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Introduction: Speed modulation methods have been studied and even used
clinically to create extra pulsation in the blood circulatory system with the
assistance of a continuous flow rotary blood pump. However, fast speed
variations may also increase the hemolysis potential inside the pump.

Methods: This study investigates the hemolysis performance of a ventricular assist
rotary blood pump under sinusoidal, square, and triangular wave speed modulation
profiles using the computational fluid dynamics (CFD) method. The CFD boundary
pressure conditions of the blood pumpwere obtained by combining simulations with
the pump’s mathematical model and a complete cardiovascular lumped parameter
model. The hemolysis performance of the blood pump was quantified by the
hemolysis index (HI) calculated from a Eulerian scalar transport equation.

Results: TheHI results were obtained and comparedwith a constant speed condition
when the blood pump was run under three speed profiles. The speed modulations
were revealed to slightly affect the pump hemolysis, and the hemolysis differences
between the different speed modulation profiles were insignificant.

Discussion: This study suggests that speed modulations could be a feasible way to
improve the flow pulsatility of rotary blood pumps while not increasing the hemolysis
performance.
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1 Introduction

Rotary blood pumps (RBPs) have been an effective clinical approach to support blood
circulation in patients with end-stage heart failure (Timms, 2011). Through the past decades,
significant progress has been made on the RBPs, and they have already become the newest and
most popular ventricular assist device (VAD). They are superior in smaller sizes and have better
reliability than the first generation of volume displacement blood pumps. RBPs can be used as
either a transitional treatment when waiting for a heart donor or permanent treatment that
completely replaces the original heart.

Although RBPs havemany advantages, their non-pulsatile flow pattern is non-physiological
and may cause issues such as vital organ injury and vascular sclerosis (Hornick and Taylor,
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1997; Alkan et al., 2007; Purohit et al., 2018). On the other hand, the
long-time invariable continuous flow through the pump may also
induce thrombus in flow stagnant areas inside the pump. To solve this
problem, speed modulation methods have been proposed to increase
the pulsatility of continuous flow RBPs (Shiose et al., 2010; Pirbodaghi
et al., 2012; Amacher et al., 2014; Huang et al., 2014; Kumar et al.,
2019). By periodically adjusting the pump speed, the flow pulsation
through the blood pump could be increased that is helpful for pump
washing and in reducing the risk of thrombosis, and at the same time
enhancing the pulsation of the blood vascular system (Wang et al.,
2021). Soucy et al. (2015) investigated three types of the most common
pump speed modulation profiles, namely, co-pulsation, counter-
pulsation, and low-frequency asynchronization, in a chronic
ischemic heart failure bovine model, demonstrating that pump
speed modulation increases pulsatility and improves cardiac
function and end-organ perfusion. The HVAD (HeartWare, Miami
Lakes, FL, United States) and HeartMate 3 (Abbott, St. Paul, MN,
United States) blood pumps, as two of the most successful clinical
blood pump products worldwide, have been tested for their speed
modulation methods in clinical studies (Bourque et al., 2016; Kumar
et al., 2019).

Along with the usage of speed modulationmethods of RBPs comes
more considerations such as their negative effects. Speed modulations
force sharp variations in pump speed that significantly disturb the flow
field inside the pump. As a result, shear stress is increased that
damages the blood more. Wiegmann et al. (2019) recently
investigated the effect of HeartMate 3 on flow fields using
computational fluid dynamics (CFD) when operating in the
“artificial pulse” speed modulation and found increased turbulence
and total stress. Furthermore, Chen et al. (2019) carried out CFD
simulations of HVAD under asynchronous speed modulation and
reported no obvious increase in hemolysis results. However, until now,
these relevant studies have been few, and only one single speed
modulation type has been investigated in each of the
aforementioned studies. The speed profile of a modulation method
has a variety of types and on whether the basic sinusoidal, square, or
triangular waveforms could be used as a speed profile (Pirbodaghi
et al., 2012) has not been well revealed. There has been no report
regarding the effects on the inner flow field and hemolysis under these
differential speed modulation profiles.

One difficult issue in conducting CFD simulations for speed-
modulated blood pumps has been in obtaining the boundary
conditions. Chen et al. (2019) used experimentally recorded
pressure waveforms from animal trials. However, speed
adjustments of the blood pumps are restricted and some desired
extreme speed variations cannot be acquired due to security
concerns. Moreover, animal tests are too expensive to be carried
out frequently. System simulation with cardiovascular and pump
models could be an alternative way to provide the pressure or flow
boundary conditions. In this case, a complete functional
cardiovascular system model is desired.

In this study, a comprehensive comparative study on the
hemolysis performance of the rotary blood pump under three
different speed modulation profiles was conducted by combining
CFD and cardiovascular system simulation methods. The
time–course distribution of the hemolysis index (HI) inside the
pump under speed modulation and constant speed conditions was
obtained and compared. The pump’s outlet and HI average values
revealed that hemolysis performance degeneration under speed

modulation was very small, and there was no obvious hemolysis
difference among the different speed modulation profiles. The
main contributions of this work are highlighted as follows. First,
the hemolysis performance under multiple speed modulation types of
a specific rotary blood pump was evaluated with CFD for the first time.
Second, based on the complete cardiovascular system model that
included not only the circulatory system but also the baroreflex
regulation, the pressure and flow waveforms are physiological and
comparable to experimental results, which was qualified to provide the
boundary condition for CFD simulations.

2 Materials and methods

2.1 Meshing of rotary blood pump

The research object in this study is a self-developed centrifugal
rotary blood pump by our group (Li et al., 2019). Figure 1A shows its
structure, and Figure 1B shows the top-view photo of the pump. The
pump has an 8-mm inner diameter outlet and a 6-mm inner diameter
inlet. The impeller is designed as a semi-open type and has five blades.
The pump’s rated working rotary speed is 3,000 rpm, at which the
pump could deliver a blood flow of 5 L/min against a 100 mmHg
pressure head.

The fluid domain of the blood pump is imported into the
preprocessing software ICEM (ANSYS, Inc. Canonsburg, PA,
United States) for meshing operations. To improve the simulation
result, the fluid domain was divided into five parts, namely, inlet,
outlet, blade region, impeller center region, and volute, with each part
meshed separately. Local mesh refinements were applied to the pivotal
blade region and narrow gaps between the pump housing and impeller
blades. Structured hexahedral meshes were used for all the regions. A
mesh-independent analysis was also conducted, and an element
number increase of 30% only led to a 0.2% difference in the steady
hydraulic result, demonstrating the validity of the mesh. At last, the
total amount of mesh elements was selected as 5.66 million. Figure 2
shows the fluid domain meshing of the blood pump.

2.2 Computational fluid dynamics boundary
conditions

The boundary conditions required in the CFD simulations were
chosen as the inlet and outlet dynamic pressures of the blood
pump. The pressures should be obtained with the interaction of
the blood pump and blood circulatory system. It is difficult and
unsafe to measure the real pressure data from a patient with a
rotary blood pump under a non-clinically verified speed
modulation operation. As a result, the system simulation data from
a complete cardiovascular lumped parameter model incorporated with
the mathematical model of our blood pump was obtained and used as
the pressure boundary condition.

2.2.1 Speed modulation profiles
The three different types of speed modulation profiles, namely,

sinusoidal, square, and triangular waves, are pending investigation.
The constant speed condition was also included as the baseline for
comparison. All the speed setups are shown in Figure 3A. The RBP
was run at the constant speed condition under a fixed rotary speed of
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3,000 rpm, while the other three speed setups enforced the RBP
rotating around 3,000 rpm with an amplitude of 500 rpm. The
period of the sinusoidal, square, and triangular waveforms was set
to 2 s, which means that the speed modulations were asynchronized
with the beating of the heart that is normally within 1 s. This
asynchronization configuration is more realistic in terms of the
actual speed response of general blood pumps.

2.2.2 Cardiovascular system model
The lumped parameter mathematical model of the complete

cardiovascular system used in this study was adopted from our
previous study (Huang et al., 2019). Using the classical idea of an
electric–fluid analog, Figure 3B depicts the complete cardiovascular
system model and its connection with the blood pump. The RBP
connected from the left ventricle to the systemic artery was severed as a
left ventricular assist device (LVAD).

The cardiovascular systemmodel is comprised of the systemic and
pulmonary circulatory pathways. Concretely, the beating heart was
modeled as a non-linear time-varying elastance model, with the
elastance value representing its contractility. Both the ventricles
and atria have their specific elastance values. The heart valves,

preventing the backward flow of blood, were modeled as ideal
diodes with infinite inverse resistances. The systemic or pulmonary
arterial system applied the classic five-element Windkessel model,
which describes the arterial system with resistance, compliance, and
inertance and provides an efficient load to the heart over an entire
frequency range of interest (Toy et al., 1985). The venous system, as
the main reservoir of blood, was simply characterized by a lumped
compliance along with resistance.

2.2.3 Mathematical model of rotary blood pump
The RBP used in this study was modeled to have the co-simulation

run. As only the hydraulics was concerned, the driven system of the
pump was neglected during modeling. The dynamic hydraulic
characteristic of the RBP is governed by an ordinary differential
equation. Specifically, the pressure head (H) of the RBP depends
on the second-order polynomial of the flow rate (Q) and its derivative
( _Q), as well as the square of rotary speed (ω).

H � a0Q + a1Q
2 + a2 _Q + a3ω

2 (1)
where a0 � −0.8875, a1 � −0.00002726, a2 � −0.07781, and a3 �
0.00001995 are the coefficients that have been identified by the

FIGURE 1
Structure and photo of the rotary blood pump. (A) Structure of the blood pump; (B) top-view photo of the blood pump.

FIGURE 2
Meshing of the fluid domain of the blood pump.
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dynamic experimental pressure head and flow rate data under
variable rotary speed using regression analysis (Li et al., 2019).
In the abovementioned equation, the units for the flow rate,
pressure head, and rotary speed are mL/s, mmHg, and rpm,
respectively.

2.2.4 System simulation results and boundary
condition setting

System simulations when the pump runs according to the
speed profiles as shown in Figure 3A were conducted using the
Simulink/MATLAB software (MathWorks Inc., Natick, MA,
United States). The left ventricular contractility was set to have
only 20% of its full beating capacity to simulate a heart failure
condition.

As the pump was with cannulation from the left ventricle to the
aorta, the left ventricular and aortic pressures were obtained to
serve as the boundary inlet and outlet conditions. To satisfy the
CFX software configuration, the pressure data from system
simulation were transformed to functions by curve fitting.
Piecewise functions were applied to obtain a better fitting result.
The R-square values of all the curve fitting results were better than
0.98, which was thought to be good fittings. The original waveforms
of the left ventricular and aortic pressures under all speed
conditions, and their fitting results with the piecewise functions
that were used as the boundary conditions in the CFX software, are
all depicted in Figure 3C

2.3 Hemolysis calculation

The hemolysis of the RBP was evaluated using the previously
defined hemolysis index (HI) that was related to shear stress. In other
words, although hemolysis could be caused by a variety of physical and
chemical factors, only shear stress–induced blood damage was
considered in this study. The shear stress vector obtained from the
CFD-simulated flow field was first converted to scalar shear stress
(SSS) by the following expression:

σ � 1
6
∑

i ≠ j
τ ii − τjj( )2 +∑

i ≠ j
τ ij

2[ ] 1
2

(2)

where τij is the Cartesian component of shear stress.
The HI was then calculated by solving a Eulerian scalar transport

equation that had been validated in previous studies (Taskin et al.,
2012; Li et al., 2019):

z

zt
+ v∇( ) HI1/α( ) � S (3)

where v is the velocity vector, and S is the source term, which is
defined as

S � C1/ασβ/α (4)
where C � 1.21 × 10−5, α � 0.747, and β � 2.004 are the empirical
constants (Taskin et al., 2010).

FIGURE 3
(A) Configuration of the speed modulation profiles. (B) Cardiovascular system model and its connection of the RBP. (C) Left ventricular and aortic
pressures from system simulations and their piecewise function fitting results that were used as the CFD boundary conditions.
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By solving the aforementioned scalar transport equation during
CFD simulation, the distribution of the HI inside the pump could be
obtained. The inlet boundary condition for the HI was set to zero.
Also, the mass-weighted average of the HI values at the pump outlet
was regarded as the final hemolysis performance.

2.4 Numerical configuration

The CFD simulations were conducted with the commercial
software CFX (ANSYS, Inc., Canonsburg, PA, United States). The
shear stress transport (SST)–based k-ω model was adopted as the
turbulence model. Blood, as the working fluid, was assumed to be an
incompressible Newtonian fluid, with its density and viscosity set at
1,050 kg/m3 and 0.0035 Pa s, respectively.

The Multiple Reference Frame method was used for the
rotating simulation. The dynamic and static interfaces between
the rotating and static domains were set to a frozen rotor
configuration in the CFX, and no slip model was applied to
solid walls. The continuity and momentum governing equations
were set down in both the rotating and stationary reference frames,
which can be written as

∇ · ρU( ) � 0 (5)
z ρU( )
zt

+ ∇ · ρU · U( ) � −∇p + ∇ · τ + S (6)

where ρ is the density, U is the relative frame velocity, and τ is the
stress tensor. S is the source term, which is 0 in the stationary reference
frame and S � −2ρω × U − ρω × (ω × r) in the rotating reference
frame, where ω is the angular speed and r is the location vector.

To eliminate the initialization effect and guarantee the stable result
of a flow field, simulation was first initialized over three whole cardiac
cycles (2 s), and then three subsequent cardiac cycles were simulated as
the stable result. The time step of all CFD simulations was set to
0.001 s. When the monitored pump flow was stabilized and the
residual was below 10−4, the simulation was regarded as convergent.

Besides the transient simulations of the three speed modulation
conditions, the constant speed simulation was also included for
comparison. More importantly, the hydraulic result predicted by
the CFD simulation under the constant speed condition was
compared to the experimental pressure head and flow rate data
that were used in the RBP modeling to validate the effectiveness of
the CFD model.

3 Results

3.1 Verification of computational fluid
dynamics model

The time-varying pump flow rates predicted by CFD simulation
under the constant speed condition are plotted in Figure 4, where the
corresponding experimental flow rate data those were used in the RBP
modeling are also depicted. A good agreement with the root mean
square error (RMSE) of about 2.54 mL/s was found between them,
which demonstrates well the validity of the CFDmodel. It is noted that
although the pump speed is constant, the pump flow is still pulsatile
due to the influence of the heart beating, and it is a transient
simulation verification.

3.2 Scalar shear stress distribution

Scalar shear stress (SSS) is a key factor used in hemolysis
calculation. The distributions of SSS under constant, sinusoidal,
square, and triangular speed modulation conditions are depicted in
Figure 5. The highest SSS occurs on the surface of the impeller blades
and near the pump housing, where a value of about 100 Pa is found.
According to the previous report (Chen et al., 2016), SSS that is much
greater than 10 Pa belongs to the non-physiological category and
would cause platelet activation and hemolysis. Therefore, these regions
of the pump are potentially dangerous areas for blood damage.
However, the blood in most other regions inside the pump is
exposed to a relatively low SSS condition and has a low risk of
hemolysis.

3.3 Hemolysis performance

The hemolysis performance of the pump is denoted by the HI
results calculated using the Eulerian scalar transport Eq. 3 based on
flow field variables. The simulated HI distributions during one speed
modulation cycle are shown in Figures 6B–D for sinusoidal, square,
and triangular speed modulation conditions, respectively. For
comparison, Figure 6A also shows the HI distribution when the
pump speed is constant. As indicated by the figure, high HI occurs
in the rotating regions of the impeller blades and at the pump’s outlet.
With speed modulation, regardless of which speed profile, the HI at
the end time of the simulated cycle was found to be greater than that of
the constant speed condition. It can be seen from the comparison
between constant speed and speed modulation results that the speed
variation indeed affects the HI values at the pump’s outlet. Sudden
acceleration increases pump hemolysis. It has been noted that even
under the constant speed condition, due to the residual cardiac
function, the HI distribution still changes mildly with time.

FIGURE 4
Time-varying pump flow rates predicted by CFD simulation and the
corresponding experimental data under the 3,000 rpm constant speed
condition.
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Figure 7 shows the plotted curves of the mass-weighted average HI
values at the pump’s outlet under constant speed and speed
modulation conditions. There is a consistent trend between the
average HI value and pump speed. During all the modulations, the
pump speed reached its lowest near 0.5 s, which corresponds to a local
minimum HI value, while the HI value reached a maximum as the
pump speed increased to 3,500 rpm near 1.5 s. When compared to the
constant speed condition, the HI values under speedmodulations have
a larger fluctuation range. Considering total hemolysis during the 2 s
simulation time, the mass-weighted average HI values at the pump’s
outlet were averaged with time and the calculated results for all the
conditions were around 2.5 × 10–6, which are all within the acceptable
range. The differences in the time-averaged HI values are within 2%
and thought to be negligible, indicating no obvious risk for pump
hemolysis with different pump speed modulation profiles. However,
the triangular speed modulation seemed to have, although very
slightly, a better hemolysis performance than the other speed
modulation methods.

4 Discussion

Hemolysis is one key performance of a blood pump. Numerical
hemolysis evaluations using a CFD method have been adopted by many
researchers in the design optimization of a pump (Chen et al., 2019; Li
et al., 2019; Wiegmann et al., 2019; Wu et al., 2021). It is a good
complement to in vivo and in vitro hemolysis tests. In this research,
we conducted a comprehensive comparative study on the numerical
hemolysis performance of a RBP under constant speed and three different
speedmodulation profiles by using CFD simulations. The results could be
a good reference for the actual clinical speed operation of the RBP.

Speed modulation has become an important topic in the clinical
use of modern RBPs. Both the HVAD and HeartMate 3 devices have
adopted their own speed modulation methods called Lavare Cycle and
artificial pulse, respectively, and have conducted initial clinical trials.
Besides, more speed modulation types may be developed in the future.
It has become necessary to reveal the hemolysis performance under
various modulation conditions. Till now, there have been only very
few research studies (Chen et al., 2019; Wiegmann et al., 2019)
reported, and the speed profile assessed is single. Considering a
more complicated speed modulation profile could be composed of
the basic profiles—basic sinusoidal, square, and triangular
waves—which were chosen to be the evaluated speed profiles in
this study. By referring to the speed modulation amplitude in the
Lavare Cycle of the same centrifugal type of RBPs and combining the
hydraulic characteristics of our pump, a larger amplitude of 500 rpm
was set in the simulation. According to the experimental response of a
blood pump (Shiose et al., 2010), these rotary speed variations are
achievable in actual applications, but with subtle differences due to a
specific motor’s response.

CFD has already become a powerful technology in the hydraulic
design of blood pumps. It could also be used for numerical hemolysis
evaluation. However, the accuracy of the CFD-based hemolysis
prediction is still controversial. It fails to estimate the absolute values
of in vivo hemolysis. The key hemolysis model is still empirical, such as
the power-law model (Giersiepen et al., 1990) used in our study.
Although many researchers are devoted to improving the hemolysis
model (Li et al., 2014; Wu et al., 2019), the result is still unsatisfactory.
However, our study is not aimed to predict absolute hemolysis but
compare hemolysis differences among different speed modulations. In
this sense, it is reasonable to adopt the popular power-law hemolysis
model. On the other hand, the parameters of the power-law model have

FIGURE 5
Scalar shear stress (SSS) distributions under constant speed and sinusoidal, square, and triangular speed modulation conditions.
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different values for different species (Ding et al., 2015). In this study, we
adopted the values measured from animal blood by Taskin et al. (2010),
which are popularly used in many research studies. The predicted
absolute hemolysis index will be different from that obtained for the
parameter values measured from the human blood. However, as just
mentioned, for a comparative study, absolute hemolysis is not the
primary concern, and the parameter values used in this study are
adequate.

Shear stress is closely related to hemolysis of the blood
pump. During speed modulations, an increase in the pump’s rotary
speed causes a greater magnitude of the highest SSS value, and slightly
more volume of the non-physiological SSS regions. When compared
with the constant speed condition, there is no obvious difference in the
average volume of high-value SSS found for any speed modulation
condition as seen in Figure 5. Besides, the volume difference of non-
physiological SSS regions is also statistically insignificant among the
three modulation methods. These results indicate that the speed
modulations used in this research only affect the non-physiological
SSS regions of the blood pump very slightly.

Consistent with the shear stress result, there is no significant
hemolysis difference among the different speed modulation profiles in
this study. The result also indicates no significant difference of the
average exposure times among the different modulations. Similar
results have also been reported in previous reports (Chen et al.,
2019; Wang et al., 2019). The possible reason for this might be
related to the same change in amplitude of the pump speed.
Although different speed modulation waveforms bring different
flow fields, under the same waveform amplitude, the overall effect
difference is very small. In addition, the amplitude used in this study
might not be large enough to cause significant difference in the flow
field and hemolysis. Nevertheless, simulations with larger amplitudes
are not necessary because large pump speed changes are rare in clinical
trials.

Boundary conditions are necessary for CFD simulations. In simple
scenarios, such as the steady running mode of RBPs with constant
speed and without connection to the blood circulatory system, it is
feasible to obtain the boundary pressure or flow conditions by simple
in vitro experiments. However, this would become difficult when the
pump interacts with the natural heart and blood circulatory system,
because in this case, in vivo experiments or at least in vitro experiments
with a well-designed and full-featured mock circulatory system
(Huang et al., 2013) must be required. Moreover, if the pump has
various speed operations, the experiments would become more

FIGURE 6
Time–course contour maps of the HI distribution on the radial cut
plane of the pump under (A) constant, (B) sinusoidal, (C) square, and (D)
triangular speed modulation conditions.

FIGURE 7
Time–course mass-weighted average HI values at pump’s outlet
under constant, sinusoidal, square, and triangular speed modulation
conditions.
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difficult. To avoid in vivo experiments, in our study, system
simulations using a validated cardiovascular system model coupled
with the blood pump model were conducted using the Simulink/
MATLAB software to obtain the inlet and outlet pressures of the pump
for setting the boundary conditions. The system simulations were
proven to replicate similar physiological waveforms when a blood
pump was implanted (Huang et al., 2018, 2019), which is adequate for
comparative CFD studies. This provides a convenient and effective
means for obtaining the boundary conditions. With easy parameter
modifications, pressure and flow conditions under various operation
modes of the blood pump can be obtained.

It has to be noted that there are some limitations in this study.
First, the hemolysis evaluation is numerical and lacks experimental
validation. Inspired by this study, it is recommended to have some
clinical hemolysis tests of the blood pumps under speed modulations.
Second, the boundary pressure conditions set in the CFD simulations
are fitting functions based on cardiovascular system simulations,
which have certain deviations from the clinical waveforms. Third,
as mentioned above, it is a comparative study based on the empirical
power-law hemolysis model and, in the future, demands the
development of a more accurate hemolysis model to support the
numerical hemolysis evaluation. Besides, hemolysis induced by the
clearance of the magnetic in the pump is ignored in the CFD
simulation. As the result suggests non-obvious hemolysis
differences among the three speed modulation profiles, the
selection of the speed modulation profile may be considered with
other factors such as the required flow pulsation amplitude or the
actual speed response of the blood pump. In further work, more speed
modulation modes and types of RBPs may be included to obtain a
more complete hemolysis assessment.

5 Conclusion

In this research, a comprehensive comparative study on the
hemolysis performance of the rotary blood pump under constant
speed and three different speed modulation profiles was carried out
using CFD simulations. The hemolysis performance of the pump
was qualitatively evaluated with shear stress distribution and
quantitatively assessed by the mass-weighted average HI values
at the outlet of the blood pump. It has been revealed that the
hemolysis differences among the different speed modulation
profiles are non-obvious. This study suggests that the speed

modulation method can be a feasible operation to improve flow
pulsatility of the rotary blood pump while not increasing
hemolysis.
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