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Photoplethysmography (PPG) signal is potentially suitable in atrial fibrillation (AF)
detection for its convenience in use and similarity in physiological origin to
electrocardiogram (ECG). There are a few preceding studies that have shown
the possibility of using the peak-to-peak interval of the PPG signal (PPIp) in AF
detection. However, as a generalized model, the accuracy of an AF detector should
be pursued on the one hand; on the other hand, its generalizability should be
paid attention to in view of the individual differences in PPG manifestation of even
the same arrhythmia and the existence of sub-types. Moreover, a binary classifier
for atrial fibrillation and normal sinus rhythm is not convincing enough for the
similarity between AF and ectopic beats. In this study, we project the atrial fibrillation
detection as a multiple-class classification and try to propose a training pipeline
that is advantageous both to the accuracy and generalizability of the classifier by
designing and determining the configurable options of the pipeline, in terms of
input format, deep learningmodel (with hyperparameter optimization), and scheme
of transfer learning.With a rigorous comparison of the possible combinations of the
configurable components in the pipeline, we confirmed that first-order difference
of heartbeat sequence as the input format, a 2-layer CNN–1-layer Transformer
hybridR model as the learning model and the whole model fine-tuning as the
implementing scheme of transfer learning is the best combination for the pipeline
(F1 value: 0.80, overall accuracy: 0.87)R.

KEYWORDS

atrial fibrillation, ectopic beats, normal sinus rhythm, deep learning, artificial neural
network, model generalizability

1 Introduction

Although the symptoms of atrial fibrillation (AF) have clinical definitions and
criteria, they can go unnoticed or undiagnosed due to their subtle symptoms. AF
has become more prevalent in the past decade with a 3% prevalence in the adult
population (Chugh et al., 2014). Since the resistance to the restoration and maintenance
of sinus rhythm becomes higher as AF progresses from paroxysmal to long-standing
persistence, early diagnosis and intervention are paramount (Heijman et al., 2018). In
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practice, AF can be accurately diagnosed with electrocardiogram
(ECG) waveforms based on the invisible p-wave and baseline
wandering (Hindricks et al., 2021). The procedure has been
extended to personal care using single-lead ECG (Clifford et al.,
2017).

Other than the morphological-based approach, it has been
shown that the heart rate variability (HRV) extracted from the
well-known R–R interval of ECG can be used in arrhythmia
identification (Christini et al., 2001;Chen et al., 2021a).With an origin
similar to ECG, the plethysmograph reflects the pulsation in arterial
vessel/capillary. Given its physiological relation with the ECG
signal, the pulse rate variability extracted from a plethysmograph is
regarded as a possible surrogate of HRV in arrhythmia detection.
The past few years have seen a few research works dedicated to
arrhythmia detection based on the Photoplethysmography (PPG)
signal (Bashar et al., 2019;Ramesh et al., 2021). For example, Bashar
et al. extracted clear PPG episodes, from which the root mean square
of successive differences (RMSSDs) and sample entropy were then
extracted and used for classifyingAF, ectopic arrhythmias, and normal
sinus rhythm. Their method achieved 97% accuracy in AF vs. non-AF
classification (Bashar et al., 2019). However, the individual difference
in machine learning application to biomedical engineering is further
magnified by the scarcity of PPG data. Therefore, while considering
the natural relation between ECG and PPG signals, transferring
the detection models built on the ECG signal to a new one built
on the PPG signal seems plausible and indispensable for the time
being.

In this regard, Ramesh et al. have tried to modify the ECG-
trained model to a PPG-trained one by the transfer-learning scheme
(Ramesh et al., 2021). Admittedly, the PPG signal is more vulnerable
to individual differences and external influences. Skin color and
blood perfusion influence the signal-to-noise ratio. Meanwhile, subtle
movement of the measuring site can also distort the morphology
of the PPG signal significantly. To this end, a transfer scheme that
transfers the model built on a peak-to-peak interval (PPI) of ECG
(PPIe) to a new model built on the PPI of PPG (PPIp) seems more
feasible and robust than the transfer scheme based on waveform
morphology.

Based on the aforementioned presumption and prerequisite, in
this research, domain knowledge is integrated into the training
pipeline to boost the performance of an arrhythmia detection
model with a PPG signal and to strengthen its generalizability.
Specifically, in view of the small amount of the PPG signal available,
a low-dimensional input extracted from the PPIp and a lightweight
deep learning model are necessary for mitigating the overfitting.
Moreover, the QRS complex of arrhythmias may not necessarily
be seen in the PPG signal even in a clear signal. As a result, the
relevant features, engineered ones or data-driven ones, of PPIp are
somewhat different from those of the PPIe.Therefore, the classification
model and the transfer scheme need to be carefully designed and
experimentally validated. This study, to the best of the authors’
knowledge, is the first that focuses on improving the performance
and generalizability of the arrhythmia detection model based on the
PPG signal by optimizing a training pipeline that is configurable
in an input format, learning models, and transfer scheme. With
standard pre-processing and a wide spectrum of deep learning
models from basic to sophisticated ones, this study could provide
a reliable training framework for robust AF detection with a PPG

signal. We summarize the main contributions of this paper as the
following:

• Proposal of a configurable training pipeline: we propose the
pipeline by integrating the domain knowledge in physiology and
machine learning;
• Construction of a lightweight CNN–Transformer hybrid model:

we proposed a hybridmodel that has not yet been tried to facilitate
the model learning from both the localized segment and global
context;
• Comprehensive comparison for the configurable components in

the pipeline: a comparison of the 54 combinations in regard
to the configurable options has been drawn to affirm the
best combination that is beneficial for model performance and
generalizability.

2 Methods

In this section, the pre-processing of ECG and PPG signals and the
configurable components of the training pipeline including the input
format, the selected deep learning models, and the transfer scheme
are introduced as the main content. Later, the visualization of latent
features in deep learning models and training and test processes are
introduced concisely.

2.1 Datasets

2.1.1 ECG datasets
PPIe samples are collected from two ECG datasets in PhysioNet

(Goldberger et al., 2000): the MIT-BIH Arrhythmia Database (MIT-
DB) and the Long-Term AF Database (LtAF-DB). The MIT-DB
contains the excerpts of two-channel ambulatory ECGs from 47
subjects studied by the BIH Arrhythmia Laboratory (Moody and
Mark, 2001). The LtAF-DB contains 84 long-term ECG recordings
of subjects with paroxysmal or sustained AF, and the duration of the
records is typically 24–25 h (Petrutiu et al., 2007).

From these two databases, normal sinus rhythm (NSR) samples
of 30 s are extracted from episodes with normal annotations; AF
samples are extracted from excerpts of AF rhythms. As frequent
ectopic contractions would be recognized as AF due to the similarity
in feature space (Chong et al., 2015), ectopic (PVC/PAC) samples are
also extracted from episodes with normal and PVC/PAC annotations.

2.1.2 PPG datasets
As for the PPG signal with arrhythmia annotation, the UMMC

Simband Dataset (UMMC-DB) is used. Specifically, the UMMC-DB
contains simultaneous ECG and PPG records of 41 patients with
cardiac arrhythmia (AF and PAC/PVC). The records are segmented
into 30-s annotated samples.Table 1 shows the statistics of the subjects
and samples extracted from each dataset.

2.2 Pipeline

2.2.1 Pre-processing of datasets
Based on the presumption that model transfer learning from

ECG to PPG boosts the performance of AF detection using the
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TABLE 1 Statistics of subject numbers and sample numbers of the datasets
used in this research.

Dataset # Subject # NSR # AF # Ectopic

LtAF 84 52407 50890 41263

MIT 47 798 68 1097

UMMC 37 192 54 42

PPG signal, PPIe and PPIp are used as the source information of
classification models. R peaks are picked out with the modified
version of the Pan–Tompkins algorithm, used in a preceding study
(Datta et al., 2017). For the PPG dataset, raw PPG samples were
filtered with a sixth-order Butterworth filter with 0.5 Hz and 5 Hz
cutoffs. Later, the peak detection method designed by Elgendi
(2013) was used to generate PPIp of each sample. The PPIe and
PPIp sequences were then converted to integral heart rate (HR)
sequences.

2.2.2 Model input
Differences in HR sequence between heartbeats are used as

the input of the selected models that will be introduced later.
Physiologically speaking, the differences in HR have been used to
characterize pathological conditions of the heart for being able to
access the non-linear dynamics of the beat-to-beat interval, and
its effectiveness in characterizing arrhythmia has been validated by
preceding research (Zhang et al., 2015;Park et al., 2009). The reason
for choosing the difference inHR as the input also lies in that temporal
information that may be important in classification is still available
in this form, while the sample-wise statistics wipes out all temporal
information. There are three types of HR differences deemed to be
suitable here.

• input1: first-order differences, which consist of the difference in
HR between the current heartbeat and its adjacent heartbeats
(two-dimensional);
• input2: first-order differences and the current HR (three-

dimensional);
• input3: first-order differences and second-order differences,

which use theHRof the same three consecutive heartbeats as used
in the first-order difference (three-dimensional).

2.2.3 Models
In addition to the recurrent neural network (RNN), which is

tailored for sequential learning (Sak et al., 2014), the convolutional
neural network (CNN) is also appropriate in PPI-based feature
extraction because a localized pattern in heartbeat sequence is
important in arrhythmia recognition (Olier et al., 2021). Moreover,
the attention-basedmodel, e.g., theTransformer (Vaswani et al., 2017),
has reached state-of-the-art (SOTA) performance in a variety of fields
of sequential data (Zhao et al., 2020;Chen et al., 2021b). Therefore,
Transformer and the hybrid variant were also adopted. In this paper,
we recap the theoretical part of these three layers as follows:

LSTM layer: LSTM has an input x(t) which can be the output of a
CNN or the input sequence directly. h (t− 1) and c (t− 1) are the inputs
from the previous time step. o(t) is the output of the LSTM for this time
step. The LSTM also generates the c(t) and h(t) for the consumption of

the next time step.

ft = σg (W f × xt +U f × ht−1 + b f) , (1)

it = σg (Wi × xt +Ui × ht−1 + bi) , (2)

ot = σg (Wo × xt +Uo × ht−1 + bo) , (3)

c
′

t = σc (Wc × xt +Uc × ht−1 + bc) , (4)

ct = ft ⋅ ct− 1+ it ⋅ c
′

t , (5)

ht = ot ⋅ σ(ct) ,ct, (6)

where ft , it , ot , ct , and ht are the forget gate, input gate, output gate, cell
state, and hidden state, respectively.

CNN layer:TheCNN layer extracts the localized information from
the 1-day/2-day data by implementing the 1-day/2-day convolution
throughout the sequence.

s [t] = (x ⋆ wcov) [t] =
a=∞

∑
a=−∞

x [a]wcov [a+ t] , (7)

where s [t] denotes the feature map that is generated by the kernel
mapping wcov of the CNN layer.

Transformer: Recently, the Transformer, which is a full attention-
based model, reaches SOTA in a variety of computational tasks.
The attention mechanism pays greater attention to parallelly seeking
the salient factors, and it is competent for sequence modeling of
dependencies without considering the information transfer of time
step. Here, the Transformer is introduced as the backbone of our
framework that aims to summarize the feature relevance for a specific
problem. For each sample, a preparation that is to append an extra
class token SCls to the front of each PPI sample is required. Because
the Transformer model practically does not derive a new latent feature
for the downstream task, this SCls is generated as the latent variable.
This token absorbs the global context of features with the attention
calculation for the input. Afterward, it is used to generate downstream
decision rules for heartbeat rhythm recognition.

The input (X) of the Transformer can be formulated as follows:

X = Concat(SCls,E ⋅ Sseq) + fP (Epos) , (8)

whereE is a patch-wise linear projection that expands the feature space
of input to a higher dimension. Before input to theTransformermodel,
a parameterizing operation of positioning (Epos) of the input features
is needed for all elements of the sequence.

Attention mechanism: The attention mechanism associates the
individual and maps the relevance to the ground truth y with three
components: the query (Q), key (K), and value (V) matrices, which
are the matrix of linear projections produced by the input X. The
matrix Q represents a query that comprises a query sequence with
basic units.Moreover, the output ofK ⋅Q produces relevance among all
elements of the sequence, and the function Softmax is used to calculate
weights of this relevance. The resultant relevance values are further
used to calculate V. The aforementioned process can be summarized
as follows:

ScoreAttention = Softmax(QK
T

√d
) ⋅V, (9)
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FIGURE 1
Structure of the six selected model frameworks. The number of layers whose name is followed by an asterisk is configurable. The values, e.g., # head of the
Transformer, which are shown in layers, are fixed.

where layer √d is equal to a normalization function that is applied to
each Q–K calculation step.

Multi-head attention: Similar to the way that a CNN increases the
number of filters to enrich the expressiveness of the feature space,
the attention mechanism can be extended to multi-head attention
(ZMhead) to prevent losing the manifold expression of the features. At
the beginning of each building block, h (the number of heads) sets
of Q and K are generated and mapped by the linear projection. Then,
the self-attention implements h times in parallel to calculate relevance
representations, where each operation is called a “head.” Eventually, a
linear layer projects their concatenated outputs and summarizes the
attention result. The multi-head attention is defined as follows:

ZMhead (Q,K,V) = Concatenate(head1,head2,…,headh)W
o, (10)

where Wo ∈ ℝh⋅D×(150+1) is a weight matrix. It is used for head-wise
attention, while a linear projection is applied after the output of the
multi-head attention for each round. Since this work aims to build
a correspondence between the input PPG sample to AF and other
cardiac rhythms, the final output of the Transformer is the classified

possibilities of the AF, PVC, and NSR.

y
′
= Softmax(β (⋅)(S

′

Cls)) , (11)

where y′ ∈ AF, PVC, NSR and S
′

Cls are also normalized before the final
classification layer, where β(⋅) denotes a LayerNorm operator.

Based on the aforementioned basic layers, six deep learning
models, which are deemed appropriate, have been constructed. They
are as follows:

• Long–short-term memory (LSTM) model (m1);
• CNN model (m2) and its variants: CNN-based inception model

(m3) and CNN–LSTM hybrid model (m4);
• Transformer model (m5) and its variant (CNN–Transformer)

hybrid model (m6).

As shown in Figure 1, optimization of the model structure, in terms
of hyperparameters such as layer number and learning rate of the
optimizer, was conducted. Hyperparameters, for which grid searching
was conducted, are summarized in Table 2.
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TABLE 2 Hyperparameters of grid search. The learning rate and the weight
decay are used in the optimizer (Adam) initialization, and the drop rate (last
hidden layer only) is used in themodel regularization. The dense layer is used
to rearrange and project the latent features to generalize the decision rule,
and the value inside the parenthesis shows the dimension of the layer.

Hyperparameter PPIe PPIp

# CNN layer [1:1:5] [1:1:5]

# LSTM layer [1:1:5] [1:1:5]

# Transformer layer [1:1:5] [1:1:5]

# Dense layer 1 (50) 1 (50)

Epoch 5 50

Learning rate 0.001 0.001

Weight decay 0.0 0.0

Dropout rate 0.0 0.2

2.2.4 Transfer learning schemes
Generally, as the layers of a deep learning model goes deeper, its

neurons become more specific to the problem. However, as we have
pointed out in Introduction, the PPIe is somewhat different from the
PPIp in case of arrhythmia. A suitable way to implement transfer
learning should be discussed. In this study, two transfer schemes, 1)
transfer learning of the last layer (TS1) and 2) transfer learning of all
the deep layers (TS2) were set up. Basically, the last one or two layers
of a deep learning model, which are typically dense layers, are used to
rearrange the latent features extracted by the upstream layers (feature
extraction layers) and to generate the decision rule for classification
problems. The TS1 implemented a transfer learning in the last layer
with the presumption that the way of feature extraction learned from
the ECG signal is appropriate for the PPG signal. In contrast, TS2
presumes that the feature extraction should be further optimized.
Consequently, the wholemodel, including the feature extraction layers
and the decision rule generating layers, was further optimized for the
PPG signal.

2.2.5 Training and test
As shown in Table 1, moderate data imbalance appears in the

LtAF-DB and UMMC-DB, whereas severe imbalance appears in
the MIT-DB. Therefore, the LtAF-DB and MIT-DB were used as
the training and validation datasets, respectively, in the training
process with PPIe data, during which weighted random sampling
(Paszke et al., 2019) is used tomitigate the influence of data imbalance
in the LtAF-DB. To strengthen the generalizability of amodel, it should
be exposed to the influence of individual differences. Therefore, leave-
one-subject-out (loso) cross-validation is taken in the fine-tuning
process with PPIp data. The overall process is shown in Figure 2.

The F1 score, which is the harmonic mean of recall and precision,
considers the trade-off between the false-positive and false-negative.
Therefore, it is suitable for evaluating the model performance with
imbalanced data. In this research, the F1 score is used as the primary
metric of model evaluation, along with which other metrics in the
confusion matrix will also be used to compare the best model in each
transfer scheme (TS1, TS2, and baseline (no-transfer)).

2.2.6 Visualization
A clear separation between classes in the feature space will benefit

the generalizability of amodel bymitigating the influence of overfitting

of the decision rule (Amjad and Geiger, 2020). For the best model,
the output of the neurons in the middle (for example, the last CNN
layer in the CNN–Transformer hybrid model) and last layers were
extracted from both the pre-trained and fine-tuned models. With t-
SNE, we implemented dimension reduction of the output to confirm
the similarity of sample distribution and concentration in feature
spaces of PPIe and PPIp. It could support our presumption that
transfer learning benefits the performance and generalizability of the
AF detection model based on the PPIp.

3 Results

As introduced in the previous section, the model trained with
the LtAF-DB is validated with the MIT-DB; the pre-trained model
was then fine-tuned with the UMMC-DB and tested by loso cross-
validation. The results of validation with the loso test are shown
side-by-side in Table 3. The three-column blocks for each transfer
scheme are summarized alongside the pre-train column block. The
three columns in each block correspond to the best results with input1,
input2, and input3, respectively. The three items of each entry in
the table from top to bottom refer to the F1 value, accuracy, and
hyperparameters (layer number(s)), respectively. Intriguingly, the best
hyperparameters vary between pre-trained and fine-tuning models.
For example, the model (m6) with PPIp requires two CNN layers,
while that with PPIe requires just one. As the bold values in each
block show the best model input combination, TS2 attains the best
performance (F1 = 0.80) with the m4 and m6 models. With the same
F1 values and similar overall accuracy values, the m6 model is chosen
over the m4 model because the m6 model has a higher precision value
(0.79) than that of the m4 model (0.75), while the recall values are
the same as 0.90. This result also implies the ablation of second-order
differences does not significantly change the accuracy. Therefore, we
choose input1 as the best input.

The performance of models with PPIe data is generally better than
the ones using PPIp data even when fine-tuning was implemented.
It supports our presumption that the clear differences among the
targeted arrhythmia and NSR rhythm in PPIe patterns could become
faint in PPIp due to the uncertainty in arrhythmia manifestation.

Intriguingly, there is no evident performance improvement after
pre-training the model using the TS1 scheme (TS1 vs. baseline).
However, the TS2 scheme obtained significantly better results for
almost all models than the TS1 scheme and baseline. For each
scheme, the performance of the best model is further displayed
by its confusion matrix, as shown in Figure 3. Along with the
accuracy, it can be seen that the TS2 scheme achieves the best
performance with an accuracy of 0.87. As anticipated, ectopic
arrhythmia behaves as a confounding factor in AF detection. For
example, the inconsistency of beat detection in ECG and PPGhappens
in situations such as trigeminy. Consequently, the beat that cannot be
picked out in PPG blurs the distinction between the AF and ectopic
type.

Figure 4 shows the visualization of the distribution of latent
features in the CNN–Transformer hybrid model before fine-tuning
with PPIp data. Without the fine-tuning step, the PPIp samples are
transformed in exactly the same way as the PPIe samples, by which
the PPIp samples of the three heartbeat types can also be organized
into dense regions. For both the cases of PPIe (lower row) and PPIp
(upper row), as the layer goes deeper, the sample distribution of each
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FIGURE 2
Illustration of the training pipeline for a PPIp-based arrhythmia detection model. The configurable components are shown with their options below the
corresponding component.

TABLE 3 Best models with different inputs. The three items of each entry in the table from top to bottom refer to the F1 value, accuracy, and hyperparameters (layer
number(s)), respectively. Notably, the best model with PPIe and that with PPIpmay differ in terms of the number of layers. For the hybrid type, the x–y denotes the
number of the former and latter main layers, respectively. m1, LSTMmodel; m2, CNNmodel; m3, CNN-based inceptionmodel; m4, CNN–LSTM hybridmodel; m5,
Transformermodel; andm6, CNN–Transformer hybrid model.

Model PPIe PPIp

Pre-train Baseline TS1 TS2

m1

0.78 0.77 0.77 0.63 0.55 0.64 0.69 0.72 0.67 0.78 0.72 0.76

0.87 0.85 0.87 0.73 0.69 0.74 0.80 0.80 0.78 0.88 0.85 0.86

3 3 2 1 1 5 3 2 2 5 4 5

m2

0.80 0.81 0.78 0.69 0.65 0.66 0.73 0.68 0.73 0.78 0.71 0.79

0.89 0.88 0.88 0.80 0.77 0.78 0.82 0.80 0.83 0.86 0.84 0.87

2 3 2 3 4 3 3 5 5 3 5 3

m3

0.79 0.77 0.83 0.68 0.68 0.68 0.72 0.72 0.76 0.76 0.67 0.74

0.88 0.86 0.90 0.80 0.79 0.78 0.81 0.81 0.82 0.86 0.78 0.83

5 5 2 5 3 2 3 5 4 3 2 2

m4

0.81 0.81 0.79 0.70 0.70 0.70 0.74 0.71 0.74 0.79 0.75 0.80

0.89 0.87 0.88 0.77 0.80 0.79 0.81 0.77 0.82 0.87 0.85 0.88

2–1 1–5 4–1 1–1 2–5 2–1 3–1 3–2 5–5 3–3 3–3 2–2

m5

0.81 0.74 0.80 0.61 0.56 0.58 0.68 0.71 0.66 0.78 0.66 0.68

0.88 0.85 0.88 0.75 0.64 0.73 0.78 0.77 0.76 0.85 0.83 0.80

3 1 2 4 1 2 3 3 5 5 3 2

m6

0.82 0.81 0.80 0.67 0.66 0.70 0.75 0.77 0.72 0.80 0.75 0.78

0.90 0.89 0.88 0.78 0.78 0.82 0.84 0.83 0.80 0.87 0.85 0.87

1–1 3–2 4–1 3–1 5–1 2–3 4–4 2–1 4–2 2–1 2–1 3–1

class becomes more separated generally. This observation suggests the
availability of the pre-trained model with PPIe data in constructing
the model with PPIp samples. However, although being mitigated, the
problem that a portion of ectopic samples overlaps with AF samples
still exists.

The latent features of the best model of each transfer scheme are
further visualized in Figure 5 using the data from nine subjects in
the UMMC-DB. In contrast with the mix-up of the AF and ectopic

samples in baseline and TS1 situations, the AF samples are generally
well separated from samples of the other types in TS2. In addition, the
inconsistency in the distribution of the training and testing samples
was confirmed. For example, for TS2, a couple of ectopic samples of
the PPIp testR set are found close to the AF samples of the trainingR

set. This observation is prevalent for physiological signals and may be
caused by individual differences or similarities between the ectopic
and AF episodes.
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FIGURE 3
Confusion matrices of the three transfer schemes. Matrices from left to right indicate the results of the best model corresponding to baseline (m4)R, TS1
(m6)R, and TS2 (m6), respectively.

FIGURE 4
Distribution of the latent features in model (m6) layers after dimension reduction with t-SNE. The upper row indicates latent features in layers using PPIp,
and the lower row shows the latent features using PPIe. The first two columns are the features of the first and the last CNN layers, respectively, while the
third column is the features of the last transformer layer.

FIGURE 5
Distribution of the latent features in the last layer of the best model of each transfer scheme. Input1 is used here.
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4 Discussion

4.1 Physiological perspective

Features from other domains, such as the entropy domain, have
been shown to be sensitive to different heart rhythms (Christini et al.,
2001). Chen et al. have shown that a variant of the multiscale entropy
provides informative features for heartbeat rhythm classification
(Chen et al., 2021a). However, after the preliminary validation stage
using the entropy features for this problem, we confirmed that due to
the short length of the PPG sequence (30 s), very limited features, only
the first two or three scales, can be computed; they are not sufficient
for the current problem.

The first-order difference of the HR sequence attains the
best performance in our comparison. It is in line with the
preceding studies that show good classification results using the same
input (Ramesh et al., 2021). However, we have also confirmed the
uncertainty in using this input, e.g., the Poincare plot, to discriminate
the rhythm in both PPIe and PPIp. Specifically, the clear difference
between AF and ectopic beats in the pattern of the Poincare plot
(Han et al., 2020) does not necessarily exist. The uncertainty can also
be confirmed from the results of the models with a shallow network
(Li et al., 2020), e.g., 1-layer LSTM and 1-layer CNN trained without
transfer learning.These simplemodels are sufficient to conclude a rule
of thumb for arrhythmia classification. However, these models did not
attain results comparable with those of the other constructed models.
Given the aforementioned situation, this study is conducted to look
for a more capable and robust pipeline for arrhythmia detection using
a PPG signal.

As we can see from Figure 4, there is a clear separation between
NSR and AF in both PPIe and PPIp. However, when the ectopic ones
are mixed in, the separation between both NSR and AF is vague.
This phenomenon is not only confined to the input format in our
study, other research with information entropy as its input has also
reported a similar observation (Pereira et al., 2020; Chen et al., 2021a).
The algorithm used in this study for ECG peak detection is well-
established, and the peak detection has been manually checked by
a technician. On the other hand, although the algorithm of peak
detection of PPG still needs improvement, the systolic PPG peaks
were picked out by a peak detection method (Elgendi, 2013) that is
broadly accepted for the PPG signal; thereafter, they got a manual
check with reference to the paired ECG signal. Piecing together all
the aforementioned information, it can be concluded that erroneous
peak detection is not the main reason for the overlapping of sample
distribution in the latent feature space, which we further discuss.

4.2 Machine learning perspective

Understandably, uncertainty is even stronger in the biomedical
engineering domain and it exists in almost all aspects, from the
anatomical/physiological differences to the differences in devices, the
differences in data pre-processing, etc. Specific to arrhythmia detection
using a PPG signal, the automated peak detection algorithm also
introduces uncertainty via the erroneously detected peaks. Currently,
the peak detection for the PPG signal is still being improved; therefore,
instead of removing the erroneous peaks, they are retained in the
training/testing dataset. Theoretically, they influence the training
process from feature extraction to decision rule generation.

Since the model is trained substantially on the PPIe dataset, it
can be seen from Figure 4 that the distribution of PPIp samples
feature space is generally similar to the distribution in PPIe feature
space. Moreover, the gradual transformation of the features along the
deep layers drives the samples of the same class to distribute closer
together. This observation is a visual confirmation of our presumption
that the transfer learning from PPIe to PPIp is beneficial for the
general performance of the classification model based on the PPG
signal. Other than the PPI sequence, preceding research has also
tried using PPG morphological information in arrhythmia detection
(Väliaho et al., 2021). However, in this way, a domain adaption model
(Chen et al., 2022), for which a great amount of ECG–PPG paired
samples are demanded, is needed in order to take in the information
from PPIe.

In this study, there are three major layers used in the selected
models, the first two of which are the LSTM layer and CNN layer. The
LSTM layer itself can learn to combine the information of each element
in the sequence; therefore, it was widely used in sequence learning
before the advent of the Transformer. The CNN layer is theoretically
close to the convolution in signal processing and is designed to extract
the feature in a segment. Given that the short segment of beats
such as trigeminy shows a specific pattern, the CNN layer is used
as the first layer(s) of the hybrid models. The third kind of layer,
the attention layer in the Transformer model tries to find the global
element-wise relation in parallel, in contradiction to the sequential
combination of information taken by LSTM. Therefore, while the
important information embedded in elements being far apart from
each other may become faint in LSTM, it can be captured by attention.
In considering that the CNN–Transformer hybrid model gets the best
results with the TS2 scheme, it implies that the PPIe samples provide
additional information in using the overall context of PPI sequence in
classification.

Again, this study is not going to draw a direct comparison of the
model performance with other papers because the differences in peak
detection, sample inclusion criteria, etc., could have a considerable
impact on the results. As discussed earlier, we specify the problem to
strengthen the generalizability of the arrhythmia classifier using the
PPG signal by answering the following questions: 1) Is the transfer
learning from a model that uses the ECG signal to another model
that uses the PPG signal necessary? And 2) how to implement
transfer learning? To this end, a rigorous comparison of the possible
combinations of configurable components in the training pipeline was
conducted (Figure 2).

According to the universality of the neural networks, if the
distributions of the training and test sets are highly similar, a
shallow network with one or two dense layers can sufficiently
approximate the decision function to summarize a perfect decision
rule (Bishop, 2006). However, as can be seen in the performance
of models, no model can output a very accurate result even when
the sample distributions of each type are separated. The sample
distribution shown in Figure 5 may explain this disparity. For
example, in the m6 model (right sub-figure), some test samples
of the ectopic type disperse in the region occupied majorly by
AF samples (lower right corner). These ectopic samples will be
understandably recognized as AF samples. A similar situation appears
in the ectopic region, where NSR samples show up. Therefore, the
inconsistency between the sample distributions of the training and
test sets could be the main reason for the imperfect performance of all
models.
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Theobservation of disparity betweenTS1 andTS2 is in accordance
with the observation of PPIe and PPIp in arrhythmias. Therefore,
PPIe and PPIp may need different filters for feature extraction, i.e.,
different CNN layers at the very beginning. On the other hand, using
the parameters in the pre-trained model, each model can find a better
local optimum than the baseline situation. This point is also reflected
inTable 3, where TS2 is better than the baseline situation in allmodels.
As discussed earlier, the pre-training with PPIe provides a better
initialization on one hand. On the other hand, it also acts as a restraint
that keeps the model from overfitting for external data. Therefore, the
transfer scheme seems necessary in training an arrhythmia classifier
based on the PPG signal evenwhen the PPGdata got fast accumulated.

4.3 Conclusion

In this study, an efficient training pipeline is designed and
developed for training a robust arrhythmic classifier for AF detection
using the PPG signal. The most efficient pipeline is drawn by
determining the configurable components which are the input format,
the deep learning model, and the transfer scheme. The first-order
difference of heartbeat sequence, a 2-layer CNN–1-layer Transformer
hybridR model, and the whole-model fine-tuning turn out to be the
best combination for the pipeline with a 0.80 F1 value and a 0.87
accuracyR. The pipeline is determined by incorporating the standard
pre-processing in the ECG and PPG signals, domain knowledge in
the application of physiological signals, and advanced deep learning
models for feature learning and decision rule drawing. Although the
performance of the classifier may vary with other peak detection
methods for a specific dataset, the proposed pipeline is useful in
training an accurate and robust arrhythmia classifier.
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