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Objective: To analyze the cranial computed tomography (CT) imaging features of
patients with primary ciliary dyskinesia (PCD) who have exudative otitis media
(OME) and sinusitis using a deep learning model for early intervention in PCD.

Methods: Thirty-two children with PCD diagnosed at the Children’s Hospital of
Fudan University, Shanghai, China, between January 2010 and January 2021 who
had undergone cranial CT were retrospectively analyzed. Thirty-two children with
OME and sinusitis diagnosed using cranial CT formed the control group. Multiple
deep learning neural network training models based on PyTorch were built, and
the optimal model was trained and selected to observe the differences between
the cranial CT images of patients with PCD and those of general patients and to
screen patients with PCD.

Results: The Swin-Transformer, ConvNeXt, and GoogLeNet training models had
optimal results, with an accuracy of approximately 0.94; VGG11, VGG16, VGG19,
ResNet 34, and ResNet 50, which are neural network models with fewer layers,
achieved relatively strong results; and Transformer and other neural networks with
more layers or neural network models with larger receptive fields exhibited a
relatively weak performance. A heat map revealed the differences in the sinus,
middle ear mastoid, and fourth ventricle between the patients with PCD and the
control group. Transfer learning can improve the modeling effect of neural
networks.

Conclusion: Deep learning-based CT imaging models can accurately screen for
PCD and identify differences between the cranial CT images.
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1 Introduction

Primary ciliary dyskinesia (PCD) is a genetic disorder in which the mucociliary clearance
ability is impaired as a result of defects in the structure or function of cilia (Afzelius, 1976).
PCD is generally believed to be an autosomal dominant disorder, but some studies have also
recognized it as an X chromosome genetic disease. The prevalence rate of PCD is
approximately 1/30,000–1/10,000 and is the same for male and female patients (Knowles
et al., 2013).

PCD can cause symptoms in multiple systems of the body (Leigh et al., 2009). Patients
with PCD can present with symptoms similar to those for respiratory diseases, such as
respiratory infections, chronic bronchitis, and bronchiectasis, leading to a high rate of
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underdiagnosis and misdiagnosis; thus, the actual incidence of PCD
may be higher than currently reported (Mirra et al., 2017). Patients
with PCD also present with symptoms of otolaryngology-related
diseases, such as chronic sinusitis, nasal polyps, and exudative otitis
media (OME). The incidence of sinusitis in adult patients with PCD
is as high as 90%, and the incidence of nasal polyps in adult patients
with PCD is 33%–50% (Rollin et al., 2009). OME is a sterile
accumulation of fluid in the tympanic chamber of the middle ear
(Lee, 2013) that becomes viscous over time and can lead to a hearing
threshold approximately 20 dB higher than is normal in children
under 3 years of age (Lucas et al., 2017). The incidence of OME in
patients with PCD, particularly in children, is 50%–90% (Guan et al.,
2021). In addition, patients with PCD may present with central
nervous system disorders, immunodeficiencies, infertility, visceral
inversions, and abnormalities of other organs (Lee, 2013).

The diagnosis of PCD relies primarily on transmission electron
microscopy (TEM) techniques, which demonstrate, for example, the
absence of kinesin arms or radiation spokes and lack of or additional
microtubule assembly. High-speed videomicroscopy analysis
combined with ciliary rhythmic movement frequency testing can
determine whether cilia coordination, frequency, and the pattern of
rhythmic movement are normal (Lucas et al., 2017). In addition,
genetic testing can confirm a PCD diagnosis, often identifying pure
or compound heterozygous pathogenic variants or the co-existence
of different pathogenic genotypes of different PCD genes (Guan
et al., 2021).

Screening out patients with PCD from those with common
otolaryngological diseases is essential. However, traditional
diagnostic methods are cumbersome, time consuming, and
financially costly. Radiomics was first proposed by Dutch
scholars in 2012 (Lambin et al., 2017; Lambin et al., 2012), with
an emphasis on obtaining high-throughput imaging information
from imaging results [magnetic resonance imaging (MRI), CT,
positron emission tomography, etc.] for tumor feature extraction,
segmentation, and model building to assist clinicians in making
more accurate diagnoses.

In 2012, computer vision counting flourished after the AlexNet
network was proposed (Krizhevsky et al., 2012). In recent years, the
integration of medical image-assisted diagnosis technology and big
data has produced a new radiomics method (Gillies et al., 2016). As
this research method has developed, an increasing number of
scholars have begun using data such as imaging and computer
vision to evaluate various disease phenotypes (Silva et al., 2021).
However, this approach is not commonly used in
otorhinolaryngology head and neck surgery. In this study, we
used the imaging performance of temporal bone CT and deep
learning for the first time to screen for PCD.

2 Materials and methods

2.1 General data

A retrospective analysis of the clinical data of 64 patients who
attended the Ear, Nose, and Throat Department of the Children’s
Hospital of Fudan University, Shanghai, China, between January
2010 and January 2021 was conducted. The study was approved by
the ethics committee of the Children’s Hospital of Fudan University.

The patients were divided into a PCD group and control group. The
diagnosis and treatment of primary ciliary dyskinesia patients is
handled by a pulmonologist (lung specialist) and otolaryngologist
(ear, nose, and throat specialist). The main symptoms of primary
ciliary dyskinesia (PCD) include chronic respiratory infections (such
as bronchitis and pneumonia), chronic sinusitis, and abnormal
mucus production in the lungs. Other symptoms may include
recurrent ear infections, hearing loss, and infertility. Diagnosis of
PCD is typically made through a combination of clinical
examination, imaging studies, and laboratory tests such as ciliary
beat frequency analysis, electron microscopy, and genetic testing.

2.1.1 PCD group
The American Thoracic Society guidelines (The Lancet Respiratory

Medicine, 2018), based on the Grading of Recommendations,
Assessment, Development, and Evaluation methodology, considered
four key diagnostic questions relating to patients with a high probability
of PCD who met two of four clinical criteria: unexplained neonatal
respiratory distress as a full-term infant, year-round daily cough or nasal
congestion beginning before 6 months of age, and organ laterality
defect. The reference standard diagnostic methods used for
comparison were TEM of ciliary defects and/or identification of
biallelic causative mutations. TEM identifies specific defects, such as
an absence of kinesin arms or radiation spokes and lack of or additional
microtubule assembly. Gene variants include mutations in the extra-
axonemal kinesin arms (DNAH5, DNAH9, DNAH12, DNAI1,
ARMC4, and CCDC103), the inner kinesin arm (DNALI1), and the
assembly protein (DNAAF3). Thirty-two patients (7.6 ± 4.5 years) were
diagnosed with PCD according to this criterion: 23 male and nine
female patients, aged from 1 to 17 years. All patients were followed up
for at least 3 years.

2.1.2 Control group
Patients with a CT diagnosis of OME and sinusitis who had been

cured without recurrence at the 1-year follow-up. Thirty-two
patients (8.5 ± 3.9 years) formed the group: 23 male and nine
female patients, aged from 3 to 17 years.

The study process was divided into the following five steps: 1) The
collection of raw temporal bone CT data in the Digital Imaging and
Communications in Medicine format; 2) Use of LabelMe software to
label each layer of the CT images; Labelme is an image tagging tool
developed by MIT’s Computer Science and Artificial Intelligence
Laboratory (CSAIL) that allows people to create custom tagging
tasks or perform image tagging (Torralba et al., 2010). 3) Building
of an image database with 3,133 images for the PCD group and
3,470 images for the control group; Select head CT of otitis media
patients with corresponding age and weight as the control for the case
group. In this study, cases were randomly assigned to the training set
and the test set, with 81% of the cases in the training set and 19% in the
test set. Head CT images (2,538 images) from 26 PCD patients were
used as the training set and head CT images (595 images) from six
patients were used as the validation set for training in the case group. In
the control group, head CT images (2,811 images) from 26 PCD
patients were used as the training set and head CT images
(659 images) from six patients were used as the validation set. 4)
Our deep learning workstation is a Dell T7920 with two RTX
3090 GPUs. Each deep learning network requires multiple
adjustments of the learning rate and multiple training sessions to
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find the optimal result, with at least 800 epochs per training session. 5)
Classification and prediction of deep learning neural networks. The
neural networks in our research are all built based on pytorch
(Contributors, 2020). The process of building a neural network
based on pytorch and extracting deep learning features involves
several steps: 1. Importing the necessary libraries and modules, such
as torch, torchvision, and numpy. 2. Defining the architecture of the
neural network, such as the number of layers, the number of neurons in
each layer, and the activation functions used. 3. Initializing the weights
and biases of the network using random values or pre-trained values. 4.
Training the network by providing it with a dataset of input and output
values, and adjusting the weights and biases based on the error between
the predicted and actual outputs. 5. Extracting the deep learning features
by forward-propagating the input through the trained network and
obtaining the output of the final layer or intermediate layers. 6. Using
the extracted features for tasks such as classification, detection, or
feature extraction. 7. Testing the network on new data to evaluate
its performance. Python and PyTorch algorithms were used to build the
deep learning neural networks, and VGG11, VGG16, VGG19, ResNet
18, ResNet 34, ResNet 50, ConvNeXt, GoogLeNet, and Swin-
Transformer (Swin-T) training models were used to classify and
predict a variety of networks. Neural network models were evaluated
using accuracy, precision, recall, f1 score, and area under the curve
(AUC). Gradient-weighted Class Activation Mapping (Grad-CAM)
provided heat mapping for visual interpretation (Selvaraju et al., 2017).

2.2 Statistical analysis

SPSS 22.0 software was used to analyze the data. Numerical
variables were represented by mean ± standard deviation, and the

inter-group difference was identified using an independent samples
t-test. The inter-group differences of measurement data, recorded as
a percentage (n [%]), were analyzed using a chi-square test. p <
0.05 was considered statistically different.

3 Results

3.1 Accuracy, precision, recall, and f1 score
parameters of different training models

The results of the parameters of each training model are presented
in Table 1. VGG11, VGG16, and VGG19 are common VGG training
models with different depths. They all achieved accuracy and f1 score
between 0.887 and 0.904, precision between 0.883 and 0.885, and recall
values between 0.888 and 0.893. However, these models had more
training parameters and a slower speed than other models.

ResNet 34, ResNet 50, and ResNet 101 are commonly used
ResNet training models. Their accuracy ranged from 0.873 to 0.931,
precision from 0.845 to 0.916, recall values from 0.879 to 0.923, and
f1 score from 0.857 to 0.919. The effectiveness of these models
decreased as the number of layers of the neural network increased.
However, the four parameters of all three neural network models
improved significantly after using pretrained weights.

The GoogLeNet training model demonstrated accuracy,
precision, recall value, and f1 scores of 0.939, 0.941, 0.942, and
0.939, respectively, and it had a faster training speed.

Vision Transformers (ViT), Swin-T, and ConvNeXt are the
most recently developed neural network models, with accuracies
between 0.684 and 0.772, precision between 0.563 and 0.803, recall
between 0.549 and 0.78, and f1 score between 0.549 and 0.769. With
the use of pretrained weights, the four parameters of Swin-T and
ConvNeXt were significantly improved to above 0.94, but the
parameters of the ViT model were not significantly improved.

3.2 Receiver operating characteristic curves
and area under the curve values of different
training models with and without pretrained
weights

We evaluated the various training models by calculating the
AUC values under the receiver operating characteristic (ROC)
curves. Of the traditional training models, the VGG11, VGG16,
and VGG19 training models had fewer network layers, and their
AUC values were between 0.945 and 0.962. By contrast, the curve of
the GoogLeNet training model was further to the left, and its AUC
value was the largest at 0.965 (Figure 1A).

The AUC values of the different training methods under the
ResNet model gradually decreased as the number of network layers
increased, with values ranging from 0.963 to 0.974. After using
pretrained weights, the ResNet 50 training model with more layers
achieved an AUC value of 0.967 (Figure 1B).

The AUC values were 0.421 for the Swin-T training model and
0.565 for the ViT training model. After using the pretrained weights,
the AUC values reached 0.946 for the ViT training model, 0.975 for
the Swin-T training model, and 0.972 for the ConvNeXt training
model (Figure 1C).

TABLE 1 Classification matrix.

Accuracy Precision Recall F1 score

Vgg 11 0.903 0.884 0.890 0.887

Vgg 16 0.904 0.885 0.888 0.887

Vgg 19 0.903 0.883 0.893 0.887

Resnet 34 0.897 0.872 0.906 0.884

Resnet 34 pre-train 0.931 0.916 0.923 0.919

Resnet 50 0.885 0.859 0.886 0.871

Resnet 50 pre-train 0.902 0.886 0.882 0.884

Resnet 101 0.873 0.845 0.879 0.857

Resnet 101 pre-train 0.908 0.884 0.921 0.897

Googlenet 0.939 0.941 0.942 0.939

Vit 0.684 0.598 0.569 0.570

Vit pre-train 0.877 0.851 0.874 0.860

Swin-t 0.553 0.563 0.559 0.549

Swin-t pre-train 0.943 0.938 0.925 0.931

Convnext 0.772 0.803 0.78 0.769

Convnext pre-train 0.948 0.95 0.95 0.947
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3.3 Heat mapping of the middle ear mastoid,
maxillary sinus, and fourth ventricle in
patients with primary ciliary dyskinesia

The otologic complications of PCD develop as a result of
defective cilia function in the eustachian tube and middle ear,
leading to mucus collection. Most studies have used otoscopy,
audiometry, and clinical course to assess the ear features of PCD,
but these methods require extensive experience and proficiency
(Takeuchi et al., 2017). We found that children with PCD who
have OME exhibit distinctly highlighted areas on imaging histology
compared with those with common chronic OME (Figures
2A1, A2).

Frequent runny nose and lifelong nasal congestion can begin
early in children with PCD (Yiallouros et al., 2015). Nasal sinusitis is
the main feature of PCD and is seen in almost all patients (Shapiro
et al., 2018). We did not detect nasal polyps in all patients with PCD;
chronic sinusitis usually involves the maxillary and septal sinuses,
but sinus CT was not significantly specific. Using the artificial
intelligence (AI) model, we could see a clearly highlighted area in
the maxillary sinuses bilaterally, which could help make a successful
differential diagnosis of PCD (Figures 2B1, B2).

Neurologically, the symptoms of patients with PCD are mainly
malaise and headache, which may be caused by chronic sinusitis, but
the headache may persist even in the infection-free period. Our
results revealed that the fourth ventricle was significantly different
from the normal fourth ventricle even in patients with PCD without
significant ventricular dilatation (Figures 2C1, C2).

4 Discussion

In most patients with PCD, the condition develops in childhood,
with a median age of 5–5.5 years at the time of diagnosis. However,
some patients develop PCD in adulthood, with a median age of
22 years at the time of diagnosis (Lucas et al., 2020). Patients with

PCD often seek medical treatment for more than 50 recurrent
episodes of the disease (Sommer et al., 2011), mainly because of
the non-specific nature of PCD symptoms. The symptoms of PCD
can be widely cumulative throughout the body and include
coughing, bronchial dilatation, sinusitis, nasal polyps, otitis
media, and infertility. The diagnosis of PCD is greatly hampered
by the high cost of genetic testing, long reporting period,
questionable nature of some genetic variants, and the
invasiveness of electron microscopy. Currently, limited guidance
exists on which patients should be referred for appropriate specialty
testing, especially in the pediatric population. More effective
methods for the diagnosis of PCD are urgently required. Tumor-
related AI technologies and radiomics have developed rapidly in
recent years (Guo et al., 2016) and can even indirectly reflect changes
in genes or proteins at the tissue microscopic level (Castaldo et al.,
2021). In this study, we first built a neural network deep learning
model using PyTorch to differentially diagnose OME or sinusitis
caused by PCD through cranial CT, which is expected to provide a
reference for early clinical intervention in PCD.

The VGG model was proposed by the Visual Geometry Group
in the Department of Science and Engineering, University of Oxford,
in 2014 (Simonyan and Zisserman, 2015), and it has numerous
versions because of the different depths of the network. Compared
with other networks, VGG uses smaller convolutional kernels with
deeper networks to improve parameter efficiency and increase the
non-linear and generalization performance of the network. The
drawback of the VGG model lies in the number of parameters, and
VGG19 is the convolutional network architecture with the largest
number of parameters. The VGG network model used in this study
works better, with an accuracy above 0.93 in all cases.

ResNet, proposed by He et al. (2016) at Microsoft Research, is a
classic neural network that serves as the backbone of many computer
vision tasks. ResNet successfully solves the problem of vanishing
gradients, thus enabling the neural network depth to exceed
100 layers. However, this network may be less suitable for the
images with small target positions used in this study. The

FIGURE 1
Receiver operating characteristic (ROC) curves and area under the curve (AUC) values of various training models. (A) ROC curves and AUC values of
VGG and GoogLeNet training models. (B) ROC curves and AUC values of ResNet training models before and after using pretrained weights. (C) ROC
curves and AUC values of ViT, Swin-T, and ConvNeXt training models before and after using pretrained weights.
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accuracy of the ResNet 101 model in this study was 0.873, which was
the poorest result. This may be because the neural network has too
many layers and the perceptual field is too large, which influences
the model effect. However, after using pretrained weights, the results
of all models were significantly improved.

GoogLeNet is a new deep learning structure proposed by
Szegedy in 2014 (Szegedy et al., 2015). It is designed to improve
the network performance by increasing the width of the network
using convolutional kernels of different sizes in each module, which
are then concentrated, enriching the information in each layer; a
Bayesian network algorithm is then used to speed up the

convergence of the network. Furthermore, GoogLeNet
incorporates the idea of residuals from ResNet to deepen the
network. In this study, the neural network model trained by
GoogLeNet achieved optimal results, and its accuracy, precision,
recall value, and f1 score all reached approximately 0.94.

Transformer (Vaswani et al., 2017) was proposed by Bengio’s
team in 2014 and is widely used in various areas of deep learning. Its
disadvantage is that it does not have the ability to capture local
features and is therefore not effective for use in studies with small
target images and small amounts of data. In this study, even with
pretrained weights, the accuracy, precision, recall value, and f1 score

FIGURE 2
Typical heat mapping of the middle ear mastoid, maxillary sinus, and fourth ventricle in patients with primary ciliary dyskinesia (PCD) and the control
group. (A1) Computed tomography (CT) image of middle ear mastoid in a patient with exudative otitis media (OME). (A2) CT image of middle ear mastoid
in a patient with PCD and OME. (B1) CT image of maxillary sinus in a patient with sinusitis. (B2) CT image and heat mapping of maxillary sinus in a patient
with PCD and sinusitis. (C1) CT image of fourth ventricle in a patient with PCD. (C2) CT image and heat mapping of fourth ventricle in a patient
with PCD.
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of ViT was approximately 0.57. Swin-T is a new architecture
proposed on this basis (Liu et al., 2021), which incorporates the
convolutional neural network (CNN) and solves the disadvantages
of Transformer, making it suitable for studies with small target
images and small amounts of data. In this study, the accuracy,
precision, recall value, and f1 score all reached above 0.94 after using
pretrained weights.

ConvNeXt can be seen as a convolutional network evolution that
combines the special design features of Swin-T and ViT (Liu et al.,
2022). It upgrades the ResNet architecture, learning the self-attention
layer of Swin-T and its architecture. ConvNeXt is more valuable in
industrial deployments and clinical applications. Its accuracy, precision,
recall value, and f1 score in this study were all above 0.94. ViT, Swin-T,
and ConvNeXt are currently the most popular nets, but they all require
large amounts of data and computing power for training.Without using
their corresponding pretrained weights for transfer learning, themodels
in this study achieved poor results. In this study, ViT, Swin-T, and
ConvNeXt achieved strong results using their corresponding pretrained
weights.

Without using pretrained weights, the traditional CNN network
is more suitable for medical image research with insufficient
research data. In this study, with the use of pretrained weights,
each net model achieved positive model results except Transformer.
Users must focus on which method to use for transfer learning and
identifying when migration is effective and when has negative
effects. However, no methods exist to support effective migration.

The reliability of deep learning image classification can be
defined as the ability of the model to consistently and accurately
classify images. This can be measured by testing the model on a large
dataset of labeled images and comparing the results to the true labels.
The accuracy, precision, and recall of the model can also be used to
determine its reliability. Primary ciliary dyskinesia is a rare disease
with strict diagnostic criteria that require genetic diagnosis.
Therefore, it is difficult to collect a large number of CT images,
especially for multi-center studies with large sample sizes. In the
deep learning networks, the final fully connected layer uses a
softmax activation function for binary classification. The softmax
function converts the output of the final layer into a probability
distribution, where the probability of each class is represented by a
value between 0 and 1 (Kouretas and Paliouras, 2019). The class with
the highest probability is then chosen as the final prediction. This is
known as one-hot encoding, where the predicted class is represented
by a vector of all zeros with a 1 in the position of the predicted class.

Deep learning is a powerful method for solving complex problems,
but it has amajor limitation: it is not very interpretable. This means that
it can be difficult to understand why a deep learning model is making a
particular prediction. One way to improve the interpretability of deep
learning models is through the use of visualization techniques such as
Grad-CAM. Grad-CAM is a method that allows us to understand
which parts of an image are most important for a deep learning model’s
prediction. The basic process of Grad-CAM is as follows: first, the
model is trained on a dataset. Next, the model is used to classify an
image and the output of the final convolutional layer is obtained. The
output is then passed through a global average pooling layer to obtain a
feature map. This feature map is then multiplied by the gradient of the
output of the final convolutional layer with respect to the input image.
The resulting heatmap is then overlayed on the original image to
highlight the regions that aremost important for themodel’s prediction.

To better understand the neural network and allow the model to
make decisions, Grad-CAM was proposed to discriminate the image
position without attention. In contrast to CAM, Grad-CAM can
visualize CNNs of arbitrary structure without modifying the network
structure or retraining. Gradient information from the last
convolutional layer flowing into the CNN is used by Grad-CAM to
assign importance values to each neuron for a specific attention
decision. Although the technique is rather general because it can be
used to interpret activations in any layer of the deep network, this study
focused only on interpreting decisions in the output layer.

The targets of this study are the middle ear tympanic chambers,
sinuses, and ventricles, which are areas of high secretion and have a
small proportion of area monolayer image pictures. Classifying
images generally requires up to a million images for effective
modeling. However, collecting so much data in medical research
is challenging, especially for rare diseases. Transfer learning is a
machine learning method that can migrate the trained model
parameters to a new model to help new model training (Niu
et al., 2021). If the training data are small and the training model
of deep learning is less effective, transfer learning can be considered.

This study has some limitations. Primary ciliary dyskinesia is an
extremely rare disease. Collecting cases is extremely difficult. For
fine-grained image classification, the minimum number of images
required will depend on the specific task and dataset. However, it is
generally recommended to have a minimum of several hundred
images per class for a fine-grained classification task (Shahinfar
et al., 2020). Due to the small number of cases, this study only
divides into training and testing sets and does not have a validation
set. This limitation is mentioned in this paper. We will conduct
multi-center research and collect more cases, using external datasets
to validate. The small number of cases in this study and the
insufficient follow-up time of the patients do not allow us to
confirm the resolution of OME, sinusitis, and other organ
abnormalities in the participating children. In addition, this study
is a single-center study, with no other data available for validation. In
the future, we will combine genetic testing, CT, and other sequences
of MRI for multimodal studies, as well as the three-dimensional
(3D) separation of the middle ear mastoid, Eustachian tube, and
surrounding tissues for 3D model studies.

In conclusion, our deep learning-based imaging histological
characterization is a vital aid in the differential diagnosis of OME
and PCD and provides important clues for early non-invasive
diagnosis.
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