
Predictive utility of commercial
grade technologies for assessing
musculoskeletal injury risk in US
Marine Corps Officer candidates

Matthew B. Bird1*, Kristen J. Koltun1, Qi Mi1, Mita Lovalekar1,
Brian J. Martin1, Tim L. A. Doyle2 and Bradley C. Nindl1

1Department of Sports Medicine and Nutrition, Neuromuscular Research Laboratory/Warrior Human
Performance Research Center, University of Pittsburgh, Pittsburgh, PA, United States, 2Department of Health
Sciences, Biomechanics, Physical Performance and Exercise Research Group, Macquarie University, Sydney,
NSW, Australia

Recently, commercial grade technologies have provided black box algorithms
potentially relating to musculoskeletal injury (MSKI) risk and functional movement
deficits, in which may add value to a high-performance model. Thus, the purpose of
this manuscript was to evaluate composite and component scores from commercial
grade technologies associations to MSKI risk in Marine Officer Candidates.
689 candidates (Male candidates = 566, Female candidates = 123) performed
counter movement jumps on SPARTA™ force plates and functional movements
(squats, jumps, lunges) in DARI™ markerless motion capture at the start of Officer
Candidates School (OCS). De-identified MSKI data was acquired from internal OCS
reports for those who presented to the Physical Therapy department for MSKI
treatment during the 10 weeks of training. Logistic regression analyses were
conducted to validate the utility of the composite scores and supervised machine
learning algorithms were deployed to create a population specific model on the
normalized component variables in SPARTA™ and DARI™. Common MSKI risk
factors (cMSKI) such as older age, slower run times, and females were associated
with greater MSKI risk. Composite scores were significantly associated with MSKI,
although the area under the curve (AUC) demonstrated poor discrimination (AUC =
.55–.57). When supervised machine learning algorithms were trained on the
normalized component variables and cMSKI variables, the overall training models
performed well, but when the training models were tested on the testing data the
models classified MSKI “by chance” (testing AUC avg = .55–.57) across all models.
Composite scores and component population specific models were poor predictors
of MSKI in candidates. While cMSKI, SPARTA™, and DARI™ models performed
similarly, this study does not dismiss the use of commercial technologies but
questions the utility of a singular screening task to predict MSKI over 10 weeks.
Further investigations should evaluate occupation specific screening, serial
measurements, and/or load exposure for creating MSKI risk models.
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Introduction

A high-performance model for sport is a program in which the
training environment is modeled for the success of the athlete by
utilizing support staff (e.g., athletic trainers, strength coaches),
facilities, and athlete monitoring (e.g., force plates, online
questionnaires) (Turner et al., 2019). Commercially available
devices have also been integrated into these high-performance
environments in Olympic, professional, and National Collegiate
Athletic Association (NCAA) athletics to assess overall
performance and screen for musculoskeletal injury (MSKI) (Smith
and Smolianov, 2016; Turner et al., 2019). For example, force plates
and GPS tracking have been used to monitor athletes’ fatigue and
readiness that may contribute to their success in sport (Gathercole
et al., 2015; Hulin et al., 2016). Calculating training load (e.g., distance
covered through GPS), and incorporation into models such as the
acute:chronic workload ratio, have been developed to provide a single
answer solution to evaluate fatigue based on continuous monitoring
technology (Hulin et al., 2016). Additionally, serial measurements
with devices such as force plates, have been implemented to assess for
neuromuscular readiness for performance (Cormack et al., 2008).
Typically, these measures are assessed to provide trends, which are
calculated and monitored during regular season play to indicate
fatigue associating to MSKI risk. With multiple domains of
technology contributing to a plethora of data source outcomes,
support staff, such as sport scientists, athletic trainers, and/or
strength coaches, are necessary to analyze and interpret results for
coaches. For the few programs that have the budget, resources, and
support staff, there are many more that do not have access to these
accommodations. Thus, commercial grade companies have invested in
technology that can analyze and package the information (i.e., MKSI
risk) in seconds after testing. In theory, a single technology that could
accurately display MSKI risk and performance readiness would
mitigate the need for back-end processing and create efficiencies
for support staff, thereby increasing its utility among populations
and settings. As such, professional and NCAA sports teams, and the
military have leveraged these commercially available technologies for
their field deployability and ease of implementation (Parisien et al.,
2021).

Due to the large number of armed services members located across
the United States and globally, this high-performance approach is
challenging and complex to implement efficiently in military
populations. For example, in the United States, the Army has
31 bases, with 378,900 active component soldiers (APHC, 2020).
Despite this challenge, it is necessary due to the sheer amount of
MSKIs that occur in Service members, in which over 50% of Army
soldiers sustain a MSKI resulting in 2 million medical encounters
(APHC, 2020). To combat the high rate of MSKIs, the Army has
implemented the Holistic Health and Fitness (H2F), that is, intended
to broaden the physical fitness attributes of soldiers with the assistance
of performance coaches and facilities/equipment (Molloy et al., 2020).
Additionally, with the heightened push for screening to detect MSKIs,
Congress has mandated that evidence be provided to support the use
of force plates combined with machine learning to help mitigate
MSKIs (Thornberry, 2020). As such, a technology, that is, field
deployable and expedient, and which can accurately demonstrate
MSKI risk, would have great utility across all Services to further
reduce the burden of MSKI.

Commercial grade force plates (FP) are an emerging technology
that may provide useful data for MSKI risk associations. Recently, data
extracted from the performance of counter movement jumps (CMJs)
performed on SPARTA™ force plates have been used to predict ACL
injuries (Pontillo et al., 2021) and elbow injuries (Mayberry et al.,
2020), and to mitigate athlete healthcare costs (Parisien et al., 2021).
Parisien et al. (2021), reported the implementation of the CMJs via
SPARTA™ FP and saw no significant injury difference in those that
utilized SPARTA™ force plates than those that did not, while the
injury-related healthcare costs were significantly higher in the non-
user group. In addition, Pontillo et al. (2021), reported SPARTA™ FP
variables (Explode and Drive) were predictive of ACL injury over a 10-
week exposure. It is important to note, these studies used measures
derived from the CMJ via SPARTA™ (i.e., Load, Explode, and Drive),
which are derivatives of common force place variables and did not
report the SPARTA™MSKI prediction algorithms (i.e., MSKI Health
and Risk Group). Alternatively, Hando et al. (2022) evaluated the
MSKI Health composite score and other SPARTA™ measures in
special warfare trainees and found the MSKI Health score was not
predictive of MSKI [OR (95% CI) = .986 (.956–1.016)].

Another emerging technology, that is, gaining popularity due to its
automation of objective data inputs from a movement screen is
markerless motion capture (mMoCap). mMoCap addresses
previous limitations of marker-based motion capture (MoCap), the
gold standard to evaluate kinetics and kinematics, that is, largely
constrained to state of the art, biomechanical facilities. mMoCap has
been investigated in healthcare (Martinez et al., 2018) and athletics
(Sonnenfeld et al., 2021) and proven to be reliable (Mosier et al., 2018;
Drazan et al., 2021) and valid (Perrott et al., 2017). DARI™mMoCap,
a commercial grade mMoCap system, developed a “Joint Quality”
composite score in which each joint is normalized and scored based on
DARI’s™ internal database, to indicate if a joint is outside normative
ranges during commonmovements such as body weight squats, CMJs,
drop jumps, and single leg CMJs. Recently, Hando et al. (2021)
calculated odds ratios utilizing the overall vulnerability score for
MSKI (OR = 1.01) and lower extremity MSKI (OR = 1.02) in
military trainees (n = 1,540) and determined the overall
vulnerability score was not a clinically useful measure to predict MSKI.

As the military pushes a for a reduced MSKI burden with quick
actionable decision aids, these tools could add value in accomplishing
this mission. Hando et al. (2021); Hando et al. (2022) is the only group
to have examined the utility of the DARI™ (i.e., Joint Quality) and the
SPARTA™ (i.e., MSKI Health) composite scores for associations with
MSKI.While they have reported poor utility of the composite scores to
associate MSKI risk in Airforce trainees, it is as yet unclear if
SPARTA™ and DARI™ models will carry over to a different
military population. Similar to Airforce trainees, Marine Officers
candidates undergo training pipelines (Officer Candidates School)
with a high MSKI incidence rate (Piantanida et al., 2000). While
Hando et al. only reported male Airforce trainees, Officer Candidates
School consists of male and female candidates, in which the
SPARTA™ and DARI™ MSKI models may have better predictive
utility when females are included. Thus, the present study sought to
evaluate the SPARTA™ and DARI™ composite scores in male and
female Marine Officer Candidates in association with lower extremity
and torso MSKI’s during 10-week of Marine Corps Officer Candidates
training. Additionally, we assessed the SPARTA™ and DARI™
normalized component variables and common MSKI risk factor
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variables (cMSKI) to see if a population specific model would increase
the predictive utility of SPARTA™ and DARI™.

Materials and methods

Researchers briefed and consented Marine Officer candidates for
the study. Ethical approval was provided by the University of
Pittsburgh Institutional Review Board (STUDY19030386) and the
research was endorsed by the Office of Naval Research and Officer
Candidates School (OCS). A total of 689 candidates (Female
candidates = 123, Male candidates = 566) comprising four intake
classes signed informed consents and participated in the DARI™ and
SPARTA™ testing.

Officer Candidates School

OCS is a 10-week military training course designed for individuals
seeking to become commissioned officers in the United States Marine
Corps. OCS consists of controlled daily physical and military training,
along with graded events that test for aerobic capacity (i.e., 3-mile
run), obstacle navigation and loaded ruck marches. All candidates are
required to do the same training regardless of job (e.g., attorney,
infantry officer, intelligence), and sex, and there are high incidences of
lower extremity and torso MSKIs that occur [Male candidates = 23%
and Female candidates = 36% (Bird et al., 2022)].

Movement assessment

Prior to the start of physical training, height and mass were
recorded by a stadiometer and digital scale (Healthometer
Professional 500KL, McCook, IL). Self-reported questionnaires
regarding prior MSKI (retrospective 1 year), were administered via
the Research Electronic Data Capture (RedCap) on an electronic
tablet. Candidates were required to perform a warm-up and
familiarization phase consisting of the SPARTA™ FPs and DARI™
mMoCap movements prior to testing.

SPARTA Science™ FP (SPARTA Science™, California), sampling
at 1,000 Hz, were used for data collection. Candidates performed three
maximal-effort CMJs, with ~15 s rest (pre-determined in SPARTA™

software) between each jump. The candidates were cued to start with
hands above head, stand still (1 s of quiet phase to register system
mass), and performed the jump with a counter-movement and arm
swing to a self-selected depth. Candidates were instructed to jump
after researchers verbally gave a 3-2-1 countdown. A trial was
unsuccessful and redone if the candidate failed to land within the
confines of the force plates. Data collected from SPARTA™ were
processed using SPARTA™ Software (v0.12.4), that further calculated
metric values (i.e., load, explode, drive). In addition, SPARTA™
outputs composite scores (MSKI Health score, SPARTA™ score,
and Risk Group) (Table 1) that are calculated by the normative
force plate variables (Table 2).

DARI™mMoCap (DARI Motion™, Inc. Overland Park, KS), a 3-
dimensional mMoCap system, was used for data collection. Eight
Black-fly FLIR GigE cameras (50 Hz) were placed around a 2.5 × 3.5 m
matted area. Prior to daily testing, the DARI™ mMoCap was
calibrated to the manufacturer’s specifications. DARI™ mMoCap
uses Captury Live™ motion tracking software (Captury Live™, The
Captury Ltd., Saarbrücken, Germany) that calculates sums of spatial
Gaussian functions to generate a subject-specific body model
representing the shape and color statistics to estimate joint centers
(Stoll et al., 2011). Before capture, a background subtraction was
performed on the DARI™ mMoCap system so that when the
candidates enters the mMoCap area, the candidates are
differentiated from the background during initialization of the
tracking model. Candidates were cued into a calibration position,
in which both elbows were at 90°, and hands downwards. A
computerized subject-based model was generated and virtually
overlaid on the live image of the candidates, and scaling actions
(lunges, squats, arm rotations) were performed to capture the
candidates joint centers (Cabarkapa et al., 2022). Candidates
performed the DARI™ movement screen which consisted of
reverse lunge with rotation, lateral lunge, body weight squat,
overhead squat, CMJ, drop jump, single leg CMJ, and five
consecutive single leg hops. All unilateral movements were
performed twice (right and left limb), and bilateral movements
were performed once, except for body weight squat and CMJ
which were performed three times. The drop jump height was
standardized at 18 inches for each candidate. The movement
screen was built with the manufacture’s recommendations to
evaluate for lower extremity and torso movements. All movements
were demonstrated, cued by the researcher, and were performed on a

TABLE 1 Definitions of composite scores in DARI™ and SPARTA™.

Composite scores Definition

SPARTATM Force Plates

MSKI Health Score Version 1 of SPARTA™ Machine learning algorithm trained on SPARTA™ database to predict MSKI

Risk Group Version 2 of SPARTA™ Machine learning algorithm trained on SPARTA™ database to predict MSKI

SPARTA™ Score Component score of Load, Explode and Drive

DARITM Markerless Motion Capture

Readiness Score Average of Quality Score Overall and Performance Score Overall

Quality Score Quality score component via joint kinematic and kinetic measurements across all movements

Performance Score Performance score component via center of mass excursion on squat and jump movements

Composite scores represented as, higher = increased performance and decreased MSKI, risk; MSKI, Risk group bins subjects 1 to 5, higher score is higher risk, and lower score is lower risk.
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3-2-1 countdown before the initiation of the candidate’s movement
with ~15 s betweenmovements. If the skeleton was visually misaligned
from a joint center, either the candidates would redo the movement, or
the skeleton would be re-tracked post hoc. Skelton’s were re-tracked
automatically post hoc by themanufacturer’s recommendations via the
proprietary software, Captury Live™ motion tracking software,
described previously. All variables from DARI™ mMoCap were
uploaded to DARI’s™ cloud platform and processed using DARI™
Insight Processing (version 1.0.4-250) and DARI™ Insight Vault

(version 1.0.3-854) software. mMoCap joint coordinate systems are
defined during movement tracking and calculations for knee, hip and
ankle kinematics following the methods prescribed by the
International Society of Biomechanics (Grood and Suntay, 1983;
Wu et al., 2005). DARI™ mMoCap automatically calculates
composite scores (Readiness Score, Quality score, and
Performance Score) (Table 1), and normalized component variables
(e.g., Hip mobility, Knee kinetics) (Table 2) when a screening test is
complete.

TABLE 2 Definitions of SPARTA™ and DARI™ component variables.

Component variables Definition

SPARTATM Force Plates

Load (Avg. braking RFD) (N/s) Average rate of force change from start of braking to start of concentric phase

Explode (Avg. relative concentric force) (N/kg) Average force between start of concentric phase to liftoff relative to body mass

Drive (Relative concentric impulse) (Ns/kg) Concentric impulse relative to body mass

Jump Height (m) Max vertical jump height

Eccentric rate of acceleration (m/s3) Max rate of acceleration in eccentric phase

Max acceleration (m/s2) Peak acceleration

Eccentric impulse (N.s) Integral of acceleration over eccentric phase

Concentric impulse (N.s) Integral of acceleration over concentric phase

Max velocity (m/s) Max velocity of center of mass

Max power (W) Max of acceleration multiplied by velocity

Unweighting time (s) Time from unloading start to eccentric start

Eccentric time (s) Time from start of eccentric to start of concentric phase

Concentric time (s) Time from start of concentric phase to liftoff

Time to take off (s) Time from unloaded to liftoff

Time to max acceleration (s) Time from unload start to max acceleration

Depth (m) Max depth in the loading phase

Reactive strength index Jump height divided by time to peak force

Flight time (s) Time off the force plate

Body Weight (N) The total mass of the individual during the quiet phase

DARITM Markerless Motion Capture

Jump height Vertical jump height divided by leg length

Squat depth Squat depth divided by leg length

Hip mobility Mobility component score via squat, overhead squat, and lateral lunge

Hip kinetics Kinetic component score via vertical jump, single leg jump, and multi-hop

Knee mobility Mobility component score via squat, overhead squat, and lateral lunge

Knee kinetics Kinetic component score via vertical jump, single leg jump, and multi-hop

Knee alignment loading Dynamic valgus loading component score via squat, overhead squat, lateral lunge, vertical jump, single leg jump, and multi-hop

Knee alignment landing Dynamic valgus landing component score via vertical jump, single leg jump, and drop jump

Ankle mobility Mobility component score via squat and overhead squat

Spine mobility Thoracic rotation component score during the reverse lunge with rotation

SPARTA™
, Force plate measures normalized to SPARTA™

, internal subject database; DARI™
, measures normalized to DARI™

, internal subject database. Data from eachmeasurement is presented as

a normalized score.
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It is important to note that composite scores are calculated via the
component scores for both DARI™ and SPARTA™. The composite
scores are proprietary calculations, thus considered “black box”
algorithms due to the lack of transparency in which these are
derived. DARI’s™ component scores are aggregates of kinematic
and kinetic variables in different movements through the DARI™
screen. While SPARTA’s™ component scores are aggregates of the
raw force time curve that calculate into kinetic and kinematic
variables. All measurements (composite and component scores) are
considered arbitrary as they are further normalized or aggregates of
the normalized scores. Both DARI™ and SPARTA™ composite and
component scores are represented where, higher scores are better
performance or lesser MSKI risk. While SPARTA™ Risk Group score
is a binned measure, where five denotes greater MSKI risk and one is
less MSKI risk.

Data analysis

Independent sample t-tests were used to compare the differences
of age, weight, and height separately in male and female candidates.

De-identified MSKIs were collected from the OCS internal reports for
candidates that presented to the OCS Physical Therapy department for
treatment during the 10 weeks of training. MSKIs were labeled by
anatomic location: 1) lower body (foot, ankle, knee, lower leg, and
upper leg) 2) torso (lumbar spine, thoracic spine, ribs, and hip), 3)
upper body (shoulder, elbow, upper arm, forearm, hand, and wrist), 4)
head and neck (cervical spine). The outcome variable was labeled as
MSKI or noMSKI. Inclusion criteria for a MSKI was lower body or
torso, and noMSKI were labeled as not receiving a MSKI or upper
body and head and neck. Self-reported prior injury had the same
classification as the outcome variable (MSKI or noMSKI).

Analysis one included estimation of two binary logistic regression
model. An unadjusted model was first used to determine if any of the
explanatory variables (common MSKI risk factors (cMSKI),
SPARTA™, and DARI™ composite scores) predicted lower
extremity and torso MSKI in candidates (Table 1). The adjusted
model controlled for the effect of cMSKI variables (sex, age, and
threemile run time) when testing whether the DARI™ and SPARTA™
composite scores predicted MSKI. Statistical analyses were conducted
using IBM SPSS Statistics Version 25 (IBM Corp; Armonk, NY).
Statistical significance was set a priori at α = .05, two-sided.

Analysis two (Figure 1) evaluated SPARTA™ and DARI™
component variables (Table 2) that were used to calculate
SPARTA™ and DARI™ composite scores in analysis one
(Table 1). The data was split into a train (70%) and test (30%)
with the same proportions of MSKIs in each train and test set for
both the SPARTA™ and DARI™ data sets using “createDataPartition”
function (Caret, v. 6.0). Due to imbalanced MSKIs, Synthetic Minority
Oversampling Technique (SMOTE, DMwR, v 0.4.1), was used on the
training data set. Since MSKIs are infrequent when compared to
noMSKI, oversampling, down sampling or synthesizing new minority
variables may be a technique to increase the prevalence of observations
with a MSKI (Carey et al., 2017; Fernández et al., 2018). Recursive
partitioning and regression trees (Rpart), random forest (Rforest) and
conditional random forest (Cforest) were used to model the training
data with a ten-fold cross-validation and grid search for the greatest
AUC value (caret, v 6.0-93). In Rforest and Cforest, the grid search
evaluates different variables tried at each split (mtry) and in Rpart the
grid search evaluates the complexity parameter (cp) in which the
highest AUC in accordance with mtry and/or cp was chosen as the
final model. A total of three algorithms were used (1. Rpart, 2. Rforest,
3. Cforest) to train on five data sets (1. cMSKI, 2. DARI™ + cMSKI, 3.
DARI™, 4. SPARTA™ + cMSKI, and 5. SPARTA™), totaling to
15 final training models. The 15 final models were tested on their
respective test set (30%) using the “predict” function along with
“confusionMatrix” function (caret v. 6.0) to assess the accuracy,
specificity, sensitivity/recall, precision, and F1 score. All analyses in
aim two were conducted using R Version 3.6.1 (R Core Team, 2019).
Since classes were near balanced utilizing SMOTE, the probability
threshold was set at ≥0.50 for MSKI and <0.50 for noMSKI for
classification of model performance.

Measures relating to precision, F1 score, sensitivity and other
performance measures will be described to demonstrate the model
performance at the previously stated probability threshold (≥.50 =
MSKI and <.50 = noMSKI). Although, as described in Ruddy et al.
(2018), AUC may be a better performance outcome to report, since
AUC is an aggregate of the true positive and false positive rates across
all classification thresholds among the receiver operating characteristic
(ROC) curve. In clinical practice, AUC is described as the probability a

FIGURE 1
Data analysis pipeline for analysis two on the normalized
component variables.
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randomly chosen MSKI candidate is ranked more likely to have a
MSKI than a randomly chosen noMSKI candidate (Hanley and
Mcneil, 1982; Hajian-Tilaki, 2013). AUC performance were
classified as .50–.60 are by chance, .61–0.70 poor, .71–.80 fair,
.81–.90 good, and .91–1.00 excellent (Fawcett, 2004; Karuc et al.,
2021). Thus, if a model scored an AUC of 0.50 this model would have
the same probability as to flipping a coin (50/50), “by chance”.

Decision treemodels and variable importance

Rpart, Rforest and Cforest are all recursive partitioning methods
where decision trees are constructed to classify observations via

independent variables (Loh, 2011). Rpart is a single decision tree
algorithm that utilizes binary splits, where the splitting criteria at each
split is determined by Gini impurity, in which each split attempts to
maximize purity. Rforest uses many decision trees and for each tree a
random number of variables will be tried at each split and takes the
majority vote across all trees for prediction (Breiman, 2001). Similarly,
Rforest utilizes the same splitting criterion as Rpart, Gini impurity.
Cforest functions similarly to Rforest although, Cforest default
parameters utilize subsampling without replacement found in the
“Party” package, instead of bootstrapping with replacement found in
Rforest default parameters (Strobl et al., 2009). In addition, Cforest
utilizes conditional inference trees as base learners. The conditional
inference trees use the significance tests for variable selection and to

TABLE 3 Simple and multiple logistic regression.

Predictor Group MSKI (Mean ±
SD) n = 160

noMSKI
(Mean ± SD)
n = 529

OR
(95% CI)

p-value (simple
logistic

regression)

Adjusted OR
(95% CI)

p-value (multiple
logistic

regression)

Common MSKI Risk Factors (cMSKI)

Sex (% Female) — 42/160 = 26.3% 81/529 = 15.3% 1.969(1.288,
3.009)

.002 — —

BMI — 25.12 ± 2.32 25.47 ± 2.23 0.932 (0.861,
1.008)

.079 — —

Age (years) — 25.84 ± 3.44 24.58 ± 2.84 1.140(1.077,
1.206)

<.001 — —

Prior injury history
(% Prior injury)

— 11/160 = 6.9% 20/529 = 3.8% 1.879 (.880,
3.822)

.103 — —

3-mile run
time (min)

— 21.81 ± 2.10 21.03 ± 2.03 1.192(1.096,
1.296)

<.001 — —

SPARTATM Force Plates

MSKI Health Score — 55.52 ± 5.31 56.73 ± 4.94 .953
(.919, .988)

.009 .959 (.924, .995) .025

Risk Group 1 (Low-risk)
(Reference)

65/160 = 40.6% 192/529 = 36.3% — — — —

2 33/160 = 20.6% 119/529 = 22.5% .819
(.508,1.320)

.413 .946 (.559, 1.600) .836

3 31/160 = 19.4% 97/529 = 18.3% .944
(.577,1.545)

.819 1.048 (.613, 1.790) .864

4 25/160 = 15.6% 79/529 = 14.9% .935
(.550,1.589)

.803 1.170 (.658, 2.080) .592

5(High-risk) 6/160 = 3.8% 42/529 = 7.9% .422
(.171,1.038)

.060 .457 (.180, 1.162) .100

SPARTA™ Score — 78.10 ± 3.59 78.50 ± 3.86 .972 (.927,
1.019)

.238 .968 (.919, 1.019) .210

DARITM Markerless Motion Capture

Readiness Score — 55.10 ± 12.37 57.45 ± 11.00 .982
(.967, .997)

.020 .993 (0.976, 1.011) .464

Quality Score — 42.42 ± 4.72 42.36 ± 4.77 1.003 (.966,
1.041)

.880 1.016 (.977, 1.057) .421

Performance Score — 67.70 ± 22.00 72.55 ± 19.09 .988(.980,
.997)

.007 .994 (.984, 1.005) .289

CommonMSKI, risk factors, SPARTA™ FPs, andDARI™mMoCap composite scores; Data are presented as descriptive statistics and results of the simple logistic regression (unadjusted) andmultiple

logistic regression (adjusted for sex, age, and three mile run time).

Bold values denote significant.
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find the optimal binary splits, rather than Gini impurity (Strobl et al.,
2007). Cforest implementation of unbiased approaches may allow for
increased interpretation of variable importance by treating categorical
and continuous unbiased. Variable importance for each model was
calculated by the base packages using the caret package with a scaling
factor, based on the recommendations provided by Strobl et al. (2009),
Rpart: Gini Importance, Rforest: Gini Importance and Permutation
Importance, Cforest: Permutation Importance. Gini importance across
Rpart and Rforest utilize the basic properties of Gini index splitting
criterion. While permutation importance found in Cforest and Rforest
randomly permutates predictor variables with the out-of-bag
observations and assess the decrease in accuracy. Further
information regarding variable importance in Rpart, Rforest and
Cforest can be found in the R documentation (R Core Team, 2019;
Strobl et al., 2007; Strobl, 2008; Strobl et al., 2009).

Results

Female candidates had less mass than male candidates (Female
candidates = 64.7 ± 6.7 kg; Male candidates = 80.1 ± 9.2 kg, Cohn’s d =
1.740), and were significantly shorter (Female candidates = 164.0 ±
5.6 cm;Male candidates; 176.5 ± 6.8 cm, Cohn’s d = 1.853), while there
was no difference in age (Female candidates = 24.7 ± 3.1 years; Male
candidates = 24.9 ± 3.0 years, Cohn’s d = 0.072).

Simple logistic regression analyses demonstrated that, when
analyzed separately, the cMSKI variables: sex (p = 0.002), age (p <
0.001) and three-mile run (p < 0.001) time were significant predictors
of MSKI (Table 3). Odds Ratios demonstrated that female candidates
were 2.0x more likely to suffer an MSKI than male candidates, each
one unit increase in age increased the likelihood of MSKI by 14%, and
every added minute of run time increased MSKI likelihood by 19%
(Table 3). For SPARTA™ outputs, MSKI Health Score was a
significant predictor of MSKI such that every one unit increase in
MSKI Health Score decreased the likelihood of MSKI by 4.7%, while
Risk group (Omnibus p-value = .347) and SPARTA™ Score were not
significant predictors of MSKI (Table 3). For DARI™, Readiness and
Performance scores were significant predictors of MSKI, but Quality
score was not. For every one unit increase in Readiness and
Performance score, the likelihood of MSKI decreased by 1.8% and
1.2%, respectively (Table 3). Despite statistical significance, when
AUC was calculated on SPARTA™ and DARI™ composite scores,
MSKI Health score (AUC = .57), Readiness score (AUC = .55) and
Performance score (AUC = .56) were poor classifiers of MSKI and
noMSKI. Additionally, when SPARTA™ and DARI™ were adjusted
for the significant cMSKI variables (sex, age, 3-mile run times), no
SPARTA™ or DARI™ composite scores were significant predictors of
MSKI (Table 3), except for the SPARTA™ MSKI Health score.

Analysis two (Figure 1) evaluated whether the component scores
(Table 2) underlying calculations of SPARTA™ and DARI™
composite scores (Table 1) were associated with MSKI risk during
OCS. SPARTA™, DARI™ and cMSKI (significant predictors from
analysis one: sex, age, three-mile run time) variables were merged. The
entire data frame was split into training (70%, n = 483, MSKI = 112,
noMSKI = 371, %MSKI = 23%) and test (30%, n = 206, MSKI = 48,
noMSKI = 158, and %MSKI = 23%) data sets. SMOTE was performed
on the training set and increased the total number of observations (n =
784, MSKI = 336, noMSKI = 448, %MSKI = 43%). Rpart, Rforest, and
Cforest were run separately on the cMSKI (3 variables), DARI™ +

cMSKI (13 variables), DARI™ (10 variables), SPARTA™ + cMSKI
(22 variables), and SPARTA™ (19 variables) with the same set of
observations. Results from the training and testing data for each data
frame and algorithm (Rpart, Rforest, and Cforest) are listed in Table 4.
Overall training AUC performance for Rpart ranged from .64 to .75,
Rforest .88 to .97, and Cforest .82 to .90. While testing AUC
performance for Rpart, ranged from .54 to .61, Rforest .46 to .62,
and Cforest .47 to .61 (Table 4; Figure 2).

When cMSKI variables were trained alone, the training models
performed fair to good (AUC = Rpart: .74, Rforest: .88, Cforest: .82)
and performed slightly better than DARI™ and SPARTA™ alone in
Rpart, while lesser in Rforest and Cforest training models. When
cMSKI variables were tested, AUC performance was similar to all
other training models and performed by chance or poor (AUC =
Rpart: .61, Rforest: .57, Cforest: 0.61). In addition, when cMSKI
variables were added to DARI™ and SPARTA™, AUC model
performance increased slightly in both the training and testing.
When comparing the training algorithms averaged across the
different data frames, Rforest performed the best (AUC avg = .94),
than Cforest (AUC avg = .87), and then Rpart (AUC avg = .72).
Interestingly when tested, AUC averaged across the data frames was
similar between the algorithms Rpart (.57), Rforest (.55), and Cforest
(.56) (Table 4; Figure 2). Measures of specific model performance
(accuracy, specificity, sensitivity) are presented in Table 4 with the
threshold of ≥.50 for MSKI and <.50 for noMSKI.

Global variable importance was analyzed for each algorithm for
DARI™ + cMSKI and SPARTA™ + cMSKI. Results demonstrate that
age, three mile run time, and spine mobility had a level of importance
across all algorithms in DARI™ + cMSKI, while in SPARTA™ +
cMSKI age, three mile run time, and max acceleration had a level of
importance in all algorithms. Lastly, sex had a level of importance in
only Cforest permutation and Rpart Gini for both DARI™ + cMSKI
and SPARTA™ + cMSKI (Figure 3).

Discussion

This study evaluated the utility of commercial grade technology
composite scores to predict MSKI during Marine Corps Officer
Candidates School. Both SPARTA™ (i.e., MSKI health score) and
DARI™ (i.e., Readiness, Performance scores) composite scores were
predictive of lower extremity and torso MSKI, although their clinical
utility may be limited (Table 3). When component variables
(Table 2) were trained using different supervised machine
learning algorithms with a 10-fold cross validation, AUC
performance averaged across the data frame for Rforest, Cforest,
and Rpart were excellent (.94), good (.87), and fair (.72), respectively.
When the trained models were subsequently tested on the testing
data, performance was by chance and similar averaged across
algorithms (AUC avg = Rpart: .57, Rforest: .55, Cforest: .56). In
addition, a model consisting of only cMSKI variables (age, sex, and 3-
mile run time) when tested, performed better than DARI™ and
SPARTA™ alone in Rpart and Cforest algorithms. The addition of
cMSKI variables to SPARTA™ and DARI™ (DARI™ + cMSKI and
SPARTA™ + cMSKI) testing models slightly increased AUC
performance but remained poor, overall. This is the first study to
evaluate the SPARTA™ and DARI™ component variables (Table 2)
in addition to the proprietary composite scores and further
demonstrated that DARI™ and SPARTA™ do not provide greater
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TABLE 4 Training and Testing Model Performance Across all Algorithms and Data sets.

Training (n = 784) Testing (n = 205)

cMSKI Dari™ Dari™ + cMSKI SPARTA™ SPART™ + cMSKI Average cMSKI Dari™ Dari™ + cMSKI SPARTA™ SPARTA™ + cMSKI Average

Rpart Accuracy .72 .65 .74 .70 .74 .71 .67 .65 .68 .58 .68 .65

Sensitivity/Recall .61 .47 .62 .61 .67 .60 .56 .35 .35 .44 .48 .44

Specificity .80 .79 .84 .77 .79 .80 .71 .73 .78 .62 .74 .72

AUC .74 .64 .77 .72 .75 .72 .61 .54 .58 .55 .58 .57

Precision .69 .63 .74 .67 .71 .69 .37 .29 .33 .26 .36 .32

F1 Score .65 .54 .68 .64 .69 .64 .45 .32 .34 .33 .41 .37

Rforest Accuracy .82 .87 .89 .87 .89 .87 .58 .67 .70 .54 .61 .62

Sensitivity/Recall .68 .81 .82 .86 .86 .80 .33 .38 .38 .33 .35 .35

Specificity .92 .92 .95 .87 .90 .91 .66 .75 .80 .60 .68 .70

AUC .88 .95 .97 .96 .97 .94 .54 .57 .62 .46 .55 .55

Precision .87 .88 .92 .83 .87 .88 .23 .32 .36 .20 .25 .27

F1 Score .76 .84 .87 .85 .87 .84 .27 .34 .37 .25 .30 .31

Cforest Accuracy .76 .78 .83 .80 .81 .79 .67 .67 .70 .54 .64 .64

Sensitivity/Recall .63 .63 .69 .69 .70 .67 .46 .35 .31 .38 .40 .38

Specificity .85 .90 .92 .87 .89 .89 .73 .76 .82 .59 .71 .72

AUC .82 .86 .90 .89 .90 .87 .61 .54 .61 .47 .57 .56

Precision .76 .82 .87 .80 .83 .82 .34 .31 .35 .22 .29 .30

F1 Score .69 .71 .77 .74 .76 .74 .39 .33 .33 .28 .34 .33

Average Accuracy .76 .77 .82 .79 .81 .79 .64 .66 .70 .55 .64 .64

Sensitivity/Recall .64 .63 .71 .72 .75 .69 .45 .36 .35 .38 .41 .39

Specificity .86 .87 .90 .84 .86 .87 .70 .75 .80 .61 .71 .71

AUC .81 .82 .88 .86 .87 .85 .59 .55 .60 .50 .57 .56

Precision .78 .78 .85 .77 .80 .79 .31 .30 .35 .23 .30 .30

F1 Score .70 .70 .77 .74 .77 .74 .37 .33 .35 .28 .35 .34

Describes Analysis two. Training model performance for n = 784 after SMOTE., Separate data frames (cMSKI, DARI™, DARI™ + cMSKI, SPARTA™, SPARTA™ + cMSKI, 5 data frames) modeled by different algorithms (Recursive partitioning and regression trees (Rpart),

random forest (Rforest), and conditional random forest (Cforest) = 3 algorithms), totaling to 15 separate analysis. Each analysis tested on testing data (n = 205). Area under curve (AUC) = total model performance. All other measures using threshold probability of ≥0.50 =
MSKI, and <0.50 = noMSKI, for model performance classification.

Bold values denote AUC values.
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predictive ability for MSKI than commonly assessed cMSKI
variables, such as age, sex, and 3-mile run time.

When cMSKI variables were analyzed (Table 3), results were as
expected in which slower run times, female sex, and older age were
associated with greater risk for developing a MSKI. These results are
comparable to Army Basic Combat Training, as females had twice the
injury rates of males (Knapik et al., 2001), older military members
were more likely to get injured [Age >25, OR (CI) = 1.83 (1.75,1.91)]
(Sulsky et al., 2018), and slower run times [Males >19.21 min, OR
(CI) = 1.6 (1.0–2.4), and females >23.49 min, OR (CI) = 1.9 (1.2–2.8)]
were associated with greater MSKI risk (Knapik et al., 2001). In

addition, Hando et al. (2022) reported that in Air Force special
warfare trainees (USAF SW trainees), cMSKI variables (i.e., slower
run time and older age) were associated with greater MSKI risk, as well
as previous MSKI. In our findings, self-reported previous MSKI was
not a significant predictor in candidates, but this may be due to the
self-report nature and candidates non-willingness to disclose or report
a prior injury. The non-willingness to disclose an injury may be due to
the candidates not reporting the injury to military leadership prior to
OCS, in which may be a potential of dismissal from the course (e.g.,
surgery). Although the data was de-identified and poses minimal
risk to the candidates, self-reported questionnaires regarding

FIGURE 2
Receiver operating characteristic (ROC) curves for Rpart, Rforest, and Cforest algorthiums training and testing data; Rpart, Cforest, and Rforest
algorithums were trained and tested on the different data sets: 1) Commonmuskuloskeltal injury (cMSKI), 2) DARI™ + cMSKI, 3) DARI™, 4) SPARTA™ + cMSKI,
and 5)SPARTA™; Area under the curve (AUC) is calculated for each ROC curve in Table 4.
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MSKIs during OCS may be an un-reliable source of data for future
studies.

With the integration of the high-performance model for sport into
military settings, it is necessary that research efforts test the efficacy of
commercial technologies within the specific population. Currently,
there is limited evidence to support the predictive ability of SPARTA™
or DARI™ composite scores for MSKI in military trainees. This is
further described in Hando et al. (2021); Hando et al. (2022) wherein
SPARTA™ MSKI Health score had no predictive utility and DARI™
Quality score had limited utility to determine MSKI risk in USAF SW
trainees. However, military training environments are diverse and can
vary by sex, MSKI proportions, MSKI surveillance period, training
type and military branch. For example, Hando et al. reported 37.4%
and 28% of male trainees incurred “any MSKI” and “lower extremity
MSKI” respectively in an 8-week period. When compared to Marine
Officer candidates, 23% of male and female candidates incurred a torso
or lower extremity MSKI in a 10-week period. Such differences further
demonstrate that each use case within military training environments
should be independently investigated towards the specific population
of interest.

As shown, each population is unique and the training data
SPARTA™ uses for a predictive MSKI Health score may not be
directly applicable to USAF SW trainees, whereas candidates may
have been similar to the SPARTA™ training data set. Although, when
evaluating AUC performance for the SPARTA™ MSKI Health score,
results were similar to Hando et al. (2022) (candidates: AUC = .57;
USAF SW: AUC = .52 and .51), thus SPARTA™ MSKI Health score
were not clinically relevant and had limited utility in identifying
candidates at risk for MSKI, even though a statistically significant
predictor (p = .009). DARI™ composite scores (i.e., Readi ness score)
also had similar outcomes as SPARTA™MSKI health score (DARI™:
p = .020; AUC = .55) in which they were statistically significant but not
clinically relevant for MSKI. Interestingly, the SPARTA™ Risk Group
measure had an unexpected inverse trend in which risk group 5 (High
risk), was proportionally the least likely to develop a MSKI as
demonstrated in Table 3. This data demonstrates that composite
scores were predictive, except SPARTA™ Risk Group, but
classification of MSKI risk was no better than “by chance”.
Furthermore, when deciding what commercial grade MSKI
machine learning model and screening measures to implement it is

FIGURE 3
Feature importance for Rpart Gini, Rforest Gini and Permutation, and Cforest Permutation; Calculated on DARI™ + cMSKI and SPARTA™ + cMSKI.
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important to understand 1) what population normative ranges the
model was trained on and 2) if the screening measures are applicable
to the population of interest. With these considerations a within
population specific analysis may be deemed more appropriate to
build machine learning models for deployment. Although not a
supervised approach, candidates were stratified within the
population using unsupervised learning on the CMJ and had a
strong association to MSKI risk in low and high performers with
overlap of MSKI and noMSKI within these groups (Bird et al., 2022).
Lastly, this demonstrates that CMJs on force plates may be a useful
screening tool, butMSKI risk is not fully explained by a CMJ on a force
plate.

The second aim of the analysis was to train a model on the
candidates with the normalized component variables (Table 2) that
calculate the DARI™ and SPARTA™ composite scores (Table 1), and
then evaluate if the addition of cMSKI variables (sex, age, and 3-mile run
time) increased performance of SPARTA™ and DARI™ using different
supervised machine learning algorithms (Rpart, Cforest, and Rforest).
Both DARI™ and SPARTA™ component variables performed similarly
on the training and testing data averaged across algorithms (Training
AUC avg.: DARI™ = .82, SPARTA™ = 0.86; Test AUC avg: DARI™ =
.55, SPARTA™ = .50) (Table 4). Described in Table 4, when cMSKI
variables were added to DARI™ and SPARTA™, both training and
testing AUC avg. Increased slightly (Δ: .01–.07). Overall, cMSKI
variables added predictive utility to DARI™ and SPARTA™ but
testing demonstrated “by chance” and “poor” predictive utility.
These results compare to other predictive MSKI risk screening
studies, where Nordic hamstring strength and demographics could
not be used to predict hamstring strains in elite footballers (Random
forest median AUC = .52 and .53) (Ruddy et al., 2018). In addition,
functional movement tests, force plate testing, and demographics
demonstrated poor injury prediction (Decision tree ensembles
AUC = .663, sensitivity = 55.6%) in elite male youth football players
(Oliver et al., 2020). Lastly, Functional Movement Screen (FMS) and
demographics demonstrated prediction by chance in a non-athletic
group (Naïve Bayes AUC: .58) and poor prediction in the athletic group
(logistic regression AUC: .63) (Karuc et al., 2021). Although these
studies included a “risk factor” task (i.e., FMS) with demographics,
multiple physiological domains were not tested. Rommers et al. (2020)
successfully predicted injury using a multi-battery physiological and
sport domain testing (i.e., aerobic, anaerobic, power, and sport specific
skill tests) and basic demographics (F1-score = 85%, sensitivity = 85%)
in elite youth football players, but did not report AUC. In addition,
Thornton et al. (2017) demonstrated that training load (i.e., rating of
perceived exertion, total distance, high-speed running distance) could
appropriately predict injury (Random forest AUC: .74). Discussed in the
review by Bittencourt et al. (2016) injuries are multi-faceted and arise
from a web of determinants and not from isolated predictive factors.
Such data supports the use of a multi-domain testing battery rather than
individual tests for injury prediction. In addition, screening measures
alonemay not demonstrate the causal relationship to the onset of injury,
as the tasks performed leading to the injury (demonstrated by training
load) may be a necessary additive predictor to an injury risk model.
While modeling diverse predictors, it is also important to evaluate the
type of algorithms used for modeling. We used different recursive and
partitioning methods from simple (Rpart) to more complex black box
algorithms (Cforest and Rforest).

When training Rforest models, AUC performance was excellent for
all data frames except cMSKI variables alone (AUC = .88). While

Cforest and Rpart AUC averaged across data frames performance were
good and fair, respectively. Then when the training models were tested
on the respective testing set, AUC performance averaged across data
frames were classified by chance between Rpart, Cforest, and Rforest. In
addition, when cMSKI training models were trained the AUC
performance averaged across Rpart, Rforest, and Cforest (AUC
avg = 0.81) was less than the inclusion of DARI™ and SPARTA™
data frames. Interestingly, the AUC performance averaged across Rpart,
Rforest and Cforest (AUC avg = 0.59), was the second highest AUC
between the data frames. These results demonstrate the potential
overfitting in Rforest and Cforest compared to Rpart when the
testing AUC performance demonstrated similar results. Even with
the large cohort of subjects in this current study, modeling
approaches using complex decision trees (i.e., random forest)
presented major limitations in providing over optimization in the
training performance results.

These limitations provide a theoretical framework proposed by
William of Occam, Occam’s razor where a simple solution is preferred
(Blumer et al., 1987). Thus, an interpretable single decision tree model
(i.e., Rpart) may be of greater value to add to an organization to
evaluate “under the hood”model performance rather than a black box
model (i.e., random forest). In addition, since demographics are less
prone to change (i.e., age increases 1 unit yearly), utilizing this
technology serially (weekly, monthly) may add a benefit in
increasing the likelihood of predicting MSKI risk with simple
modeling approaches, as alluded to previously regarding training
load. Lastly, this is theorized as a dynamic systems approach where
athletes are like hurricanes, a non-linear dynamic system (Stern et al.,
2020). These findings don’t dismiss these technologies to predict
MSKI, but they do question the utility in screening once over a
long exposure (10 weeks of training). Future investigations should
evaluate serial screening tests that may increase the sensitivity of MSKI
prediction, since SPARTA™ FP and DARI™ mMoCap demonstrated
excellent reliability (SPARTA™ ICC >.90; DARI™ ICC >.80)
(Cabarkapa et al., 2022; Hando et al., 2022).

Regarding variable importance (Figure 3), we demonstrated age
and 3-mile run time were the top selected variables across all
algorithms for DARI™ + cMSKI and SPARTA™ + cMSKI.
Interestingly, sex was only chosen for Cforest permutation and
Rpart gini, although it is a significant factor for increased
likelihood of MSKI for females candidates demonstrated in
Table 3. This may be due to the limitations of variable importance
in Rforest approaches (Strobl et al., 2007; Strobl et al., 2009). In
approaches such as Rpart and Rforest, these models may tend to bias
continuous variables, rather than a binary categorical variable with
only two possible splits in a decision tree. Unbiased approaches such as
conditional random forest may decrease this limitation demonstrated
in Figure 3, in which sex had some level of importance in Cforest
permutation. Thus, we recommend that Rforest be held with caution
for variable importance interpretation when utilizing categorical and
continuous variables. Lastly, when evaluating the Cforest Permutation
variable importance we have demonstrated that cMSKI are the
primary variables for describing the models, but the secondary risk
factors such as DARI™ and SPARTA™ variables (i.e., spine mobility
and max acceleration) should not be ignored as they add value to the
model’s increased performance.

We demonstrate model validation in a new testing data set for the
composite and component scores. When analyzing the composite
scores (i.e., MSKI Health Score), these proprietary models were trained
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and normalized to SPARTA™ or DARI’s™ internal databases, thus
proper validation is necessary in a new population (i.e., candidates).
We demonstrated that SPARTA™ and DARI’s™ composite scores
were predictive in candidates but provided poor utility in clinical use
case. In addition, when a model was trained on the normalized
component scores, we allocated a separate test set (30% of data) to
validate the trained model’s efficacy in an unseen data set. In the
domain of human research, specifically MSKIs with machine learning
outcomes, the number of positive outcomes (MSKIs) in addition to the
number of subjects needed to test in a multi-battery test is a large
limiter to overfitting and bias. While in other fields, there is the luxury
to large open-source data sets and millions of observations (Chatzis
et al., 2018). Recently, Karnuta et al. (Karnuta et al., 2020) published an
epidemiological machine learning analysis on a large cohort of
position Major League Baseball players (n = 1,931 unique position
players and n = 1245 unique pitcher players) to predict injuries in an
open-source online data base. On the other hand, military injury data
and key performance indicators, such as physiological measures, are
strategically safe-guarded and not readily accessible. In general, few
research teams and practitioners have access to these types of data with
a limited cohort of a sub-sample of a military population, thus we
recommend the collaborations across institutions necessary to collect
large cohorts of varying types of military populations. This is turn
would allow for the validation of models between populations for
practical prescription use case (Bullock et al., 2022).

To summarize, the large discrepancies between the training and testing
AUC performance, and the overall poor testing AUC performance could be
a factor of many reasons, 1) overfitting of the training models (specifically in
random forest), 2) relatively small sample when compared to other fields
(e.g., finance), 3) noise in the outcome variable (e.g., noMSKI did not seek
medical attention), and 4) the variables used for modeling does not describe
MSKI in candidates. Strengths of this study include the MSKI reporting by
the samemedical staff throughOCS. OCS requires all candidates to perform
the same tasks (i.e., hikes, physical fitness, and graded events), thus the
training load requirements are similar across all candidates mitigating
confounders during the 10 weeks of training. Limitations include the
relatively small sample size for female candidates, although this sample
size is representative of female candidates that enter through OCS. In
addition, since a MSKI classification may be subject for removal of OCS,
noMSKI candidates may have not sought out medical attention. Future
directions include testing SPARTA™ and DARI™ in varying populations
(e.g., athletics, general population) for further validation. Lastly, serial
monitoring (testing multiple times through the 10 weeks) and/or
continuous monitoring (e.g., heart rate, accelerometry) may be necessary
to refine MSKI models.

Conclusion

In determining the commercial grade system to use in a
dynamic military environment we encourage the practitioner to
investigate whether the technology has been tested for its utility on
the desired outcome measure (i.e., MSKI) in the population of
interest. We have demonstrated SPARTA™ (MSKI Health score)
and DARI™ (Readiness score and Performance score) are
predictive of MSKI, but with limited clinical relevance due to
the poor AUC performance. In addition, we demonstrated the
normalized component variables in both SPARTA™ and DARI™
have similar predictive utility when trained and tested on the

population (Table 4; Figure 2) compared to SPARTA™ and
DARI’s™ composite scores (Table 3) and cMSKI variables, while
classification via AUC performance was “by chance.” While a “one
stop shop number” (i.e., Risk Group or Readiness Score) is the
striving goal in MSKI risk for actionable decision aids, we have
demonstrated single composite scores and a trained model of the
normalized component scores have limited utility to predict MSKI
over a 10-week of Officer Candidates School in Marines.
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