for the following process. The design of the max-
pooling layer is depicted in Figure 4.

Based on the input feature map, the max-pooling operation
generate an output value for every Pw input values, i.e., Pw cycles.
Thus, it causes a Pw -cycle latency. In addition, the comparison
operation in the max-pooling also results in a 1-cycle latency
(1comp). Thus, the number of clock cycles of the i-th max-pooling
layer can be calculated as:

Cycleip � Li
p + Pw + 1comp (15)

where Li p is the length of the input feature map. Note that there is no
buffer between a convolutional layer and a max-pooling layer. The
output of the convolutional layer is fed into the max-pooling layer.
Thus, the total cycles of a unit including a convolutional layer and a
max-pooling layer are:

Cycleiu � Cycleic + Pw + 1comp (16)

3) Virtual flatten layer. Unlike other layers, flatten layer does not
have any parameters. It only reorganizes feature maps to a feature
vector. For hardware implementation, this reorganization requires
considerable data buffer and communications in theory, which can
cause additional latency and power consumption. However, the
flattening operation can be eliminated by calculating the
corresponding position in the feature vector for each sample of the
feature maps in advance. Let It∈RL×N denote the input feature maps of
the flatten layer (i.e., the output feature maps of the last max-pooling
layer with N channels), the corresponding position of It [l][n] in the
feature vector can be calculated as:

Pos It l[] n[]() � l × N + n (17)
Figure 5 also illustrates this operation. Based on this, feature maps

can immediately match the weight matrix of the following fully-
connected layer and then enable the matrix multiplication. To
summarize, there is no corresponding hardware module for flatten
layer, although flatten operation has been performed in an implicit
way. This is why it is termed a virtual flatten layer. Obviously, this
design can benefit the resource utilization and power consumption of
our system.

4) Fully-connected layer. The main operation in the fully-
connected layer is matrix multiplication. All weights are buffered in
register arrays. The parallelism of the matrix multiplication is
determined by the number of input feature map channels. In
detail, feature maps are synchronously read from N block RAMs,
corresponding to theN output channels of the final max-pooling layer.
Thus, there are N values fed into the fully-connected layer for each
clock cycle. Accordingly, Nmultipliers and (N-1) adders are employed
to accomplish multiplications and accumulations in a parallel manner,
as shown in Figure 6. In this study, N is set to 16. Furthermore, the
calculation for each column of the weight matrix is independent,
making parallelization along columns possible. A predicted class can
be obtained by three comparers after the matrix multiplication.

FIGURE 4
The hardware design of a fully-mapped 1-D max-pooling layer.
MPU: max-pooling unit.

Frontiers in Physiology frontiersin.org07

Liu et al. 10.3389/fphys.2023.1079503

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1079503

Concretely, the fully-connected layer reads data from the RAMs of
the last max-pooling layer. According to Figures 5, 6, given an L as the
length of the output feature map of the last max-pooling layer, the
cycles of the fully-connected layer can be formulated as:

Cyclef � L + 1mul + ⌈log2N⌉ + 1csum + 2comp (18)

where 1mul and 1csum are the 1-cycle latencies caused by
multiplications and cumulative summation in the matrix
multiplication. 2comp denotes the 2 1-cycle latencies from the three
comparers after the matrix multiplication as shown in Figure 6. The
third element denotes the latency from the adder tree. The total cycles
of the 1-D CNN can be calculated as:

CycleCNN � ∑iCycle
i
u + Cyclef (19)

Notably, the fully-mapped implementation of 1-D CNN is a
generalized method for the design of hardware accelerators. In
brief, it aims to map each unit of the 1-D CNN to a hardware
module without multiplex usage, maximizing the parallelism of the
calculation. Thus, it does not rely on the specific CNN architecture
presented in the manuscript. To adjust the proposed design to a new 1-
D CNN model, the number of input/output channels and the number
of computing units (convolutional unit in Figure 3, max-pooling unit
in Figure 4, matrix multiplication unit in Figure 6) can be modified to
match its architecture.

3.3.3 Fully-mapped self-adaptive heart rate
estimator

1) Pipelined transformations. For differentiation, it can be
implemented by a 2-element shift register and a subtracter.
Rectification needs a comparer and an inverter to detect negative
values and invert them. Integration employs a 16-element shift register
and a 4-level adder tree to implement accumulation. Furthermore, the
three transformations can be performed in a pipelined manner.
Figure 7A shows the architectures of the three transformations and
the pipeline. In this way, the transformations can be synchronously
performed, resulting in a speedup. Let L be the length of the signal, it
takes L cycles to feed the signal into the transformations. Also, the
operations in the three transformations result in latencies. The total
cycles can be formulated as:

FIGURE 5
The hardware design of the virtual flatten layer.

FIGURE 6
The hardware design of the fully-connected layer. MMU: matrix
multiplication unit. N-channel input is fed into each MMU in the fully-
connected layer. In other words, all MMUs share the same N-channel
input and perform calculations in parallel.

Frontiers in Physiology frontiersin.org08

Liu et al. 10.3389/fphys.2023.1079503

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1079503

Cycletran � L + 1diff + 1rect + ⌈log2W⌉ (20)
where 1diff and 1rect are the 1-cycle latencies from differentiation and
rectification, respectively. The integration can take �log2W� cycles to
implement the accumulation via the adder tree, andW is the width of
the window.

2) Self-adaptive threshold.According to (8), the calculation of the self-
adaptive threshold depends on the maximum value of the
transformed signal. This requires a traversal of the signal. In
addition, all values of the signal should be buffered for the
following steps. After obtaining the maximum value, the
threshold can be calculated by arithmetic right shift and
addition. Then it is used as a criterion for R-peak localization,
and the number of R peaks is provided by a counter. In addition, a
loop counter is employed to measure the distance between two

adjacent R peaks and apply the refractory period mechanism.
Figure 7B also depicts the aforementioned modules.

For the self-adaptive threshold, the operations consist of
comparison, arithmetic right shift, and addition. The arithmetic
right shift and the addition constitute a logic to calculate the
threshold based on the maximum value from the comparison.
These leads to 1-cycle latencies (1comp and 1thr):

Cyclethr � Lt + 1comp + 1thr (21)
where Lt is the length of the transformed signal. As the transformed
signal is directly fed into the calculation of the self-adaptive threshold.
Thus, the preparation process before the beat count can be
formulated as:

Cycleprep � Cycletran + 1comp + 1thr (22)

FIGURE 7
Hardware design of the preparation before heart rate calculation. (A) The pipelined design of the transformations DIFF: differentiation; RECT:
rectification; INTE: integration. (B) The design of self-adaptive threshold calculation.

Frontiers in Physiology frontiersin.org09

Liu et al. 10.3389/fphys.2023.1079503

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1079503

When applying the threshold, an additional comparison is
required to highlight the part exceeding the threshold with a 1-
cycle latency (1highlight). The loop counter for refractory period
calculation and the heartbeat counter can introduce extra 1-cycle
latencies (1ref and 1beat). The cycles can be obtained as:

Cyclebeat � Lt + 1highlight + 1ref + 1beat (23)

3) Heart rate calculation without accumulation and division.
Considering (9), the main challenges for hardware
implementation of heart rate calculation can be summarized as
two aspects, including the accumulation of RR intervals and the
division. Direct implementations of these operations may cause
considerable hardware resource consumption and additional
latency (Lu et al., 2021). Nevertheless, more efficient
implementations are proposed in this study to overcome the
challenges by eliminating accumulation and division.

Given a 10-s ECG record containing N R peaks, locations of these
R peaks are represented by P1~PN, so the ith RR interval is RRi = Pi+1-
Pi. Accumulation of the RR intervals can be formulated as:

∑N−1

i�1
RRi � ∑N−1

i�1
Pi+1 − Pi()

� PN − PN−1 + PN−1 + . . . − P2 + P2 − P1

� PN − P1

(24)

Therefore, only locations of the first and the last R peaks are
required to calculate the RR interval accumulation. Based on (15), (9)
can be rewritten as:

BPM � 60 · fs · N − 1()
PN − P1

� 60 · fs

PN − P1
· N − 1()

� r ΔPN,1() · N − 1()
(25)

r ΔPN,1() � 60 · fs

PN − P1
� Cs

ΔPN,1
(26)

where Cs is a constant. As fs is equal to 250 Hz here, the value of Cs is
15,000 = 60 × 250. ΔPN,1 = PN-P1 represents the number of sampling
points between the first R-peak position and the last one. It must be a
natural number, and its range can be inferred as:

0.24 · fs <ΔPN,1 < t · fs (27)
where t = 10 denotes the length of an ECG record, and (0.24・fs)
represents the refractory period. Thus, all possible values of ΔPN,1 are
the 24,939 integers between 60 and 25,000. This makes r (ΔPN,1) have
finite results, which can be stored in a ROM in advance. As r (ΔPN,1) is
not always an integer, all possible values are represented as 16-bit
fixed-point numbers. After that, the heart rate can be calculated
without division. As formulated in (16), the calculation is
accomplished by a ROM-read operation [r (ΔPN,1)] and
multiplication with (N-1).

As mentioned above, the heart rate calculation is transformed to a
read ROM-read operation and a multiplication. As this multiplication
is performed using fix-point numbers, a truncation operation is
required to obtain the integer part of the result. These three
operations can cause 1-cycle latencies. The cycles for heart rate
calculation can be obtained as:

Cyclebpm � Lt + 1rom + 1mul + 1trun (28)

The heart rate calculation is directly performed on the output of
the beat count module, thus the cycles of these two modules are:

Cyclehrc � Cyclebeat + 1rom + 1mul + 1trun (29)
To summarize, challenges originating from accumulation and

division are overcome by our effective conversions. This makes
heart rate calculation more suitable for hardware implementation
on FPGA. The total cycles of the heart rate estimator can be
calculated as:

CycleHR � Cycleprep + Cyclehrc (30)

4 Results

4.1 1-D CNN training and test

To train the 1-D CNN, the Chapman database introduced in
Section 2 is randomly divided into a training set (80% of the records)
and a test set (20% of the records). In addition, 10% of the training
records are used as a validation set for hyperparameter adjustment and
model selection. Adam optimizer is employed during the training
procedure. The learning rate and the batch size are set to 0.001 and
128, respectively. The model is trained for 50 epochs and a checkpoint
is saved for each epoch. Cross entropy is employed to measure the loss
during the training. The checkpoint with the lowest loss on the
validation set is selected for performance evaluation on the test set.
The model and the training procedure are implemented using Python
and Keras with a TensorFlow backend (v2.5.0). It is worth noting that
there is no patient overlap between training, validation, and test set.
The model is tested on unseen patients. This inter-patient evaluation
can make results more reliable (da et al., 2016).

Accuracy (Acc) and macro-average F1 score (F1-macro) are
employed as performance metrics. For Acc, it is a ratio between
the number of true classified records (T) and the number of false
classified records (F) as:

Acc � T

T + F
(31)

To calculate F1-macro, F1 score for each class should be obtained.
Given a class as positive class, other classes are gathered as a negative
class, F1 score is a harmonious average of recall and precision:

recall � TP

TP + FN
(32)

precision � TP

TP + FP
(33)

F1 � 2 × recall × precision

recall + precision
(34)

Where TP and FP denote true positive and false positive,
respectively. FN denotes false negative. After that, F1-macro can be
calculated as:

F1 −macro � ∑NC
i�1F1i
NC

(35)

where NC is the number of classes and F1i denotes the F1 score of the
ith class. Each experiment uses both Acc and F1-macro to measure the
model generalization comprehensively.

Frontiers in Physiology frontiersin.org10

Liu et al. 10.3389/fphys.2023.1079503

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1079503

Figure 8 shows the confusion matrix on the test set. Based on
this, it can be obtained that the 1-D CNN achieves an accuracy of
0.9324 and an F1-macro of 0.9228. Note that the parameters of
trained 1-D CNN are stored as float numbers. As mentioned in
Section 3.1, they should be quantized to 8-bit integer numbers for
hardware implementation. Thus, the quantized 1-D CNN is also
evaluated. The confusion matrix on the test set is also displayed in
Figure 8. The Acc and F1-macro are 0.9295 and 0.9205,
respectively. To further justify the 8-bit quantization, 4-bit, 6-
bit, 10-bit, and 12-bit quantization methods are also carried out to

explore their influence. The performance changes caused by these
quantization methods are shown in Figure 9. It can be seen that the
quantization employing less than 8 bits shows obvious
performance degradation. Although the methods employing
more than 8 bits can achieve the same performance as the
algorithms based on float numbers, they can cause additional
hardware resource costs. As shown in Figure 9, Acc and F1-
macro only decrease by 0.0029 and 0.0023 based on 8-bit
quantization, respectively. This demonstrates that the
quantization method is effective.

FIGURE 8
The confusion matrices on test set.

FIGURE 9
Performance degradation caused by quantization.

Frontiers in Physiology frontiersin.org11

Liu et al. 10.3389/fphys.2023.1079503

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1079503

4.2 Heart rate estimator test

The proposed heart rate estimator is implemented using C++. A
heart rate deviation (HRD) is employed to measure the performance of
the heart rate estimator. Let h be the actual heart rate of a record and‾h
be the estimated heart rate, HRD can be obtained by:

HRD � h − �h

h

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ (36)

Lower HRD always means better performance. All records in the
Chapman database are processed by the proposed heart rate estimator,
then an average HRD is calculated. The proposed heart rate estimator
achieves an average HRD of 0.0138. After 8-bit quantization, the
average HRD increases to 0.0142. A performance degradation of
0.0004 can be obtained. It is also acceptable since the degradation
is negligible. 4-bit, 6-bit, 10-bit, and 12-bit quantization methods are
also investigated here, as shown in Figure 9. Similarly, 8-bit
quantization can achieve a good balance between performance and
hardware resource cost.

4.3 Hardware acceleration

Both 1-D CNN and heart rate estimator are implemented using an
Intel Cyclone V FPGA (5CSEBA6U23I7) on the Terasic DE10-nano
development board. The FPGA has 41,910 adaptive logic modules
(ALMs), 83,820 registers, 5662720 bits on-chip memory, and 112 DSP
block. Notably, Cyclone V FPGA is optimized for low-power and low-
cost applications (Intel, 2018), which is suitable for continuous ECG
monitoring and analysis. The hardware project is established and

synthesized using Quartus Prime software (v18.1). All modules share a
global clock of 50 MHz. As shown in Figure 10, an on-board test is
conducted after programming the FPGA. ECG signals are stored in the
on-chip memory. To access the acceleration performance, the signals
are read from the memory and synchronously fed into the 1-D CNN
and heart rate estimator. Signal Tap Logic Analyzer embedded in
Quartus Prime can capture and display real-time signal behavior,
helping debug hardware design. According to the analyzer, our design
works as expected on the DE10-nano development board. There are
two baseline platforms used for comparison, including a Windows PC
with an Intel Core i7-8700 CPU and a Raspberry Pi 3B with an ARM
Cortex-A53 quad-core processor. The software implementations of
the algorithms are performed on the two baseline platforms. Then a
latency comparison is carried out between baselines and our hardware
design. Notably, only the quantized algorithms are deployed on
the FPGA.

For the FPGA implementation of 1-D CNN, it takes 66 μs to
process a 10-s ECG record according to our experiment. By contrast,
the inference latencies of the software implementations (Keras) on
Intel Core i7 8,700 and ARM Cortex-A53 are 553 μs and 2,843 µs,
respectively. Keras is a high-performance software deep-learning
framework. It can automatically use multiple CPU cores or threads
for model inference to optimize the speed (Abadi et al., 2016). In
addition, an advanced execution paradigm based on a dataflow graph
is employed to facilitate co-current running (Abadi et al., 2016). Due
to its efficient framework, Keras is widely used in algorithm research
and deployment. Therefore, it is reasonable to compare the proposed
hardware design with the software design based on Keras to validate
the advantages of the proposed hardware design. The comparison is
shown in Figure 11. The FPGA implementation achieves 43.08×
speedup compared with the software implementation on ARM

FIGURE 10
Test on DE10-nano development board.

Frontiers in Physiology frontiersin.org12

Liu et al. 10.3389/fphys.2023.1079503

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1079503

Cortex-A53. Considering the Intel Core i7-8,700 baseline, a more
powerful CPU for PC, the FPGA implementation still achieves 8.38×
speedup. Similarly, the software implementation of the heart rate
estimator is performed and examined on the baseline platforms. It
takes 155 μs and 2,548 μs to process an ECG record on Intel Core i7-
8,700 and ARMCortex-A53, respectively. However, the inference time
of the FPGA implementation is only 100 μs. Unlike CNN, the heart
rate estimator does not have a specific framework for its software
implementation. C/C++ may be the most efficient software language,
except for low-level programming languages (Oualline, 2003), like
Assembly language. Therefore, C++ is used to implement the heart
rate estimator, and no additional optimization is used. In addition,
C/C++ is widely used in embedded system development (Oualline,
2003), so it is also reasonable to compare its C/C++ implementation
with the proposed hardware design. Comparison is also presented in
Figure 11. The FPGA implementation is 1.55× and 25.48× faster than
Intel Core-i7 8,700 and ARM Cortex-A53, respectively. As FPGA can
perform integer calculation/operation without any information loss,
the algorithm performances of the actual implementations on FPGA
are consistent with those of the quantized algorithms shown in Figures
8, 9. To summarize, all results reveal the advantages of FPGA on
parallel computation. Our hardware design can effectively utilize these
advantages and achieve obvious speedup.

Power consumption is also estimated to verify power efficiency.
Based on the Power Analyzer embedded in Quartus Prime, the FPGA
implementation consumes 67.74 mW at a clock frequency of 50 MHz.
It is much lower than the power consumption of Intel Core i7-8,700
(65 W) and ARM Cortex-A53 (3.7 W). This demonstrates that the
FPGA implementation has better power efficiency than the baselines.
The acceleration does not introduce considerable power consumption.

5 Discussion

To demonstrate the advantage of the proposed 1-D CNN, the
neural networks for ECG classification in (Zairi et al., 2020), (Wess
et al., 2017), and (Wei et al., 2021) are reproduced to perform the

classification described in Section 2. Although there have been some
complex models employed for the classification of the Chapman
database (Yildirim et al., 2020; Baygin et al., 2021; Murat et al.,
2021), they do not consider the efficient inference and FPGA
deployment of the model. Thus, these models are not involved in
the comparison. Performances of the existing models are listed in
Table 1. Obviously, the proposed 1-D CNN outperforms the MLPs in
(Wess et al., 2017) and (Zairi et al., 2020) by a considerable margin.
Moreover, 1-D ECGs can be directly fed into the proposed 1-D CNN
for classification. No extra preprocessing and feature extraction are
required. Compared with the CNN in (Wei et al., 2021), our 1-D CNN
achieves comparable results but has fewer parameters. Also, the
proposed 1-D CNN is robust to the quantization operation, and
only a slight performance degradation is obtained. These make our
1-D CNN more lightweight and suitable for implementation on
resource-limited platforms. For the heart rate estimator, several
commonly used R-peak detection algorithms are employed to
calculate heart rate (Pan and Tompkins, 1985; Hamilton, 2002;
Lourenço et al., 2012; Kalidas and Tamil, 2017; Makowski et al.,
2021) and compare with the proposed one. Using the Chapman
database, their performances are evaluated and listed in Table 2.
The proposed heart rate estimator achieves the lowest HRD. This
indicates its impressive adaptability to different patients.

Energy efficiency measured by GOPS/W is always employed to
compare different FPGA implementations. GOPS/W means Giga

FIGURE 11
Acceleration performance for 1-D CNN and heart rate estimator.

TABLE 1 Classification performance comparison.

Acc F1-macro

Zairi et al. (2020) 0.4955 0.3911

Wess et al. (2017) 0.6195 0.5583

Wei et al. (2021) 0.9314 0.9242

Proposed (float) 0.9324 0.9228

Proposed (quantized) 0.9295 0.9205

Bold values refer to the performances of the proposed method.

Frontiers in Physiology frontiersin.org13

Liu et al. 10.3389/fphys.2023.1079503

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1079503

operations per second with a power consumption of 1 W. This metric
alleviates the influence of model differences and makes the
comparison fairer. Table 3 lists several representative studies on
FPGA accelerators for ECG classification. Carreras et al. optimized
the temporal convolutional network (TCN) inference on FPGA
(Carreras et al., 2020). For ECG classification, their method can
achieve an energy efficiency of 33.8 GOPS/W with a latency of
0.017 s. A similar performance is also obtained in (Wei et al.,
2021). In (Srivastava et al., 2022), the power consumption of the
probabilistic neural network (PNN) on FPGA is only 25 mW, which is
much lower than the proposed method. But its latency is found to be
17 s when processing a 10-s ECG record, whereas the latency of the
proposed method is only 66 μs. For (Ran et al., 2022), FPGA was
jointly employed with an ARM processor to classify ECGs. But the
usage of ARM leads to an obvious increase in power consumption. In
addition, it seems that the MLP used by (Wess et al., 2017) is too
simple to fully utilize the advantages of FPGA. Low power efficiency is
obtained in the experiments. However, the proposed accelerator
achieves 87.42 GOPS/W and obviously outperforms the existing
studies. The main reason is that the fully-mapped design can

achieve higher parallelism. Also, it allows to configure all the
parameters in advance, reducing memory communication during
algorithm inference. This helps improve the power consumption of
the design, as described in Section 3.

Also, a comparison about FPGA implementations of heart rate
estimators is presented in Table 4. Except for the work proposed by
Chen et al. (2020) each work successfully developed a low-cost heart rate
estimator. Agrawal and Gawali (2017) achieved the lowest latency of all
the listed studies, but this may be due to a high clock frequency of
287.505 MHz. Although they did not report the power of their design, a
high clock frequency usually leads to a dramatic increase in power
consumption. Abdullah et al. directly implemented a heart rate
monitoring algorithm on a Spantan-3A FPGA, no extensive analysis
about power/latency is presented. The methods proposed by Panigraphy
et al. (2015) and Meddah et al. (2019) can perform real-time heart rate
calculation, and lower power may be a special advantage of the hardware
module designed in. However, they did not provide precise latencies of
their systems. Considering the proposed one, it simultaneously achieves a
low latency of 100 us and a low power of 1.88 mW. Unlike the work also
based on Cyclone V FPGA (Chen et al., 2020), it costs fewer hardware
resources. Therefore, the proposed hardware design shows obvious
advantages over the existing works.

In summary, the proposed design can simultaneously perform
classification and heart rate estimation rather than only focus on
classification/heart rate monitoring like other studies. If the 1-D
CNN and heart rate estimator are simultaneously performed, the
power consumption and the energy efficiency are 67.74 mW and
63.48 GOPS/W, respectively. Unlike the studies based on HLS (Wess
et al., 2017; Ran et al., 2022), the proposed implementation is developed
using Verilog HDL, corresponding to a pure RTL description. It does
not rely on the HLS tool provided by a specific manufacturer, which
means that it has advantages in flexibility and compatibility.
Furthermore, it can be also wrapped as an Intellectual Property (IP)
core with different interfaces and applied to various applications. Since
the proposed implementation achieves lower power consumption than

TABLE 2 Heart rate estimation performance comparison.

HRD

Pan and Tompkins, (1985) 0.0353

Hamilton, (2002) 0.0633

Lourenço et al. (2012) 0.0550

Kalidas and Tamil, (2017) 0.0223

Makowski et al. (2021) 0.0296

Proposed (float) 0.0138

Proposed (quantized) 0.0142

Bold values refer to the performances of the proposed method.

TABLE 3 Comparison with existing FPGA accelerators about ECG classification.

Carreras et al.
(2020)

Ran et al. (2022) Srivastava et al.
(2022)

Wess et al. (2017) Wei et al. (2021) Proposed

Platform Zynq-7020 Zynq-7020 Artix-7 Zynq-7020 Zynq-7045 Cyclone V-
5CSE

Model TCN CNN PNN MLP 1-D CNN 1-D CNN

Resource utilization LUT:80.76% LUT:47.1% Reg:1.5% LUT:3.6% LUT:1.1% ALM:51%

Reg: 25.34% Reg:19.7% IOB:89% Reg:1.8% DSP:10.67% Reg:86%

Mem:91.4% Mem:95% BUFG:3% DSP:14.5% Mem:0.5%

DSP: 100% DSP:68.6% DSP:39%

Clock (MHz) 120 100 100 100 200 50

Quantization 16-bit 8-bit NA 24-bit 16-bit 8-bit

Latency s) 0.017 2.895 17 9.9 × 10−7 NA 6.6 × 10−5

Power W) 3.3 2.81 0.025 0.124 0.79 0.066

Operations (GOP) NA NA NA 1.86 × 10−7 1.028 × 10−3 3.8 × 10−4

Efficiency (GOPS/W) 33.8 NA NA 0.54 33.67 87.42

NA: Not Available; LUT: Look-up Table; Reg: Register; Mem: On-chip Memory; ALM: Adaptive Logic Module; IOB: Input-Output Block. BUFG: Buffer Global.

Frontiers in Physiology frontiersin.org14

Liu et al. 10.3389/fphys.2023.1079503

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1079503

other studies, it may be more suitable for lightweight applications, such
as wearable and portable devices for ECG monitoring.

6 Conclusion

This paper proposes a fully-mapped FPGA accelerator for ECG
processing. It can not only classify ECG but also estimate heart rate.
A 1-D CNN is proposed for the classification and implemented on FPGA
in a fully-mapped manner. Each layer has its hardware module except for
the virtual flatten layer. To complement the 1-D CNN, a fully-mapped
heart rate estimator is employed to calculate heart rate using ECG. Each
phase of the estimator corresponds to a specific hardware module on
FPGA. According to the experiments, the proposed accelerator achieves
significant speedup with low power consumption. This demonstrates that
it has impressive energy efficiency, which outperforms existing studies.
Considering the lower power consumption, the proposed accelerator can
be applied to wearable and portable ECG monitoring devices. This can
help the devices process ECG faster with limited resources. In the future,
fully-mapped developments of more advanced neural networks and heart
rate estimators will be explored. Furthermore, the accelerator will be
integrated into a real-world ECG monitoring system for latency
improvements. The code will be made available at https://github.com/
Aiwiscal/ECG-AI-Accelerator.

Data availability statement

Publicly available datasets were analyzed in this study. This data
can be found here: https://figshare.com/collections/ChapmanECG/
4560497/2.

Author contributions

QH proposed the scientific problems. WL prepared the datasets
and design the algorithms. WL, QG, and SiC designed the hardware
system and perform analysis. WL wrote the first draft of the
manuscript. WL, ShC, HW, JH, and QH contributed to the
revision and final version of the manuscript. All authors reviewed
the manuscript and read and approved this submission.

Funding

This work was supported by the National Natural Science
Foundation of China (81971702, 62074116, and 61874079).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

TABLE 4 Comparison with existing FPGA accelerators about heart rate estimation.

Panigrahy et al.
(2015)

Abdullah and Abd,
(2016)

Agrawal and Gawali,
(2017)

Meddah et al.
(2019)

Chen et al.
(2020)

Proposed

Platform Virtex-5 Spantan-3A Virtex-5 Artix-7 Cyclone V-5CSE Cyclone V-
5CSE

Resource
utilization

LUT:29% LUT: 1% LUT:0.3% LUT:10% ALM:70% ALM:0.57%

Reg: 0.9% Reg:1% Reg:0.17% Reg:1% Mem:6% Reg:0.79%

IOB:16% Mem:5% Mem:1% DSP:4% DSP:100% Mem:2.1%

BUFG: 3% IOB:10% IOB:10% IOB:11% DSP:0.89%

BUFG:12% BUFG:3%

Clock (MHz) NA NA 287.505 3.936 50 50

Quantization 16-bit 16-bit 8-bit NA NA 8-bit

Latency s) NA NA 4.7 × 10−7 NA 0.007 0.001

Power W) NA NA NA 0.042 NA 1.88 × 10−3

NA: Not Available; LUT: Look-up Table; Reg: Register; Mem: On-chip Memory; ALM: Adaptive Logic Module; IOB: Input-Output Block. BUFG: Buffer Global.

Frontiers in Physiology frontiersin.org15

Liu et al. 10.3389/fphys.2023.1079503

https://github.com/Aiwiscal/ECG-AI-Accelerator
https://github.com/Aiwiscal/ECG-AI-Accelerator
https://figshare.com/collections/ChapmanECG/4560497/2
https://figshare.com/collections/ChapmanECG/4560497/2
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1079503

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., et al. (2016). “TensorFlow:
A system for large-scale machine learning,” in 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), Savannah, GA: {USENIX} Association,
265–283. Available at: https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/abadi.

Abdullah, H. N., and Abd, B. H. (2016). “A simple FPGA system for ECG R-R interval
detection,” in 2016 IEEE 11th Conference on Industrial Electronics and Applications
(ICIEA), 1379–1382. doi:10.1109/ICIEA.2016.7603800

Agrawal, A., and Gawali, D. H. (2017). “FPGA-based peak detection of ECG signal using
histogram approach,” in 2017 International Conference on Recent Innovations in Signal
processing and Embedded Systems (RISE), 463–468. doi:10.1109/RISE.2017.8378200

Baygin, M., Tuncer, T., Dogan, S., Tan, R.-S., and Acharya, U. R. (2021). Automated
arrhythmia detection with homeomorphically irreducible tree technique using more than
10,000 individual subject ECG records. Inf. Sci. (Ny) 575, 323–337. doi:10.1016/j.ins.2021.
06.022

Carreras, M., Deriu, G., Raffo, L., Benini, L., andMeloni, P. (2020). Optimizing temporal
convolutional network inference on FPGA-based accelerators. IEEE J. Emerg. Sel.
Top. Circuits Syst. 10, 348–361. doi:10.1109/JETCAS.2020.3014503

Chen, A., Zhang, Y., Zhang, M., Liu, W., Chang, S., Wang, H., et al. (2020). A real time
QRS detection algorithm based on ET and PD controlled threshold strategy. Sensors 20,
4003. doi:10.3390/s20144003

daLuz, S. E. J., Schwartz, W. R., Cámara-Chávez, G., and Menotti, D. (2016). ECG-based
heartbeat classification for arrhythmia detection: A survey. Comput. Methods Programs
Biomed. 127, 144–164. doi:10.1016/j.cmpb.2015.12.008

Faruk, N., Abdulkarim, A., Emmanuel, I., Folawiyo, Y. Y., Adewole, K. S., Mojeed, H. A.,
et al. (2021). A comprehensive survey on low-cost ECG acquisition systems: Advances on
design specifications, challenges and future direction. Biocybern. Biomed. Eng. 41,
474–502. doi:10.1016/j.bbe.2021.02.007

Gong, L., Wang, C., Li, X., Chen, H., and Zhou, X. (2018). Maloc: A fully pipelined FPGA
accelerator for convolutional neural networks with all layers mapped on chip. IEEE Trans.
Comput. Des. Integr. Circuits Syst. 37, 2601–2612. doi:10.1109/TCAD.2018.2857078

Gu, X., Zhu, Y., Zhou, S., Wang, C., Qiu, M., and Wang, G. (2016). A real-time FPGA-
based accelerator for ECG analysis and diagnosis using association-rule mining. ACM
Trans. Embed. Comput. Syst. 15, 1–23. doi:10.1145/2821508

Hamilton, P. (2002). Open source ECG analysis. Comput. Cardiol., 101–104. doi:10.
1109/CIC.2002.1166717

Intel (2018). Cyclone V device overview, CV51001.

Jeong, I. cheol, Bychkov, D., and Searson, P. C. (2019). Wearable devices for precision
medicine and health state monitoring. IEEE Trans. Biomed. Eng. 66, 1242–1258. doi:10.
1109/TBME.2018.2871638

Kalidas, V., and Tamil, L. (2017). “Real-time QRS detector using stationary wavelet
transform for automated ECG analysis,” in in 2017 IEEE 17th International Conference on
Bioinformatics and Bioengineering (BIBE), 457–461. doi:10.1109/BIBE.2017.00-12

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521, 436–444.
doi:10.1038/nature14539

Liu, X., Wang, H., Li, Z., and Qin, L. (2021). Deep learning in ECG diagnosis: A review.
Knowledge-Based Syst. 227, 107187. doi:10.1016/j.knosys.2021.107187

Lourenço, A., Silva, H., Leite, P., Lourenço, R., and Fred, A. L. N. (2012). Real time
electrocardiogram segmentation for finger based ECG biometrics. Biosignals 49–54.

Lu, J., Liu, D., Liu, Z., Cheng, X., Wei, L., Zhang, C., et al. (2021). Efficient hardware
architecture of convolutional neural network for ECG classification in wearable healthcare
device. IEEE Trans. Circuits Syst. I Regul. Pap. 68, 2976–2985. doi:10.1109/TCSI.2021.3072622

Ma, Y., Cao, Y., Vrudhula, S., and Seo, J. (2018). Optimizing the convolution operation
to accelerate deep neural networks on FPGA. IEEE Trans. Very Large Scale Integr. Syst. 26,
1354–1367. doi:10.1109/TVLSI.2018.2815603

Makowski, D., Pham, T., Lau, Z. J., Brammer, J. C., Lespinasse, F., Pham, H., et al. (2021).
NeuroKit2: A Python toolbox for neurophysiological signal processing. Behav. Res.
Methods 53, 1689–1696. doi:10.3758/s13428-020-01516-y

Meddah, K., Kedir Talha, M., Bahoura, M., and Zairi, H. (2019). FPGA-based system for
heart rate monitoring. IET Circuits, Devices \& Syst. 13, 771–782. doi:10.1049/iet-cds.2018.
5204

Merdjanovska, E., and Rashkovska, A. (2022). Comprehensive survey of computational
ECG analysis: Databases, methods and applications. Expert Syst. Appl. 203, 117206. doi:10.
1016/j.eswa.2022.117206

Murat, F., Yildirim, O., Talo, M., Demir, Y., Tan, R.-S., Ciaccio, E. J., et al. (2021).
Exploring deep features and ECG attributes to detect cardiac rhythm classes. Knowledge-
Based Syst. 232, 107473. doi:10.1016/j.knosys.2021.107473

Nagel, M., Fournarakis, M., Amjad, R. A., Bondarenko, Y., van Baalen, M., and
Blankevoort, T. (2021). A white paper on neural network quantization. CoRR abs/
2106.08295. Available at: https://arxiv.org/abs/2106.08295.

Oualline, S. (2003). Practical C++ programming. O’Reilly Media, Inc.

Pan, J., and Tompkins, W. J. (1985). A real-time QRS detection algorithm. IEEE Trans.
Biomed. Eng. BME- 32, 230–236. doi:10.1109/TBME.1985.325532

Panigrahy, D., Rakshit, M., and Sahu, P. K. (2015). FPGA implementation of heart rate
monitoring system. J. Med. Syst. 40, 49. doi:10.1007/s10916-015-0410-4

Ran, S., Yang, X., Liu, M., Zhang, Y., Cheng, C., Zhu, H., et al. (2022). Homecare-
oriented ECG diagnosis with large-scale deep neural network for continuous monitoring
on embedded devices. IEEE Trans. Instrum. Meas. 71, 1–13. doi:10.1109/TIM.2022.
3147328

Raza, A., Tran, K. P., Koehl, L., and Li, S. (2022). Designing ECG monitoring healthcare
system with federated transfer learning and explainable AI. Knowledge-Based Syst. 236,
107763. doi:10.1016/j.knosys.2021.107763

Seneviratne, S., Hu, Y., Nguyen, T., Lan, G., Khalifa, S., Thilakarathna, K., et al. (2017). A
survey of wearable devices and challenges. IEEE Commun. Surv. Tutorials 19, 2573–2620.
doi:10.1109/COMST.2017.2731979

Srivastava, R., Kumar, B., Alenezi, F., Alhudhaif, A., Althubiti, S. A., and Polat, K. (2022).
Automatic arrhythmia detection based on the probabilistic neural network with FPGA
implementation. Math. Probl. Eng. 2022, 1–11. doi:10.1155/2022/7564036

Wang, X., Zhu, Y., Ha, Y., Qiu, M., and Huang, T. (2017). An FPGA-based cloud system
for massive ECG data analysis. IEEE Trans. Circuits Syst. II Express Briefs 64, 309–313.
doi:10.1109/TCSII.2016.2556861

Wei, L., Liu, D., Lu, J., Zhu, L., and Cheng, X. (2021). “A low-cost hardware architecture
of convolutional neural network for ECG classification,” in 2021 9th International
Symposium on Next Generation Electronics (ISNE), 1–4. doi:10.1109/ISNE48910.2021.
9493657

Wess, M., Sai Manoj, P. D., and Jantsch, A. (2017). “Neural network based ECG anomaly
detection on FPGA and trade-off analysis,” in 2017 IEEE International Symposium on
Circuits and Systems (ISCAS), 1. 4. doi:10.1109/ISCAS.2017.8050805

Who (2021). Cardiovascular diseases (CVDs). Available at: https://www.who.int/en/
news-room/fact-sheets/detail/cardiovascular-diseases-(cvds (Accessed January 23, 2023).

Yildirim, O., Talo, M., Ciaccio, E. J., Tan, R. S., and Acharya, U. R. (2020). Accurate deep
neural networkmodel to detect cardiac arrhythmia onmore than 10,000 individual subject
ECG records. Comput. Methods Programs Biomed. 197, 105740. doi:10.1016/j.cmpb.2020.
105740

Zairi, H., Kedir Talha, M., Meddah, K., and Ould Slimane, S. (2020). FPGA-based system
for artificial neural network arrhythmia classification. Neural comput. Appl. 32,
4105–4120. doi:10.1007/s00521-019-04081-4

Zheng, J., Zhang, J., Danioko, S., Yao, H., Guo, H., and Rakovski, C. (2020). A 12-lead
electrocardiogram database for arrhythmia research covering more than 10,000 patients.
Sci. Data 7, 48. doi:10.1038/s41597-020-0386-x

Frontiers in Physiology frontiersin.org16

Liu et al. 10.3389/fphys.2023.1079503

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://doi.org/10.1109/ICIEA.2016.7603800
https://doi.org/10.1109/RISE.2017.8378200
https://doi.org/10.1016/j.ins.2021.06.022
https://doi.org/10.1016/j.ins.2021.06.022
https://doi.org/10.1109/JETCAS.2020.3014503
https://doi.org/10.3390/s20144003
https://doi.org/10.1016/j.cmpb.2015.12.008
https://doi.org/10.1016/j.bbe.2021.02.007
https://doi.org/10.1109/TCAD.2018.2857078
https://doi.org/10.1145/2821508
https://doi.org/10.1109/CIC.2002.1166717
https://doi.org/10.1109/CIC.2002.1166717
https://doi.org/10.1109/TBME.2018.2871638
https://doi.org/10.1109/TBME.2018.2871638
https://doi.org/10.1109/BIBE.2017.00-12
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.knosys.2021.107187
https://doi.org/10.1109/TCSI.2021.3072622
https://doi.org/10.1109/TVLSI.2018.2815603
https://doi.org/10.3758/s13428-020-01516-y
https://doi.org/10.1049/iet-cds.2018.5204
https://doi.org/10.1049/iet-cds.2018.5204
https://doi.org/10.1016/j.eswa.2022.117206
https://doi.org/10.1016/j.eswa.2022.117206
https://doi.org/10.1016/j.knosys.2021.107473
https://arxiv.org/abs/2106.08295
https://doi.org/10.1109/TBME.1985.325532
https://doi.org/10.1007/s10916-015-0410-4
https://doi.org/10.1109/TIM.2022.3147328
https://doi.org/10.1109/TIM.2022.3147328
https://doi.org/10.1016/j.knosys.2021.107763
https://doi.org/10.1109/COMST.2017.2731979
https://doi.org/10.1155/2022/7564036
https://doi.org/10.1109/TCSII.2016.2556861
https://doi.org/10.1109/ISNE48910.2021.9493657
https://doi.org/10.1109/ISNE48910.2021.9493657
https://doi.org/10.1109/ISCAS.2017.8050805
https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds
https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds
https://doi.org/10.1016/j.cmpb.2020.105740
https://doi.org/10.1016/j.cmpb.2020.105740
https://doi.org/10.1007/s00521-019-04081-4
https://doi.org/10.1038/s41597-020-0386-x
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1079503

	A fully-mapped and energy-efficient FPGA accelerator for dual-function AI-based analysis of ECG
	1 Introduction
	2 Related works
	3 Materials and methods
	3.1 Chapman ECG database
	3.2 Algorithms
	3.2.1 1-D CNN
	3.2.2 Heart rate estimator

	3.3 Hardware design
	3.3.1 Model quantization
	3.3.2 Fully-mapped 1-D CNN
	3.3.3 Fully-mapped self-adaptive heart rate estimator

	4 Results
	4.1 1-D CNN training and test
	4.2 Heart rate estimator test
	4.3 Hardware acceleration

	5 Discussion
	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

