
Numerosity as a visual property:
Evidence from two highly
evolutionary distant species

Mercedes Bengochea* and Bassem Hassan*

Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière,
Paris, France

Most animals, from humans to invertebrates, possess an ability to estimate numbers.
This evolutionary advantage facilitates animals’ choice of environments with more
food sources, more conspecifics to increase mating success, and/or reduced
predation risk among others. However, how the brain processes numerical
information remains largely unknown. There are currently two lines of research
interested in how numerosity of visual objects is perceived and analyzed in the brain.
The first argues that numerosity is an advanced cognitive ability processed in high-
order brain areas, while the second proposes that “numbers” are attributes of the
visual scene and thus numerosity is processed in the visual sensory system. Recent
evidence points to a sensory involvement in estimating magnitudes. In this
Perspective, we highlight this evidence in two highly evolutionary distant species:
humans and flies.We also discuss the advantages of studying numerical processing in
fruit flies in order to dissect the neural circuits involved in and required for numerical
processing. Based on experimental manipulation and the fly connectome, we
propose a plausible neural network for number sense in invertebrates.
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Introduction

An understanding of numbers is often interpreted as a distinctly human capacity and
hallmark of our intelligence that, along with language, sets us apart from other animals.
However many if not most animal species possess the ability to rapidly estimate numbers
(Butterworth et al., 2017). Numerical cognition is a fundamental skill that is essential for an
animal’s everyday life. For example, the evolutionary advantage of this skill is to facilitate
animals’ choices of niches with more food, adequate interaction with conspecifics and fewer
competitors thereby avoiding predation risk. Members of all vertebrate classes present
numerical competence (Nieder, 2020). However, vertebrates are not the only ones. It has
been shown that invertebrates are also endowed with numerical skills (Bortot et al., 2021)
demonstrating that large brains are not a prerequisite for numerical cognition.

How numerical information is perceived and processed in the brain is a major question in
the field of cognitive neuroscience. Numerosity is generally interpreted with two different
approaches: as a highly abstract cognitive property or as a high-level visual feature. The first
approach understands that numerosity is a concept that can be referred to by stimuli in different
modalities and presentation modes, concretely or via symbols. Like this, numerical cognition
relies on interactions of distinct functional circuits between multiple brain areas, including
those supporting working memory and quantity processing (Menon, 2016). The second
approach interprets that numerosity is a property computed by one given perceptual
modality, such as the number of objects in a visual image. It has been shown that non-
human animals [see (Nieder, 2020; Bortot et al., 2021; Lorenzi et al., 2021) for reviews] as well as
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newborn humans can instantaneously perceive numerical information
from a scene without needing to count the amount of elements (Izard
et al., 2009), suggesting the existence of a basic numerosity processing.
Similarly, increasing evidence indicates that numerosity itself is
represented and perceived as a visual feature in adult humans
(Burr and Ross, 2008) pointing to an sensory processing of the
numerical information. Accordingly, we recently showed a
requirement for visual neurons in the third optic neuropil of fruit
flies in spontaneous numerical processing, but not higher central brain
areas previously predicted to be involved (Giurfa, 2019). These
neurons connect processing of the retinal output in the optic lobe
with central brain structures suggesting that, similarly to adult
humans- Drosophila melanogaster also encodes visual numerosity
as a sensory feature.

Numerical computation in humans

Humans’ number sense is the ability that allows us to represent
and operate numerical quantities. The prefrontal cortex and the
parietal lobe, specifically the intraparietal sulcus, have long been
studied as the prime sources of numerical competence (Dehaene
et al., 1999; Piazza et al., 2002; Castelli et al., 2006; Piazza et al.,
2007). Examinations of brain-damaged patients and brain imaging
studies have identified regions primarily in the posterior parietal and
frontal lobes as key areas of number processing (Nieder and Dehaene,
2009; Figure 1A). Complementing these findings in humans,

neurophysiological studies in monkeys have deciphered neuronal
principles of numerical competence down to single neurons
(Nieder, 2016). These studies show that numerosity-selective
neurons in the prefrontal cortex and intraparietal sulcus exhibit
maximum responses to the “preferred numerosity” (e.g. a specific
number of items on a visual display) (Nieder et al., 2002). Moreover,
single cell evidence for numerosity spontaneous selectivity were also
shown in other animal models like crows (Wagener et al., 2018) and
neonate domestic chicks (Kobylkov et al., 2022). This last study
suggests that numerosity perception is possibly an inborn feature
of the vertebrate brain.

In contrast, the contribution of subcortical areas is less studied due
to the established concept that numerical cognition is highly abstract
implying the involvement of associative and “higher-order” neural
mechanisms located in the pallial territory of vertebrate animals.
Nevertheless, 48 h old babies were able to discriminate numbers
when the ratio was 3:1 or larger (Izard et al., 2009). This finding
suggests that immature brains are able to detect and respond to
numerosity. This “innate” faculty argues that numerosity could
intuitively be perceived as a basic attribute of hard-wired sensory
brain processes. Accordingly, Burr and Ross (2008) showed that
numerosity is strongly susceptible to visual adaptation. Adult
humans exposed to a given numerosity stimulus (e.g., dense or
sparse dot clouds) for several seconds change the perception of
subsequent stimuli. Observers who adapted to a large number of
dots underestimated the number of dots on the new display, while
observers who had adapted to a small number of dots overestimated

FIGURE 1
(A, B) The scheme illustrates the location of key areas of the human (A) and fruit fly brain (B) involved in numerical codification. (A)Numerical information
is captured by the eye and process in the visual cortex, parietal lobe and prefrontal cortex. (B) Numerical information is captured by the retina (Re) and
processed in the subsequent optic neuropiles (La: Lamina; Me: Medulla, Lo: Lobula and LP: Lobula Plate) to finally reach the central brain where the optic
glomeruli are located. (C) Schematic diagram of neural circuits related to LC11 connectivity from the retina down to the different neuropiles within the
optic lobe. Visual information is captured by the photoreceptors (Ph) in the retina and transferred to L1 neurons in the lamina. The information is transmitted to
the Tm3 neurons in the medulla. In the lobula, LC11 neurons collect information from the Tm3 neurons. The optic glomerulus in the central brain receives
inputs from LC11 neurons where the signals are transmitted to descending neurons leading to visually-guided behavior.
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the number of dots on the new display. This adaptation only occurred
when the test sequence was displayed at the same position as the
adaptor sequence (Burr and Ross, 2008). Therefore, it is possible to
simultaneously adapt different locations of the visual field to high, low
or neutral numerosities (Aagten-Murphy and Burr, 2016). Since
adaptation is a characteristic of sense organs, numbers may be
regarded as a sensory-like attribute. Another study found that
tuning of human neural populations decreased during low and
increased during high numerosity adaptation, indicating that
preferred numerosities were predominantly attracted to the
numerosity of the adapter (Tsouli et al., 2021). Recent reports
showed that it is possible to decode the number of items seen by
the subjects from the fMRI activity patterns in visual cortex areas
(Bulthé et al., 2014; Bulthé et al., 2015; Eger et al., 2015; DeWind et al.,
2019). With the advance in brain imaging technology, Castaldi et al.
(2019) were able to split the fMRI signals into components specific to
numbers and components corresponding to other related visual cues
(e.g., density or size). These findings reveal a sensory extraction
mechanism yielding information on numerosity separable from
other dimensions already at visual stages (V1-V3) and suggest that
the regions along the dorsal stream are most important for explicit
manipulation of numerical quantity (Figure 1A). By using a
computational modeling of human 7T fMRI data, Paul et al. (2022)
recently demonstrated that numerosity estimation in humans could
arise from the visual image representation at the level of primary visual
cortex (V1). Item size and spacing have little effect on the numerical
estimation in the spatial frequency domain, showing that numerosity
itself could be accurately estimated very quickly in the brain. These
studies strongly suggest a sensory processing mechanism capable of
exploiting signals related to visual numerosity in humans.

Numerical computation in fruit flies

Although numerical sensitivity has been shown inmany invertebrates
(Bortot et al., 2021), how the complex processing of numerosity is
integrated within the structures of the brain to permit number-based
visual discrimination remains unknown. This lack of neuronal evidence is
due to the experimental difficulty of studying brain circuits associated
with this cognitive capacity (Giurfa, 2019). The insect brain -although far
from being simple- offers the best chance to understand the circuits
involved in numerical processing at a neuronal level in a brain that is
radically different from a vertebrate one.

Recently, we showed that D. melanogaster can discriminate between
sets of objects based on numerosity [(Bengochea et al., 2022)- preprint,
bioRxiv]. Flies consistently show a spontaneous preference for (i.e., spend
more time near) the larger set of objects, independently of the shape, size
or the overall area of the set. Consistently with other animal models
(Carazo et al., 2009; d’Ettorre et al., 2021), flies use numerical ratio to
determine which set is larger. Importantly, flies -that innately prefer the
larger numerosity- are able to associate the lower numerosity to a reward
and to change their preference accordingly.

The visual system of Drosophila contains approximately
60,000 neurons that are organized in parallel, retinotopically arranged
columns (Borst, 2009). In the visual system, the vertebrate retina and
insect optic lobe sharemany anatomic and functional features in encoding
visual information retinotopically (Sanes and Zipursky, 2010; Borst and
Helmstaedter, 2015). Information tends to flow sequentially through
different layers of neuropil that converge onto assemblies of columnar

neurons in the lobula, the axons of which segregate to project to discrete
optic glomeruli in the central brain (Figure 1B). Particularly, the third
optic neuropil, the lobula, is a key structure in the brain of the fly involved
in processing and extracting behaviorally relevant features from an
animal’s environment. This is a neuropil that comprises many
palisades of lobula columnar neurons (Cajal and Sánchez, 1915).
Many of these LCs neurons have been characterized in great
anatomical detail. For example, the LCs visual projection neurons of
flies, similar to retinal ganglion cells in vertebrates, have been
hypothesized to encode behaviorally relevant local visual objects
dedicated to detection, such as other flies or predators (Strausfeld
et al., 2007; Wu et al., 2016). Particularly, LC11 neurons are required
for small object induced freezing behavior and have been shown to
selectively respond to themovement of small targets in the visual field and
weakly to bar-shaped objects (Keleş and Frye, 2017; Tanaka and Clark,
2020). These cells are key for sensing themovement of nearby conspecifics
in a group and adjusting defensive behavior (Ferreira and Moita, 2020).
We showed that silencing LC11 neurons caused a reduction in the
spontaneous numerical discrimination abilities of flies. The silencing
effect is also ratio dependent, observing the lack of discrimination with
numerical ratio greater or equal to 0.50. Moreover, silencing a different
type of lobula columnar neuron (LC10a) -which like LC11 also responds
to small objects (Ribeiro et al., 2018; Hindmarsh Sten et al., 2021), do not
prevent flies to show a preference for the larger numerosity. Importantly,
silencing a high-order brain area -like the central complex- involved in
visual navigation (Pfeiffer and Homberg, 2013; Seelig and Jayaraman,
2015) leaves the spontaneous numerical preference intact. This suggests
not only some level of specificity for the role of LC11 in numerical
processing, but also the rapid emergence of numerical discrimination in
the visual system at the level of the optic lobes [(Bengochea et al., 2022)-
preprint, bioRxiv].

The study of numerical abilities in invertebrates allows researchers to
explore this cognitive property in animal models that have remarkably
small brains but nonetheless reach cognitive solutions as those discovered
by artificial neural networks. Moreover, models comprising as few as one
(Rapp et al., 2020) or four neurons (Vasas andChittka, 2019) demonstrate
the capability of solving numerical tasks similar to insects. Vasas and
Chittka (2019) developed a model which offers a non-countable
magnitude estimation in which the success of discrimination is ratio
dependent . Althoughwe do not knowwhether flies sequentially count the
objects or not, this model fits evidence of a ratio dependency in
spontaneous and learned number discrimination in fruit flies. This
model relies on inputs from the color-blind motion pathway and,
therefore, is expected to use only long-wavelength-sensitive receptor
inputs. Visual number stimuli are first detected by an on-off narrow-
field phasic “brightness neuron” of the second optic lobe. Then,
information arrives to a second neuron, the “brightness working
memory neuron” which senses and responds maximally to changes in
light intensity. In parallel, the brightness neuron sends a weaker input to a
“counting workingmemory neuron” that responds proportionally to each
change in brightness between dark and bright areas. All the information is
finally collected by a fourth neuron that accumulates and provides
continuous updates of the numerosity stimulus.

Accordingly, the literature regarding LC11 connectivity shows that
LC11 neurons collect visual information from the ON visual pathway. It
has been shown that the dendrites of LC11 cells receive inputs from
transmedullary neuron 3 (Tm3) via GABAergic synapses (Takemura
et al., 2011; Davis et al., 2020). Tm3 connects the proximal medulla and
distal lobula. Like the brightness working memory neuron, Tm3 is an
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ON-OFF cell that responds maximally to any luminance change
regardless of its polarity, and is tightly tuned to small moving objects
(Keleş et al., 2020; Tanaka and Clark, 2020). Tm3 neurons collect the
output of L1 neurons from the first neuropil which are the major input to
the ON visual pathway. As the brightness neuron, L1 are ON-OFF phasic
neurons that respond to each change in luminosity (Figure 1C). It has
been shown that the physiological properties of the LC11 neurons fit well
with a displacement detector (DD) model where they collect across the
visual field the output of several size-tuned and fast-adapting cells (Tanaka
and Clark, 2020). Furthermore, the spatial pooling in the DD model
conceptually parallels how complex cells inmammalian visual cortex (V1)
achieve phase invariance by pooling simple cell outputs (Movshon et al.,
1978). Despite this being a plausible model, other neuronal configurations
remain possible. One feasible model could involve a collector neuron
downstream LC11 cells that senses the signaling of each LC11 neuron to a
single object reaching its receptive field. Like this, numerical information
would be encoded by the collector neuron that would fire only whenmore
than one LC11 neuron is active. More experiments should be done in the
feature to investigate the neuronal circuits and mechanisms encoding
visual numerosity in invertebrates.

In summary, numerical discrimination inDrosophila depends on a
cluster of visual neurons (LC11s) located in the optic lobe that are
three synapses away from the retina, suggesting that for flies
“numbers” are attributes of the visual scene and thus numerosity is
processed at a sensory level.

Conclusion

Numerosity estimation is fundamental to animal survival. In
terms of how humans compute numerical information, there is a
clear distinction between the spatial selectivity of visual monotonically
responding populations at the level of V1 and tuned populations in
association cortices. Numerosity perception also mirrors to a certain
degree sensory activity and its susceptibility to adaptation suggests that
numerosity is a visual property (Burr and Ross, 2008; Burr et al., 2018).
Non-etheless, the nature of the neuronal computations underlying this
“visual sense of number” remains controversial (Durgin, 2008). This is
mainly because researchers have not been able to conclusively
demonstrate that numerosity-tuned responses at the level of visual
cortex V1-V3 are derived from early visual frequency domain image
representations, since it is not possible to physiologically disrupt the
visual image representation and show effects on numerosity-tuned
responses. In this sense, studying visual number representations in
animal models that allow brain manipulation will shed light on the
neuronal mechanism of visual processing of numbers. Part of the
neural network associated with the estimation of continuous and
discrete quantity in the zebrafish brain has been identified (Messina
et al., 2020). Recent studies showed that a particular area of the
telencephalon (dorsalis telencephali) responds selectively to
numerosity (Messina et al., 2021). However, these discoveries were
found a posteriori of the numerical task by detecting high levels of c-fos
expression (e.g. neuronal activity) in those areas.

In mammals, multiple regions of the brain, for example the
parietal cortex and the prefrontal cortex, are involved in the
processing of numerosity (review in (Lorenzi et al., 2021)). We
hypothesize that it will be also the case in fruit flies. It may be
necessary to integrate multiple neuronal responses to generate a
more reliable estimation of numerosity. It would be unlikely that

only one type of visual neuron would be required for numerical
performance, however it remains to test other visual neuron types
and other areas in the central brain. To be able to understand the brain
areas and neuronal circuitry involved in numerosity it is necessary to
record (e.g., functional imaging) andmanipulate those particular areas
while the animals are performing the numerical task (Messina et al.,
2022). In this regard, Drosophila offers several advantages. Flies have
not only been shown to have a spontaneous preference for larger
numerosities, but also demonstrate that they can associate a specific
numerosity to a reward and change their preference accordingly
[(Bengochea et al., 2022)- preprint, bioRxiv]. The genetic tools that
are available will allow us to disentangle the interaction of multiple
brain regions, neurons and circuits by manipulating them while the
flies are making their numerical decision. We propose the fruit fly as
an advantageous model to study, not only the brain areas involved in
numerical processing, but also brain areas related to the change in
preference after learning. Future studies will provide important
insights into the basic neuronal mechanism underlying numerosity
processing.
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