
IGF-1 boosts mitochondrial
function by a Ca2+

uptake-dependent mechanism in
cultured human and rat
cardiomyocytes

Pablo Sánchez-Aguilera1,2, Camila López-Crisosto1,
Ignacio Norambuena-Soto1, Christian Penannen1, Jumo Zhu2,
Nils Bomer2, Matijn F. Hoes3,4,5, Peter VanDerMeer2, Mario Chiong1,
B. Daan Westenbrink2*† and Sergio Lavandero1,6*†

1Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Facultad
de Medicina, Universidad de Chile, Santiago, Chile, 2Department of Cardiology, University Medical Center
Groningen, University of Groningen, Groningen, Netherlands, 3Department of Clinical Genetics, Maastricht
University Medical Center, Maastricht, Netherlands, 4Department of Genetics and Cell Biology, Faculty of
Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands, 5CARIM School for
Cardiovascular Diseases, Maastricht, Netherlands, 6Cardiology Division, Department of Internal Medicine,
University of Texas Southwestern Medical Center, Dallas, TX, United States

A physiological increase in cardiac workload results in adaptive cardiac remodeling,
characterized by increased oxidative metabolism and improvements in cardiac
performance. Insulin-like growth factor-1 (IGF-1) has been identified as a critical
regulator of physiological cardiac growth, but its precise role in cardiometabolic
adaptations to physiological stress remains unresolved. Mitochondrial calcium (Ca2+)
handling has been proposed to be required for sustaining key mitochondrial
dehydrogenase activity and energy production during increased workload
conditions, thus ensuring the adaptive cardiac response. We hypothesized that
IGF-1 enhances mitochondrial energy production through a Ca2+-dependent
mechanism to ensure adaptive cardiomyocyte growth. We found that stimulation
with IGF-1 resulted in increasedmitochondrial Ca2+ uptake in neonatal rat ventricular
myocytes and human embryonic stem cell-derived cardiomyocytes, estimated by
fluorescence microscopy and indirectly by a reduction in the pyruvate
dehydrogenase phosphorylation. We showed that IGF-1 modulated the
expression of mitochondrial Ca2+ uniporter (MCU) complex subunits and
increased the mitochondrial membrane potential; consistent with higher MCU-
mediated Ca2+ transport. Finally, we showed that IGF-1 improved mitochondrial
respiration through a mechanism dependent on MCU-mediated Ca2+ transport. In
conclusion, IGF-1-induced mitochondrial Ca2+ uptake is required to boost oxidative
metabolism during cardiomyocyte adaptive growth.
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1 Introduction

Cardiac hypertrophy is a type of cardiac remodeling characterized
by the enlargement of the heart in response to a repetitive or sustained
increase in cardiac workload, classified as either physiological or
pathological (Hill and Olson, 2008). Physiological cardiac
hypertrophy develops during exercise or pregnancy and is
characterized by mild reversible cardiac growth with conserved or
increased contractility (Nakamura and Sadoshima, 2018). In contrast,
pathological cardiac hypertrophy is an excessive cardiac growth
observed in most cardiovascular diseases due to an unremitting
increase in cardiac workload, which results in progressive and
irreversible contractile dysfunction, cell death, and fibrosis
(Nakamura and Sadoshima, 2018). There is little agreement on the
mechanisms that determine both hypertrophic phenotypes, which
could explain the lack of efficient treatments for pathological
remodeling that often leads to heart failure (Hill and Olson, 2008).

Both hypertrophies are related to different signaling pathways and
have a wholly opposed metabolic signature and energetic balance at
the cardiomyocyte level (Brown et al., 2017). There is a consensus that
physiological cardiac hypertrophy requires the activation of IGF-1
receptor signaling and mitochondrial function to be adaptive
(Troncoso et al., 2014; Nijholt et al., 2022). In contrast, mechanical
stress and catecholamines/angiotensin II overstimulation have been
associated with Ca2+ mishandling and mitochondrial dysfunction,
which are common features of pathological cardiac hypertrophy
(Crilley et al., 2003; Nakamura and Sadoshima, 2018).
Mitochondrial function and the energetic status of cardiomyocytes
appear to be critical factors determining the developing hypertrophic
phenotype.

Ca2+ exerts a delicate control of the energetic balance in
cardiomyocytes. It promotes ATP consumption during contraction
and increases mitochondrial ATP production to meet cardiac energy
demands (Glancy and Balaban, 2012). This process occurs during each
action potential when the sarcoplasmic reticulum releases Ca2+ that is
partially absorbed by the mitochondria, enhancing the pyruvate
metabolism and the tricarboxylic acid (TCA) cycle activity, thus
promoting ATP synthesis (Denton, 2009). To reach the
mitochondrial matrix, Ca2+ crosses the inner mitochondrial
membrane through the mitochondrial Ca2+ uniporter (MCU)
complex, strategically positioned in the vicinity of the junctional
sarcoplasmic reticulum-mitochondrial associations (De La Fuente
et al., 2016). The MCU complex (MCUC) is a Ca2+ transporter
formed by the pore-forming subunit MCU, its paralog MCUB and
the essential MCU regulator (EMRE) (Fan et al., 2020). In addition,
MCU-mediated Ca2+-transport is regulated by mitochondrial Ca2+

uptake 1 and 2 (MICU1/2) and theMCU regulator 1 (MCUR1), which
respectively control the channel gating and the conductance of MCU
(Tomar et al., 2016; Wang et al., 2020).

Recently, the MCUC was linked to physiological cardiac
hypertrophy. MCU protein levels increased in parallel with cardiac
growth in two models of adaptive cardiac hypertrophy (Zaglia et al.,
2017). Moreover, cardiac-specific overexpression of MCU in mice
with pathological hypertrophy increased mitochondrial respiration
and recovered cardiac performance, thereby resembling physiological
cardiac growth (Suarez et al., 2018; Liu et al., 2021). There is plenty of
evidence that mitochondrial dysfunction and Ca2+ mishandling
contribute to the pathological cardiac hypertrophy (Gorski et al.,
2015; Ljubojevic-Holzer et al., 2020; Liu et al., 2021). However,

little attention has been paid to mitochondrial Ca2+ handling and
its influence on oxidative metabolism in models of physiological
cardiac hypertrophy. To address this question, we studied the effect
of the physiological hypertrophic inductor IGF-1 on mitochondrial
Ca2+ handling and oxidative metabolism in cultured cardiomyocytes.

2 Materials and methods

2.1 Neonatal rat ventricular myocytes
(NRVMs) culture

NRVMs were obtained from 2 to 3 days old Sprague-Dawley rats.
The isolation and culture were developed according to Galvez et al.
(Galvez et al., 2001). Briefly, neonatal rats were decapitated, hearts
extracted, and atria removed. Ventricles were washed in sterile Hank’s
medium (Sigma-Aldrich, San Luis, MI, United States) at 37°C and
submitted to enzymatic digestion. Cardiomyocytes were purified by a
pre-pleated step for 2 h at 37°C to remove fibroblasts and afterward
cultured in maintenance medium (DME:M199, 4:1; Sigma-Aldrich)
supplemented with 15% fetal bovine serum and 0.1 mM
bromodeoxyuridine (Sigma-Aldrich).

2.2 Human embryonic stem cells derived
cardiomyocytes (hES-CMs) culture

HUES9 human embryonic stem cells from Harvard Stem cells
institute were differentiated into cardiomyocytes using a small
molecule-derived approach (Hoes et al., 2018; Bomer et al., 2020).
Briefly, HUES9 cells were maintained in Essential 8 medium
(A1517001; Thermo Fisher Scientific, Waltham, MA, United States)
before differentiation to cardiomyocytes was initiated, which was
achieved by culturing HUES9 cells in RPMI1640 medium (21875-
034, Life Technologies, Carlsbad, CA, United States) supplemented
with 1x B27 minus insulin (Life Technologies, Carlsbad, CA,
United States) and 6 μmol/L CHIR99021 (13122, Cayman
Chemical, Ann Arbor, MI, United States). After 2 days, medium
was refreshed with RPMI1640 supplemented with 1x B27 minus
insulin and 2 μmol/L Wnt-C59 (5148, Tocris Bioscience, Bristol,
United Kingdom). After 2 days, medium was changed to
CDM3 medium (RPMI1640 plus 213 μg/mL ascorbic acid 2-
phosphate plus 500 μg/mL recombinant human albumin). On day
8 after induction of differentiation, spontaneously contracting
cardiomyocytes were observed, which were subsequently purified
by replacing the medium to glucose-free CDM3 medium
supplemented with 5 mmol/L sodium DL-lactate (CDM3L; Sigma-
Aldrich). Ultimately, this resulted in >99% pure spontaneously beating
cardiomyocyte cultures. The hES-CMs were suitable for
experimentation ~30 days after the differentiation protocol started.

2.3 IGF-1 stimulation

Cardiomyocytes were stimulated with 10 nM recombinant human
IGF-1 + 0.1% BSA (Thermo Fisher Scientific, Waltham, MA,
United States) or 0.1% BSA in CDM3 or maintenance medium
(hES-CMs or NRVMs respectively) between 15 min and 48 h
depending on the experimental setup.
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2.4 Lentiviral production and transduction of
hES-CMs

HEK-293T cells were cultured at 37°C, and 5% CO2 in Dulbecco
modified Eagle medium (DMEM; Thermo Fisher Scientific)
supplemented with 10% fetal calf serum (Sigma-Aldrich). At 70%
confluence, the cells were transfected with Fugene HD (Promega,
Madison, WI, United States) together with pCMVΔ8.91-transfer
plasmid, VSV-G-packaging plasmid, and pLKO.1-plasmid
expressing the genetically encoded mitochondrial Ca2+ indicator
Mitycam provided by Dr. Adam Cohen (pMOS028, Addgene,
plasmid #163046). The medium was replaced with CDM3 after
24 h and the supernatant containing the viral particles was
harvested and filtered with a 0.45 nm filter after 48 h hES-CMs
were incubated with CDM3 supplemented with 40% clean viral
supernatant for 24 h. The next day, the medium was replaced by
CMD3. After 48 h, cells were available for experiments.

2.5 Mitochondrial Ca2+ uptake

2.5.1 hES-CMs
Transfected hES-CMs with the Ca2+ indicator Mitycam were

incubated in Tyrode medium (130 mM NaCl, 4 mM KCl, 2 mM
CaCl2, 1 mM MgCl2, 10 mM glucose, 10 mM HEPES, pH 7.2) and
mounted at 37°C in the Olympus IX-71 inverted microscope
DeltaVision Elite (Olympus, Tokyo, Japan). Mitycam fluorescence
(excitation/emission spectra: 498/515) was recorded at baseline
(5 min) and during electric stimulation (2 Hz, 6 min) in the
presence of 10 nM isoproterenol (Sigma-Aldrich).

2.5.2 NRVMs
Mitochondrial Ca2+ uptake was determined using the Ca2+

indicator Rhod2-AM (excitation/emission spectra: 575/675.
Invitrogen, Waltham, MA, United States) (Maxwell et al., 2018).
Briefly, cells were incubated with Rhod2-AM in Tyrode medium
for 30 min at room temperature, washed, and de-esterified for
another 30 min. Subsequently, NRVMs were permeabilized with
0.005% saponin for 30 s followed by the replacement for an
internal medium without Ca2+. Cells were mounted in the Zeiss
LSM 700 laser scanning confocal microscope (Carl Zeiss AG,
Oberkochen, Germany), and the baseline Rhod2 fluorescence was
recorded for 20 s. The medium was replaced by an internal medium
with 2 µM free Ca2+, and the signal was recorded for 100 s.

For both cell types (hES-CMs and NRVMs), the images were
processed and analyzed in the open-source software Fiji (Schindelin
et al., 2012). For imaging analysis, the background signal was
subtracted. Mitycam fluorescence signal was expressed as 1—(F/F0)
and Rhod2 fluorescence signal as F/F0.

2.6 Cell lysate and protein extraction

Cardiomyocytes were lysed in RIPA buffer supplemented with
protease inhibitors (Roche, Basile, Switzerland), phosphatase
inhibitors (Sigma-Aldrich), sodium orthovanadate (Sigma-Aldrich),
and phenylmethylsulphonyl fluoride (Roche). Subsequently, cells were
centrifuged at 12,000 g for 10 min at 4°C. The supernatant was
recovered, and the isolated protein was quantified using the BCA

protein assay (Thermo Fisher Scientific). The protein extract was
cooked at 95°C for 5 min in SDS-PAGE loading buffer (Thermo Fisher
Scientific) and stored at −20°C.

2.7 Electrophoresis, electro-transference,
and western blotting

Protein electrophoresis was carried out by standard methods.
Briefly, SDS PAGE was loaded with 10 µg of protein extract.
Proteins were separated by electrophoresis at 80 mV in running
buffer and electro-transferred to a PVDF membrane at 0.45 A for
90 min in transference buffer. Primary antibodies were diluted in
blocking buffer (TBS, 0.1% Tween, and 5% bovine serum albumin) in a
1:1,000 ratio and incubated overnight at 4°C. Membranes were washed
in TBS-0.1% tween and incubated in blocking buffer with the
secondary antibody (anti-mouse or anti-rabbit, Sigma-Aldrich) for
1 h in a 1:5,000 ratio. REVERT™ Total protein staining was used as
loading control (LI-COR Lincoln, NE, United States). Western blot
detection was carried out in a chemiluminescence detector by standard
methods.

2.8 Reverse transcription and real-time qPCR

Cells were lysed with TRIzol® (Invitrogen, Carlsbad, CA,
United States) following the manufacturer’s instructions. The
mRNA was quantified using a NanoDrop 2000 machine (Thermo
Fisher Scientific). The cDNA was synthesized with the Quantitect RT
kit (Qiagen N.V., Hilden, Germany) following the manufacturer’s
instructions. All primers were designed in Primer-Blast software
(NCBI, Bethesda, MD, United States) and internally validated.
qPCR was carried out using the SYBR® Green Master Mix (Bio-
Rad, Hercules, CA, United States) in the thermocycler CFX384 Touch
Real-Time PCR Detection System (Bio-Rad).

2.9 Determination of mitochondrial
membrane potential

Cardiomyocytes were incubated with 20 nM
tetramethylrhodamine ethyl ester (TMRE+, Invitrogen; excitation/
emission spectra: 553/577) in Tyrode medium at 37°C for 30 min.
Cardiomyocytes were mounted in the Olympus IX-71 inverted
microscope DeltaVision Elite. Baseline fluorescence was recorded
for ~200 s and subsequently, exposed to 10 mM Carbonyl cyanide-
p-trifluoromethoxyphenylhydrazone (FCCP) for ~1,000 s. The noise
signal was subtracted. TMRE+

fluorescence was expressed as F—Fmin

(relative fluorescence unit, RFU).

2.10 Mitochondrial respiration assay
(seahorse)

hES-CMs were seeded in Seahorse assay plates at a density of
0.25 x 105 cells/well. 24 h before the experiment, cardiomyocytes were
stimulated with IGF-1 or IGF-1 + 10 µM ru360 (Merck, Darmstadt,
Germany). Oxygen consumption rate was determined by the Seahorse
XF Cell Mito Stress Test programmed in the extracellular metabolic
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flux analyzer Agilent Seahorse XF96 (Agilent Technologies, Santa
Clara, CA, United States). 20 min before the assay, CDM3 medium
was replaced by Seahorse assay medium XF (Agilent Technologies)
supplemented with 10 mM glucose and 1 mM sodium pyruvate at
37°C without CO2 control. The standard stress protocol was
performed (Hoes et al., 2018), and the oxygen consumption rate
was normalized by protein content determined by BCA protein assay.

2.11 Cell viability assay

Cell viability was determined using the Real-Time-Glo™MT Cell
viability assay Kit (Promega, Madison, WI, United States) following
themanufacturer’s instructions. Briefly, the NanoLuc® enzyme and the
viability substrate were 1x diluted and equilibrated at 37°C in
CDM3 medium or CDM3 medium +10 µM ru360 (experimental
media). hES-CMs were seeded in a clear bottom 96 well plate.
CDM3 medium was replaced by the corresponding experimental
medium and the luminescence was recorded from 0 to 48 h in the
Synergy H1 plate reader (BioTek, Winooski, VT, United States). The
signal was corrected by the protein content in each well.

2.12 Cell size determination

NRVMs were seeded in gelatin-coated coverslips in a maintenance
medium and stimulated with IGF-1 for 48 h. Subsequently, NRVMs
were fixed in PBS + 4% paraformaldehyde for 15 min. Afterward, cells
were incubated with rhodamine-phalloidin (1:500, Thermo Fisher
Scientific) and Hoescht (1:1,000, Thermo Fisher Scientific) for 1 h at
room temperature. Coverslips were mounted in slides with DAKO
mounting medium (Agilent Technologies). The images were acquired
using the Zeiss LSM 700 laser scanning confocal microscope. The
relative cell area was quantified using the software Fiji. 50 to 100 cells
were analyzed per condition.

2.13 Statistical analysis

All the results were expressed as mean ± SE from at least three
independent assays. For values with normal distribution and equal
variances was used t-test or one-way ANOVA was followed by the
Tukey post-hoc test for multiple comparisons. For comparing groups
without normal distribution was used U Mann-Whitney test or the
Kruskal–Wallis test followed by the Dunn post-hoc test for multiple
comparisons. A p-value < 0.05 was considered for statistical
differences. The software GraphPad Prism 9 (GraphPad Software
Inc., San Diego, CA, United States) was used for data analysis and
visualization.

3 Results

3.1 IGF-1 increases mitochondrial Ca2+ uptake
and PDH activity in human and rat
cardiomyocytes

To study mitochondrial Ca2+ handling under conditions of
physiological hypertrophy, we studied Ca2+ uptake kinetics of

NRVMs in response to IGF-1 stimulation. We first corroborated
the activation of IGF-1 receptor-dependent signaling in these cells
and observed a time-dependent increase in AKT phosphorylation
(Supplementary Figure S1). IGF-1 also promoted a clear
hypertrophic response in NRVMs (Supplementary Figure S2). To
assess the effect of IGF-1 on mitochondrial Ca2+ uptake we made use
of the Ca2+ indicator Rhod2, restricting the fluorescence signal into
the mitochondria by a permeabilization step with saponin
(Figure 1A). IGF-1-treated NRVMs significantly improved their
Ca2+ uptake capacity after an extracellular pulse of 2 µM free Ca2+

(Figures 1B, C), observed as higher maximal fluorescence and area
under the curve than the control condition (Figure 1D). As a control,
we blocked mitochondrial Ca2+ uptake with the MCU inhibitor
ruthenium red (RuRed), confirming the role of the MCUC on the
observed effect (Figures 1C, D). The rise in mitochondrial Ca2+

concentration activates the pyruvate dehydrogenase (PDH)
phosphatase, which dephosphorylates and activates the PDH
complex (Denton, 2009). We found that IGF-1 stimulation
significantly reduced the PDH phosphorylation by 0.55 ± 0.04-
fold over the control condition (Figure 1E).

To generalize the results found in NRVMs, we replicated our
findings in hES-CMs. Similar to NRVMs, IGF-1 induced AKT
phosphorylation in these cells (Supplementary Figure S1). To
measure the mitochondrial Ca2+ uptake, hES-CMs were infected
with a lentiviral vector containing the genetically encoded Ca2+

indicator Mitycam, whose expression is restricted to
mitochondria. As shown in Figure 1F, the Mitycam signal has
an almost identical fluorescence pattern to TMRE+, a
potentiometric dye that accumulates within the mitochondrial
matrix. We promoted Ca2+ release from the sarcoplasmic
reticulum by using electric field stimulation in presence of β-
adrenergic agonist isoproterenol (Iso). We observed a drop in
Mitycam fluorescence during electric stimulation, which was more
pronounced at the end of the protocol in the cells treated with IGF-
1 (Figures 1G–I), suggesting a greater capacity for Ca2+ uptake. As
well as in NRVMs, IGF-1 stimulation significantly reduced the
PDH phosphorylation (~43% y ~41% at 6 and 24 h of incubation,
respectively) compared to non-treated cells (Figure 1J), indicative
of a higher PDH activity.

Overall, these data suggest that IGF-1 enhances mitochondrial
Ca2+ handling and pyruvate metabolism in both cellular models,
indicating a conserved response in both species.

3.2 IGF-1 modifies the expression of MCUC
elements and increases the mitochondrial
membrane potential

The limiting pathway of mitochondrial Ca2+ influx is the MCUC.
Its function is mainly regulated by changes in the expression of the
MCUC subunits affecting its Ca2+ sensitivity, gating, or the stability of
the complex (Figure 2A) (Feno et al., 2021). In hES-CMs, IGF-1 did
not change either MCU mRNA (Figure 2B) or protein levels
(Figure 2C) at any of the evaluated time points. However,
compatible with a higher MCU conductance, we observed a
significant reduction of MICU1 mRNA levels at 24 and 48 h
(0.59 ± 0.05 and 0.61 ± 0.04-fold over control conditions,
respectively) and increased mRNA levels of MCUR1 at 6 h (1.41 ±
0.1-fold over control condition) (Figure 2D).
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Next to MCUC composition, Ca2+ transport also depends on an
electric gradient between the inter-membrane space and the
mitochondrial matrix, known as mitochondrial membrane potential
(ΔΨmt). This is the main driving force for Ca2+ influx through the

MCUC (Figure 2A) (Nicholls and Crompton, 1980). Therefore, an
increment of ΔΨmt will promote a higher MCU-mediated Ca2+

transport. To test this hypothesis, we determined the basal ΔΨmt in
TMRE+-loaded cardiomyocytes and found that, indeed, IGF-1

FIGURE 1
IGF-1 increases mitochondrial Ca2+ uptake and reduces the PDH phosphorylation in NRVMs and hES-CMs. (A) Rhod2 and Mitotracker Green
fluorescence pattern. Scale bar: 20 µm. (B) Representative confocal images of Rhod2 fluorescence were recorded for 100 s in permeabilized NRVMs treated
with IGF-1 for 24 h and exposed to a pulse of 2 μM free Ca2+ (n= 3–6). Scale bar: 20 µm. (C) Rhod2 fluorescence kinetic obtained fromB, including ruthenium
red (RuRed, 5 μM) treated conditions. (D) Area under the curve and maximal fluorescence (amplitude) registered in C for each condition. (E)
Representative Western blot and quantification of phosphorylated PDH in serine 293 in NRVMs treated with IGF-1 for 24 h (n = 6). *p < 0.05 vs. control **p <
0.01 vs. control. ***p < 0.001 vs. control; #p < 0.05 vs. non-RuRed treated condition. (F) TMRE+ and Mitycam fluorescence pattern. Scale bar: 10 µm. (G)
Representative images of Mitycam fluorescence were recorded for 550 s in hES-CMs treated with IGF-1 for 24 h and exposed to an electric field stimulation
(2 Hz) and isoproterenol (Iso, 10 µM). (n = 3—6). Scale bar: 10 µm. (H) Mitycam fluorescence kinetic. (I) Area under the curve and maximum fluorescence
(amplitude) determined from H for each condition (n = 4). (J) Representative Western blot and quantification of phosphorylated PDH in serine 293 between
1 and 24 h of IGF-1 stimulation (n = 7—8).
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FIGURE 2
Effect of IGF-1 on MCU complex elements expression and ΔΨmt in hES-CMs. (A) Scheme of MCU complex components (MCU, MCUB, SMDT1, MICU1,
MICU2, MCUR1) inserted in the inner mitochondrial membrane (IMM) and a representation of the ΔΨmt between the intermembrane space (IMS) and the
mitochondrial matrix (MM); (B) Relative mRNA and (C) protein levels of MCU in hES-CMs stimulated with IGF-1 for 1–48 h (n = 6—8); (D) Relative mRNA levels
of MCU complex regulatory subunits (MCUB, SMDT1, MICU1, MICU2, MCUR1) in hES-CMs stimulated with IGF-1 for 1–48 h (n = 6—8). The dotted line
represents the mRNA levels of the untreated (control) condition; (E) Relative levels of basal TMRE+ in cells treated with IGF-1 for 24 h *p < 0.05 vs. control.
Scale bar: 10 µm.
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increased the basal ΔΨmt by 1.5 ± 0.09-fold over the control condition
(Figure 2E). Altogether, these results indicate that IGF-1 enhances
mitochondrial Ca2+ handling by a mechanism that combines changes
in the MCUC and the driving force for mitochondrial Ca2+ influx.

3.3 IGF-1 increases cardiomyocyte respiration
by a mechanism dependent on mitochondrial
Ca2+ uptake

The elevation of mitochondrial Ca2+ concentrations promotes the
activity of PDH and the TCA cycle, indirectly increasing oxygen
consumption rate (OCR) and ATP synthesis (Williams et al., 2015).
Based on this premise, we investigated the effect of IGF-1 on the OCR
of hES-CMs, using an extracellular metabolic flux analyzer. As
expected, IGF-1 increased basal (1.37 ± 0.10-fold), ATP-linked
(1.45 ± 0.14-fold), and maximal respiration (1.29 ± 0.09-fold),
including the proton leak (1.71 ± 0.12-fold) (Figures 3A, B). To
confirm whether the mitochondrial Ca2+ could play a role in the
IGF-1-mediated mitochondrial respiration, we evaluated the OCR in
hES-CMs co-incubated with the specific MCU inhibitor ru360.
Remarkably, ru360 completely prevented the changes in OCR
induced by IGF-1, showing similar values as the control condition
(Figures 3A–C), except for the proton leak, which remained high
(1.48 ± 0.15-fold over the control condition). It is important to note
that in all evaluated time points, ru360 did not reduce cell viability
(Supplementary Figure S3). Altogether, these results suggest that IGF-
1 increases mitochondrial respiration by a mechanism dependent on
MCU-mediated Ca2+ uptake.

4 Discussion

Our study showed that IGF-1 boosts mitochondrial Ca2+ uptake
and stimulates Ca2+-sensitive mitochondrial dehydrogenases, which

enhances oxidative metabolism during cardiomyocyte growth in both
NRVMs and hES-CMs. Moreover, we propose that IGF-1 regulates
mitochondrial Ca2+ uptake through modifications in MCUC
composition and increasing ΔΨmt. This study suggest that
physiological cardiomyocyte growth is strictly linked to
mitochondrial function and energy homeostasis and highlight Ca2+

as the main signal to allow the energetic adaptation.
Ca2+ allows the real-time adaptation of mitochondrial function to

meet energy demands during increased cardiomyocyte workload
(Wescott et al., 2019). This occurs even under pathological cardiac
remodeling where MCU upregulation sustains mitochondrial and
cardiac function and its downregulation exacerbates the
pathological phenotype (Wang et al., 2022). This is possible
because part of the released Ca2+ during contraction is absorbed by
mitochondria, directly stimulating the activity of the isocitrate and α-
ketoglutarate dehydrogenases, and indirectly, the PDH activity, which
together will increase ATP synthesis (Glancy and Balaban, 2012). We
postulated that IGF-1 promotes mitochondrial Ca2+ uptake to sustain
the energetic requirements of a growing cardiomyocyte. In line with
this hypothesis, we observed that the activation of the IGF-1 signaling
pathway increased mitochondrial Ca2+ uptake in both cell types
(Figures 1C, H). Moreover, IGF-1 reduced phospho-PDH, which
indicates higher enzymatic activity and pyruvate oxidation and,
indirectly, higher mitochondrial Ca2+ concentration (Figures 1E,J).

Our findings add new evidence on the subacute effect of IGF-1
on mitochondrial Ca2+ handling, a controversial area of research.
For instance, Gutiérrez et al. concluded that the stimulation with
100 nM IGF-1 do not affect mitochondrial Ca2+ uptake in NRVMs
(Gutiérrez et al., 2014). However, this could be explained because of
the usage of supraphysiological IGF-1 concentrations or the
utilization of a Ca2+ indicator with a substantial noise signal. By
contrast, Troncoso et al. showed that 10 nM IGF-1 enhanced
mitochondrial function in a Ca2+-dependent manner during
nutritional starvation in NRVMs, which is in line with our
findings (Troncoso et al., 2012).

FIGURE 3
IGF-1 increases mitochondrial respiration by a mechanism dependent on mitochondrial Ca2+ uptake. (A) Representative plot of OCR over time. (B)
Quantification of the relative changes in OCR (basal respiration, ATP-linked respiration, maximal respiration, non-mitochondrial respiration, spare capacity,
and proton leak) in hES-CMs stimulated with IGF-1 (10 nM for 24 h) or vehicle. (C)Quantification of the relative changes in OCR in hES-CMs stimulated with
ru360 (10 µM) or vehicle respiration (n = 3).
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Concerning PDH, its phosphorylation status has often been used
as an accepted readout of mitochondrial Ca2+ content, being employed
in several studies to check the effect of the genetic manipulation of
MCU components on mitochondrial Ca2+ content (Pan et al., 2013;
Luongo et al., 2015; Kwong et al., 2018). Here, we show that IGF-1
regulates PDH activity, possibly by a Ca2+-dependent mechanism.
However, this data should be taken with caution because PDH is also
regulated by the pyruvate dehydrogenase kinase that is insensitive to
Ca2+ (Matsuhashi et al., 2015).

Mitochondrial Ca2+ uptake is a highly regulated process that is
governed by factors related to the MCUC and the electrochemical
gradient for Ca2+ transport (Williams et al., 2013). A change in any of
theMCUC components could affect the conductance or stability of the
complex (Vais et al., 2015; Payne et al., 2017; Lambert et al., 2019; Van
Keuren et al., 2020). In addition, the ΔΨmt mainly generated by the
electron transport chain represents the main driving force for MCU-
mediated Ca2+ transport (Nicholls and Crompton, 1980).
Interestingly, we found that IGF-1 modified both factors, the
MCUC components expression and ΔΨmt (Figure 2).

There are several combinations of theMCUC composition that are
compatible with enhanced MCU activity, which could explain the
higher mitochondrial Ca2+ uptake. As illustrated in other studies,
MICU1 loss-of-function increased the basal mitochondrial Ca2+

content (Rao et al., 2020; Kohlschmidt et al., 2021; Singh et al.,
2022) and PDH activity (Rao et al., 2020). This could be explained
by the fact that MICU1 acts as the gatekeeper of the MCU channel,
limiting Ca2+ uptake at low cytosolic Ca2+ concentrations (<~1, 3 μM)
(Payne et al., 2017). Therefore, a reduction in MICU1 could lead to
higher resting mitochondrial Ca2+ concentrations, increasing PDH
activity. Regarding MICUR1 function, several reports indicated that
the inclusion of MCUR1 in the MCUC enhances the Ca2+ transport,
although there is no consensus on the mechanism (Mallilankaraman
et al., 2012; Tomar et al., 2016). Paupe et al. proposed that
MCUR1 acted as a scaffold factor for cytochrome C oxidase, which
indirectly promotes mitochondrial Ca2+ transport by increasing the
ΔΨmt (Paupe et al., 2015). Interestingly, this theory agrees with the
higher ΔΨmt found in our experiments.

Wescott et al. showed that mitochondrial Ca2+ increments are
necessary and sufficient for maintaining the ΔΨmt and ATP levels of
adult cardiomyocytes during situations of high energetic demand
(Wescott et al., 2019). Based on this mechanism, we proposed that
mitochondrial Ca2+ influx promoted by IGF-1 will potentiate
metabolism and respiration to sustain the energy demands imposed
by the hypertrophic stimulus. As hypothesized, we found that IGF-1
significantly enhanced ATP-linked respiration in a Ca2+-dependent
manner (Figure 3). Other studies also found that IGF-1 increases OCR
in NRVMs (Troncoso et al., 2012; del Campo et al., 2014), especially
when mitochondria are stimulated with pyruvate/malate (Tigchelaar
et al., 2016). Interestingly, the hormone triiodothyronine, another
well-described physiological hypertrophic inductor, also increases
mitochondrial Ca2+ uptake, OCR, and ATP synthesis (Tawfik et al.,
2022). In addition, we also found that IGF-1 promoted a significant
increase in the proton leak relative to control cells, which did not
respond to ru360 incubation. During conditions of high energy
demand, the elevation of proton leak is a protective response to
reduce the production of excessive reactive oxygen species
(Cadenas, 2018), which could be the case of cells under
hypertrophic stimulation. However, we should take these values
with caution because absolute proton leak values were low, and

they did not represent a significant percentage of the maximal
respiration for each condition (control: 14.7 ± 3.74%; IGF-1: 13.6 ±
3.44%; IGF-1 + ru360: 16.3 ± 4.83%).

In summary, this study shows that IGF-1 boosts mitochondrial
Ca2+ handling and improves the oxidative metabolism of
cardiomyocytes during physiological growth. In addition, we
identified changes in the MCUC components and ΔΨmt as possible
regulatory mechanisms of the IGF-1-mediated mitochondrial Ca2+

uptake. These findings shed new light on the regulatory factors of
cardiomyocyte remodeling, highlighting mitochondrial Ca2+ handling
and MCUC as potential therapeutic targets for the prevention and
treatment of pathologies related to energetic imbalance, such as
pathological cardiac hypertrophy and heart failure.

The major limitation of this study is the absence of a causal
relationship between the changes observed in MCUC stoichiometry
and the increments in mitochondrial Ca2+ uptake promoted by IGF-1.
Further studies should focus on determining the role of MICU1 and
MCUR1 on IGF-1-mediated mitochondrial Ca2+ uptake, using genetic
approaches of gain and loss of function of these proteins. An
additional limitation is the absence of direct estimations of
mitochondrial ATP production, which could demonstrate that IGF-
1 is responsible to maintain the energy balance during cardiomyocyte
hypertrophy. Despite these limitations, our study provides deeper
insight into the regulation of hypertrophy in two different
cardiomyocyte models and highlights the role of mitochondrial
function in the process.
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