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BTB and CNC homologous (BACH) proteins, including BACH1 and BACH2, are
transcription factors that are widely expressed in human tissues. BACH proteins
form heterodimers with small musculoaponeurotic fibrosarcoma (MAF) proteins
to suppress the transcription of target genes. Furthermore, BACH1 promotes the
transcription of target genes. BACH proteins regulate physiological processes,
such as the differentiation of B cells and T cells, mitochondrial function, and heme
homeostasis as well as pathogenesis related to inflammation, oxidative-stress
damage caused by drugs, toxicants, or infections; autoimmunity disorders; and
cancer angiogenesis, epithelial-mesenchymal transition, chemotherapy
resistance, progression, and metabolism. In this review, we discuss the
function of BACH proteins in the digestive system, including the liver,
gallbladder, esophagus, stomach, small and large intestines, and pancreas.
BACH proteins directly target genes or indirectly regulate downstream
molecules to promote or inhibit biological phenomena such as inflammation,
tumor angiogenesis, and epithelial-mesenchymal transition. BACH proteins are
also regulated by proteins, miRNAs, LncRNAs, labile iron, and positive and negative
feedback. Additionally, we summarize a list of regulators targeting these proteins.
Our review provides a reference for future studies on targeted drugs in digestive
diseases.
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Introduction

Bric-a-brac-Tramtrack-Broad (BTB) and cap “n” collar (CNC) homologue (BACH)
transcription factors, including BACH1 and BACH2, are members of the basic leucine zipper
(bZIP) family (Oyake et al., 1996). BACH transcription factors comprise a bZIP domain,
BTB domain, cysteine–proline (CP) motifs, cytoplasmic localization signal (CLS), and
intrinsically disordered regions (IDRs) (Igarashi et al., 2017). The structure of the BACH
proteins and the functions corresponding to each structure are shown in Figure 1.

The bZIP domain of BACH transcription factors mediates heterodimer formation with
small musculoaponeurotic fibrosarcoma (MAF) proteins MAFF, MAFG, and MAFK, and
controls DNA binding to repress the transcription of the target gene (Zhou et al., 2016).
BACH transcription factors can identify and bind to MAF recognition elements, which are
well conserved in both mouse and human gene promoters (Igarashi and Watanabe-Matsui,
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2014). Consequently, BACH1 can block the transcription of several
oxidative stress-response genes, including heme oxygenase-1 (HO-
1/HMOX1), and NADPH and quinone oxidoreductase 1 (NQO1).
Accumulated nuclear factor erythroid 2-Like 2 (NRF2) competes
with BACH1 to form a heterodimer with MAF proteins. In this way,
NRF2 activates the transcription of genes, such as H O -1 which
encodes an anti-oxidant defense enzyme. HO-1 degrades heme into
ferrous iron, biliverdin, and carbon monoxide (Zhang X. et al.,
2018). Figure 2 illustrates the regulation of HO-1 via the BACH1/

NRF2 pathway. In addition to repressing HO-1 transcription,
BACH2 and bZIP ATF-like transcription factor form
heterodimer that binds to the activator protein 1 (AP-1) motif,
which contains regulatory regions of Th2 cytokine gene loci
(Kuwahara et al., 2016).

The BTB domain, also known as the pox virus and zinc finger
domain, is located at the N-terminus of BACH proteins (Oyake
et al., 1996). The analysis of BTB proteins from 17 eukaryotic species
revealed that the structure of BTB is highly conserved (Stogios et al.,

FIGURE 1
Structure and function of mouse BACH1 and BACH2. The amino acid positions of cysteines are indicated by numbers. The intrinsically disordered
heme binding region of BACH1 can be divided into three functional parts: the first part (417–470), including two CP motifs, affects activator recruitment
by binding to the local conformation of the five-coordinate heme and is involved in other protein-protein interactions; the second part (471–524),
including one CP motif, participates in dissociation from DNA; and the last part (331–520), which contains one CP motif, may participate in
destabilization of the BACH1/MAFK heterodimer and subsequent DNA dissociation.

FIGURE 2
NRF2/BACH1 pathway that regulates HO-1 expression. NRF2/MAFK heterodimers activate HO-1 expression. Activation of HO-1 expression is
inhibited by BACH1/MAFK heterodimers at low heme concentrations. Meanwhile, NRF2 is polyubiquitinated and degraded by interacting with Kelch-like
ECH-associated protein 1 (KEAP1) (left). At high heme concentrations, heme binds to BACH1. Then, BACH1 dissociates from MAF recognition elements
(MARF), is exported to the cytoplasm and ubiquitinated for degradation. NRF2 nuclear accumulation via heme-mediated disruption of NRF2/
KEAP1 complexes promotes the formation of NRF2/MAFK heterodimers (right). In this way, the NRF2/BACH1 pathway affects the expression of HO-1 and
regulates heme homeostasis.
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TABLE 1 Level and effect of BACH in digestive system diseases.

Name Organs Disease Alteration Function References

BACH1 Esophagus ESCC Upregulated Promotes the proliferation, invasion and metastasis by
inducing EMT and angiogenesis

Jiang et al. (2015); Xie et al. (2023)

Inhibits biosynthesis of MUFAs by transcriptionally
inhibiting SCD1 gene to induce ferroptosis, thereby
promoting lymphatic metastasis and inhibiting
hematogenous metastasis

BACH1 stomach GC Upregulated Promotes macrophage-dependent GC progression via
polarization into M2 macrophages

Fang and Lu. (2020); Yang et al. (2022)

BACH2 Stomach GC Upregulated Associated with poor prognosis in patients with GC of
MSI-H

Tian et al. (2020); Haam et al. (2014)

BACH2 deficiency promotes GC cell proliferation
in vitro

BACH1 Bowel CRC Dynamically altered Enhances CRC cell migration, invasion by increasing
the expression of STARD8, TIAM2, MMP-1, MMP-9,
MMP-13, SNAIL1, CXCR4, and HMGA2

Chang et al. (2020); El-Deek et al. (2019);
Zhu et al. (2018); Chen et al. (2022)

Promotes or have no effect on proliferation

BACH1 Bowel IBD BACH1-deficiency macrophages inhibit TNBS-
induced colitis by promoting M2 phenotype

Harusato et al. (2013); Takagi et al. (2018);
Pradhan et al. (2022)

BACH1 deficiency promotes NLRP3 inflammasome
activation and affects mitochondrial function

Reduced BACH1 expression protects the intestinal
mucosa in DSS-induced colitis mouse model

Indometha-cin
induced intestinal
injury

Attenuates injury via suppressing inflammation and
apoptosis

Harusato et al. (2011)

BACH2 Bowel CRC Promotes immune homeostasis, durable tumor
immunosuppression and metastasis by regulating Treg
and NK cells

Grant et al. (2020); Li et al. (2022)

UC(IBD) Upregulated Significantly associated with UC Ding et al. (2021)

CD (IBD) CD susceptibility gene Romani et al. (2021); Laffin et al. (2018)

Closely related to the postoperative recurrence in
patients with CD

IBD Regulates CD161+ Treg cells to enhance wound healing
of epithelium

Povoleri et al. (2018)

CeD Downregulated Associated with CeD pathogenesis Medrano et al. (2019); Quinn et al. (2015)

BACH1 Liver HCC Upregulated Promotes growth, metastasis, or cellular inflammation
through transcriptional activation of IGF1R, PKT and
HK2 or influencing P53 pathway

Xie et al. (2022); Sun et al. (2021); Du et al.
(2022); Sun et al. (2020a); Xu et al. (2016);
Zhao et al. (2022)

Suppresses autophagy, proliferation, metastasis by
influencing P53 pathway or targeting TKT gene

Regulates glucose and glutathione metabolism

BACH1 Liver HCV Deficient BACH1 inhibits HCV replication Ghaziani et al. (2006); Chen et al. (2019)

Influences cytotoxic effects of HCV proteins

NASH Inhibition of BACH1 reduces steatohepatitis and
fibrosis

Inoue et al. (2011)

ATDH SNPs importantly associated with ATDH Zhang et al. (2018a)

BACH1 Liver APAP-induced liver
injury

Upregulated Involved in oxidative stress promoting liver damage Abo El-Magd and Eraky (2020)

(Continued on following page)

Frontiers in Physiology frontiersin.org03

Song et al. 10.3389/fphys.2023.1121353

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1121353


2005). The BTB domain has a unique three-dimensional fold with a
large protein–protein interaction surface and highly variable
exposed residues, thereby allowing dimerization and
oligomerization, as well as interaction with several other proteins
(Perez-Torrado et al., 2006). BACH1 inhibits angiogenesis and the
enhancer activity of locus control region in a BTB domain-
dependent manner. Moreover, the BTB domain of BACH1 is
necessary for the formation of large-looped DNA between two
distant binding sites in vitro. The formation of BACH1/MAFK
heterodimers through the BTB domain generates a multivalent
DNA binding complex (Yoshida et al., 1999; Jiang L. et al.,
2020). The BTB domain of BACH2 coordinates the interaction
with HDAC3-containing co-repressor complexes to regulate the
protein levels of Blimp-1 via epigenetic modifications in B cells
(Tanaka et al., 2016).

The activity of the CLS, which is a highly conserved structure at
the C-terminus of the BACH proteins, depends on a segment of
nonhydrophobic amino acids. Oxidative stress disrupts the activity
of CLS to induce the nuclear accumulation of BACH2 (Hoshino
et al., 2000). Cadmium induces HO-1 expression and promotes the
CLS-mediated nuclear export of BACH1 and BACH2 (Suzuki et al.,
2003). Furthermore, the nuclear export of BACH1 depends on the
activities of extracellular signal-regulated kinase-1/2 (ERK1/2)
and exporter chromosome maintenance 1 (Crm1/Exportin-1)
(Suzuki et al., 2003). Xpo1, also known as Crm1, binds to
BACH1 and exports it to the cytoplasm, which promotes the
formation of transcriptional complexes with NRF2 and small
MAF proteins (Suzuki et al., 2004).

BACH1 consists of six CP motifs, whereas BACH2 consists of
five CP motifs. BACH1 and BACH2 directly bind to heme through
the C-terminal region with four and five CP motifs, respectively
(Ogawa et al., 2001; Watanabe-Matsui et al., 2011). BACH proteins
consist of two modes of heme binding: five- and six-coordination
modes (Hira et al., 2007; Watanabe-Matsui et al., 2011). The five-
coordinate mode is unique to BACH1 CP motifs, whereas six-
coordination mode binding occurs nonspecifically (Segawa et al.,
2019b). Heme binds multiple CP motifs within the IDRs of the
BACH proteins, thereby inhibiting their DNA-binding activity and
inducing nuclear export, polyubiquitination, and degradation of the
BACH proteins (Zhou et al., 2016; Segawa et al., 2022).
BACH1 degradation is induced by the heme binding of
E3 ubiquitin ligase Hoil-1, Fbxl17 and Fbxo22. However, the
specific mechanisms through which heme induces
BACH2 polyubiquitination and degradation remain unknown
(Zenke-Kawasaki et al., 2007; Tan et al., 2013; Lignitto et al., 2019).

IDRs generally lack long hydrophobic amino acid sequences,
resulting in their inability to form a well-organized hydrophobic
core comprising a structural domain, but they still perform certain
biological activities (Oldfield and Dunker, 2014). Furthermore, IDRs
not only recognize and recruit partners, such as proteins, but also
participate in conformational changes, and post-translational
modifications (van der Lee et al., 2014). Heme binds to
BACH1 C-terminal IDRs through a conformational change
(Segawa et al., 2019a). A recent study showed that different CP
motifs in the heme-bound BACH1 IDRs play roles in co-activator
recruitment, dissociation from DNA, and heterodimer

TABLE 1 (Continued) Level and effect of BACH in digestive system diseases.

Name Organs Disease Alteration Function References

Sepsis-induced liver
injury

Dynamically altered Knockdown of BACH1 attenuates liver injury via
increasing hepatic blood flow and decreasing oxidative
stress and inflammation

Tanioka et al. (2021); Cai et al. (2022)

BACH1 Liver Ethinylestr-adiol
induced cholestasis

Influences bile flow and urinary bile acid clearance Muchova et al. (2015)

Bile duct

BACH1 Bile duct CCA Downregulated Inhibits the transcription of genes encoding proteasome
subunits

Jiang et al. (2020b); Liu et al. (2022b)

BACH2 Bile duct PSC Associated with the susceptibility Liu et al. (2013b)

BACH1 Pancreas Pancreatic cancer Upregulated or
Downregulated

Promotes EMT by increasing iron and the expression of
vimentin and SNAI2 and decreasing E-cadherin,
FOXA1, CLDN3, and CLDN4 expression

Kim et al. (2021); Sato et al. (2020); Liu
et al. (2022); Huang et al. (2018); Liu et al.
(2022)

Inhibits EMT by increasing E-cadherin and ZO-1
expression and decreasing ZEB1, vimentin and Slug
expression

Suppresses cell growth and angiogenesis

SNPs is related with worse overall survival and resistant
to gemcitabine

BACH2 Chronic pancreatitis Downregulated BACH2 inhibition promotes polarization toward
Th17 cells and a higher inflammatory response

Sasikala et al. (2018)

Associated with advanced clinical features

Abbreviations: ESCC, Esophageal squamous cell carcinoma; GC, Gastric cancer; CRC, Colorectal cancer; HCC, Hepatocellular carcinoma; CCA, Cholangiocarcinoma; NASH, Nonalcoholic

steatohepatitis ; ATDH, Anti-tuberculosis drug-induced hepatotoxicity; APAP, Acetaminophen; UC, Ulcerative colitis; CD, Crohn’s disease; IBDs, Inflammatory bowel diseases; CeD, Coeliac

disease; PSC, Primary sclerosing cholangiti; MSI-H, microsatellite instability-high status microsatellite instability-high status; MUFAs, monounsaturated fatty acids.
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destabilization (Segawa et al., 2022). In intrinsically-disordered
heme binding regions of BACH2, heme binding induces
disordered conformational alterations and more compact
BACH2 IDRs conformations (Watanabe-Matsui et al., 2015;
Suenaga et al., 2016).

BACH proteins were identified in 1996, and since then a
growing number of studies have shown that BACH transcription
factors are widely expressed in human tissues. These transcription
factors regulate the development and function of innate and
adaptive immune systems; progression, and metabolism of many
cancers; infection; apoptosis; angiogenesis; lymphangiogenesis;
oxidative stress injury; and senescence, and pluripotency of
embryonic stem cells (Igarashi et al., 2017; Zhang X. et al., 2018;
Cohen et al., 2020; Niu et al., 2021; Padilla and Lee, 2021; Chu et al.,
2022). For instance, BACH2 controls CD4+ and stem-like CD8+

T-cell differentiation (Watanabe-Matsui et al., 2011; Yao et al.,
2021). Both BACH1 and BACH2 inhibit the myeloid program to
promote B cell development (Itoh-Nakadai et al., 2014). In this
review, we summarize the pathophysiological role of BACH proteins
in digestive system diseases including hepatitis C virus (HCV)
infection, nonalcoholic steatohepatitis (NASH), hepatic and
intestinal injury induced by drugs and other causes, immune-
mediated intestinal diseases [inflammatory bowel disease (IBD)
and celiac diseas], biliopancreatic diseases, and digestive system
cancers (Table 1). The relationship between BACH proteins and the
above diseases is shown in Figure 3. We find that BACH1 aggravates

benign diseases mainly by inhibiting the expression of downstream
molecules, such as transcriptional inhibition of HO-1, and promotes
cancer progression of the digestive system mainly by upregulating
the expression of downstream molecules, such as transcriptional
activation of IGF1R. In addition, BACH1 has different regulatory
effects in different cells or different microenvironments of the same
cells. BACH2 affects tumor progression and immune-related benign
diseases by regulating the differentiation and function of immune
cells.

BACH proteins and benign diseases of
the digestive system

Hepatobiliary diseases

Hepatitis C virus
The incidence of HCV has been decreasing; however, there was

still approximately 56.8 million HCV infections worldwide in 2020
(Polaris Observatory HCV Collaborators, 2022). One study found
that reduced BACH1 and elevated HO-1 levels played critical roles
in reducing the cytotoxicities of HCV proteins in hepatocellular
carcinoma (HCC) cells (Ghaziani et al., 2006). BACH1 is involved in
the mechanism of action of miR-let-7c, miR-196, and miR-122
inhibiting HCV replication in vitro. Both miR-let-7c and miR-196
suppress BACH1 expression by directly acting on the 3′-UTR of

FIGURE 3
Overview diagram showing digestive disorders associated with BACH proteins.
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BACH1 mRNA to downregulate the levels of HCV protein. A
decline in BACH1 expression reduces HCV replication by
promoting HO-1 expression to inhibit the activity of viral
protease and stimulate an antiviral interferon response. Whether
miR-122 suppresses HCV replication through the above mechanism
remains to be investigated (Shan et al., 2007; Hou et al., 2010; Chen
et al., 2019). Decreased HO-1 expression in patients with HIV/HCV
co-infection may indicate a worse prognosis. However, HO-1
expression is positively correlated with BACH1 and miR-122
expression in patients with HCV (Jabłonowska et al., 2014). The
expression of hepatic NRF2 and BACH1, and serum HO-1 result in
the destructive increase in acetaminophen (APAP)-induced liver
injury (Abo El-Magd and Eraky, 2020). HO-1 expression in patients
with HCV may be affected by NRF2, which competes with
BACH1 for binding to the HO-1 gene. Further, Legalon-SIL (LS)
and statins decreased HCV replication and influenced the NRF2/
BACH1/HO-1 pathway (Mehrab-Mohseni et al., 2011;Wuestenberg
et al., 2014). These findings suggest that BACH1 regulates HCV
replication and cytotoxicity of HCV proteins, and may affect drug
efficacy.

Nonalcoholic steatohepatitis
Nonalcoholic fatty liver disease, which is the leading cause of

chronic liver disease, affects the health of more than one billion
people. NASH, a severe form of nonalcoholic fatty liver disease, can
progress to cirrhosis, HCC, and death (Younossi et al., 2019). A
methionine-choline deficient (MCD) diet was fed to wild type (WT)
and BACH1(−/−) mice and the WT mice were shown to develop
evident hepatic steatosis with a six-fold increase in hepatic
triglyceride content; however, BACH1(−/−) mice exhibited
negligible hepatic steatosis. Additionally, alanine aminotransferase
(ALT) plasma concentrations and hepatic malondialdehyde (MDA)
levels increased and peroxisome proliferator-activated receptor α
and microsomal triglyceride transfer protein mRNA levels were
downregulated in WT mice fed an MCD diet; however, no
significant changes were observed for these parameters in
BACH1(−/−) mice (Inoue et al., 2011). BACH1 also plays a role
in hepatocyte-specific Sirt6-knockout (KO) and WT mice fed a
high-fat and high-fructose diet. KO mice presented with increased
steatohepatitis and fibrosis via elevated BACH1 expression, because
Sirt6 interacts with BACH1, thereby inducing its detachment from
the HO-1 promoter (Ka et al., 2017). These studies suggest that
BACH1 deficiency plays a hepatoprotective role in NASH.

Drug-induced liver injury
Drug-induced liver injury (DILI) is the most common cause of

acute liver failure in the United States and the United Kingdom (Lee,
2003; Bernal and Wendon, 2013). DILI is one of the most
challenging liver diseases faced by gastroenterologists, as it has a
wide variety of clinicopathological phenotypes and lacks specific
biomarkers (European Association for the Study of the Liver et al.,
2019). Two studies have investigated the role of Bach1 single
nucleotide polymorphisms (SNPs) in anti-tuberculosis drug-
induced hepatotoxicity (ATDH) in 870 Chinese and 100 Japanese
patients. These studies revealed that Bach1 SNPs were significantly
associated with ATDH; however, this was observed with different
tagSNPs (rs372883 and rs1153285 in the Chinese study, and
rs2070401 in the Japanese study). The differences in Bach1

tagSNPs could be attributed to the different tagSNP selection
criteria or different allele or genotype frequencies in different
patients (Nanashima et al., 2012; Zhang H. et al., 2018).
Additionally, XPO1 encodes the protein Xpo1, which can bind to
BACH1 to indirectly influence its antioxidative activity. Patients
with the tagSNP rs4430924A in XPO1 were at a higher risk of
developing ATDH than those with rs4430924G (He et al., 2019).
SNPs are potential biomarkers for the diagnosis of ATDH.

APAP overdose is a common cause of acute liver injury
(Ghanem et al., 2016). Serum HO-1, hepatic BACH1, and
NRF2 levels and the nuclear export of NRF2 and
BACH1 increase in patients with APAP-induced liver injury.
Both vitamin D and omega-3 fatty acids protect against APAP-
induced liver injury by decreasing serum HO-1 and hepatic
NRF2 and BACH1 levels. Furthermore, omega-3 fatty acids
showed preventive effects by promoting the nuclear export and
accumulation of BACH1 and NRF2, respectively (Abo El-Magd and
Eraky, 2020; Eraky and Abo El-Magd, 2020). These findings indicate
that the massive and destructive elevation of BACH1may contribute
to APAP-induced liver injury and decreased BACH1 expression and
nuclear translocation may alleviate the extent of liver injury.

Sepsis-induced liver injury
Sepsis-induced liver injury is an important independent risk

factor for mortality in the intensive care units (Sun J. et al., 2020).
Some clinical features of sepsis are attributed to an endotoxin-
induced increase in vascular endothelial permeability; therefore,
endotoxemia is often used to mimic the hyperinflammation
associated with early sepsis and aid the understanding of the
molecular mechanisms of sepsis (Aird, 2003; Dickson and
Lehmann, 2019). Tanioka et al. (2021) used lipopolysaccharides
(LPS) to establish an endotoxin-induced liver-injury rat model.
Nuclear BACH1 proteins showed a significant but transient
decline by 1 h after LPS injection, followed by a rapid increase to
baseline levels by 3 h Bach1 mRNA elevated shortly after the
transient decrease in nuclear BACH1 proteins, then rapidly
returned to baseline levels by 24 h. D-galactosamine and LPS
were used to establish the endotoxin-induced hepatic injury
model in WT and BACH1(−/−) mice. Plasma ALT and aspartate
aminotransferase (AST) activities were reduced in BACH1(−/−)
mice (Iida et al., 2009). Sepsis was induced by cecal ligation and
puncture in WT and BACH1(−/−) mice. In septic mice, knockout
BACH1 resulted in increased hepatic HO-1 expression as well as
hepatic and pulmonary blood flow, but also attenuated oxidative
stress, inflammation, hepatic injury (including liver mitochondrial
dysfunction), and mortality. Inhibiting HO-1 activity worsened
organ function in KO mice following sepsis (Cai et al., 2022). In
summary, BACH1 is a potential therapeutic target in sepsis-induced
liver injury.

Other types of liver injury
Carbon tetrachloride (CCl4) is a toxic agent commonly used to

induce acute or chronic liver injury (Unsal et al., 2021).
BACH1 expression was upregulated in liver fibrosis and CCl4-
induced liver injury. San Wei Gan Jiang San, an ancient
medicine, alleviates CCl4-induced chronic liver injury and fibrosis
by reducing BACH1 expression as well as increasing BACH1 nuclear
export and NRF2 expression to regulate oxidative stress, including
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increasing GST, GSH-Px, and HO-1 levels and GSH/GSSG ratio,
and reducing MDA levels (Chen et al., 2020). In pulmonary fibrosis,
BACH1 expression is upregulated and BACH1 knockdown
ameliorates fibrosis and inflammation by inhibiting the ERK
signal pathway (Liu Y. et al., 2021). In addition, decreased
nuclear BACH1 levels plays a protective role against acute CCl4-
induced liver injury, hepatitis, and oxidative damage of hepatocytes
(Cai et al., 2021). Those suggest that BACH1 contribute to acute and
chronic liver injury.

Aflatoxin B1 (AFB1), a mycotoxin that affects humans and
animals, is a group 1 human carcinogen; however, the mechanism of
toxicity is poorly understood (Marchese et al., 2018).
BACH1 deficiency reduces AFB1-induced liver oxidative damage
by upregulating antioxidant genes. A kind of small molecule
inhibitor of BACH1, named 1-Piperazineethanol, α-[(1,3-
benzodioxol-5-yloxy) methyl]-4-(2-methoxyphenyl) (M2),
ameliorates AFB1-induced human cell death in vitro and liver
injury in vivo (Zhang et al., 2022). These findings suggest that
BACH1 contributes to acute and chronic liver injury.

Arsenic accumulates in organs, particularly in the liver where it
may cause liver injury and increase the risk of liver cancer (Palma-
Lara et al., 2020). Transcription repressor BACH1 nuclear export
increased and the expression of the downstream target genes HO-1,
NADPH, and NQO1 increased in inorganic arsenic-induced liver
injury samples, whereas BACH1 expression levels showed no change
after organic arsenic treatment (Liu D. et al., 2013; Liu D. et al.,
2021). Despite these findings, the functions of BACH1 in arsenic-
induced liver injury warrants further study.

BACH proteins are associated with aryl hydrocarbon receptor
(AhR)-mediated hepatotoxicity, liver ischemia-reperfusion (IR)
injury, and radiation induced cytotoxicity. Hepatic
BACH1 expression was upregulated in an AhR-mediated
hepatotoxic mouse model (Fader et al., 2017). The reduction of
BACH1 mediated by miR-27a-5p, increased Bcl-2 and decreased
caspase-3 to alleviate apoptosis in liver IR injury (Xing et al., 2018).
Microarray analysis showed that the liver is the main organ affected
by radiation therapy and BACH2 expression is upregulated during
radiotherapy (Karim et al., 2016).

Cholestasis
Cholestasis is a disease caused by mechanical obstruction of

bile transport or changes in hepatocyte function to produce bile
(Salas-Silva et al., 2019). Excess estrogen decreases bile flow,
which results in estrogen-induced cholestasis (Zu et al., 2021).
Rats given ethinylestradiol for 5 days exhibited cholestasis. HO-1
levels were induced by heme 24 h prior to ethinylestradiol
administration. The results showed that heme promoted HO-1
via the NRF2/BACH1 pathway; therefore, cholestasis was
reduced in two ways: by stimulating hepatic Mrp3 expression
to promote bile flow and increasing urinary bile-acid clearance by
up-regulating renal Mrp2/Mrp4 expression or down-regulating
renal Mrp3 expression (Muchova et al., 2015). These findings
indicate that BACH1 may be a contributing factor for estrogen-
induced cholestasis.

Primary sclerosing cholangitis
Primary sclerosing cholangitis (PSC) is a relatively rare disease

characterized by multifocal biliary strictures with bile duct fibrosis.

IBD is present in 70% of patients with PSC and there is a high risk of
cholangiocarcinoma and colorectal cancer (CRC) (Dyson et al.,
2018). Immunochip analysis of 3,789 PSC cases and
25,079 population controls showed that SNPs of the
BACH2 locus, rs56258221, are significantly associated with
susceptibility to PSC. This association exhibits a low to moderate
linkage disequilibrium (LD) with a BACH2 variant of type 1 diabetes
(T1D) and Crohn’s disease (Liu J. Z. et al., 2013). These findings
suggest that rs56258221 may serve as a biomarker for PSC and
patients with PSC and IBD may be closely associated with the LD of
BACH2.

Intestinal diseases

Inflammatory bowel disease

IBDs, including ulcerative colitis (UC) and Crohn’s disease
(CD), are chronic and progressive disorders associated with
genetic, environmental, microbial and immune factors
(Agrawal et al., 2021). Bioinformatic analysis predicted
BACH1 to be the key transcription factor regulating nine hub
genes, which were correlated with Mayo scores in patients with
UC (Ding et al., 2021). In addition to decreasing disease activity
index, BACH1 depletion dramatically increases HO-1 expression
to exert an intestinal mucosal protective effect in a DSS-induced
colitis mouse model (Takagi et al., 2018; Dun et al., 2021).
Furthermore, BACH1-deficient macrophages exhibit distinctly
increased HO-1 levels and manifest the M2 macrophage marker
to suppress TNBS-induced colitis (Harusato et al., 2013).
BACH1 deficiency in mouse macrophages affects
mitochondrial function, including regulation of mitochondrial
energy metabolism (increased glycolysis and decreased oxidative
phosphorylation), elevated mitochondrial membrane potential
and the levels of mitochondrial reactive oxygen species (ROS),
and decreased PINK1/Parkin-mediated mitophagy levels.
Downregulated expression of BACH1 not only promotes
NLRP3 inflammasome activation by regulating inflammatory
factor IL-1β expression, but also increases pro-inflammatory
cytokines IL-6 and tumor necrosis factor α (TNFα) (Pradhan
et al., 2022). Studies indicated that BACH1 may be a candidate
gene for target therapy of IBD.

Bach2 (rs1847472) is a UC susceptibility locus (Romani et al.,
2021). Christodoulou et al. identified a potentially deleterious
variation of Bach2 in pediatric patients with UC (Christodoulou
et al., 2013). BACH2 is upregulated in UC and significantly increases
in signaling by interacting with interleukins. Additionally, target
genes of BACH2, including MMP7, MMP9, AKT3 and GNGT2, are
involved in estrogen signaling. The overexpression of
BACH2 probably influences UC by interleukins or estrogen
signaling (Ding et al., 2021). Genome-wide meta-analysis
demonstrated that rs1847472 of Bach2 is also a confirmed CD
susceptibility locus and is associated with T1D and celiac disease
(Franke et al., 2010). Furthermore, rs1847472-C in Bach2 resulted in
an increased risk of nonmelanoma skin cancers (Cushing et al.,
2022). A clinical cohort study showed that rs1847472 was also a CD
recurrence susceptibility locus after intestinal resection. The
rs1847472 may increase the risk of a hyperinflammatory response
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to gut microbiota after bowel resection (Laffin et al., 2018).
Emerging evidence suggests that mucosal immunity plays a
central role in intestinal immune homeostasis. IgA production by
B cells is a central role in mucosal immunity (Graham and Xavier,
2013). BACH2 promotes immunoglobulin class switch by repressing
the regulatory network of plasma-cell gene in B cells (Muto et al.,
2010). The function of BACH2 in IBD may be associated with the
induction of immunoglobulin class switch. BACH2 forms a
transcriptional network with RORγt, FOSL2, AP-1, and
RUNX1 to control wound healing. The downregulation of
BACH2 regulates the production of CD161+ regulatory T (Treg)
cells which enhances wound healing of the colorectal epithelium and
is associated with reduced inflammation in IBD (Povoleri et al.,
2018). Although BACH2 is closely related to the pathogenesis of UC
and CD, more studies are needed to elucidate its roles.

Celiac disease

Coeliac disease (CeD) is a relatively common and overlooked
immune-mediated disorder that occurs in genetically susceptible
individuals. The gluten-free diet is currently the only available
management plan, but it is not curative or universally effective
(Pinto-Sanchez et al., 2021). A study showed that rs10806425 of
Bach2 is strongly implicated in CeD pathogenesis (Medrano
et al., 2019). BACH2 expression is significantly reduced in CD4+

T cells isolated from the blood of patients with CeD.
Differentially expressed genes regulated by BACH2 are highly
enriched and over-represented in the above CD4+ T cells (Quinn
et al., 2015). As a main factor regulating CD4+ T cell
differentiation, BACH2 controls the efficient formation of
Treg cells and inhibits Treg-dependent lethal inflammation.
Mild and incompletely penetrating bowel inflammation
appeared in some BACH2(−/−) mice (Roychoudhuri et al.,
2013). Decreased BACH2 expression has been shown to
promote a pro-inflammatory response through lack of
efficient Treg cell formation and may contribute to partial
CeD and IBD.

Other intestinal diseases

Non-steroidal anti-inflammatory drugs (NSAIDs) are used
worldwide with the most common side effect including
gastrointestinal damage called NSAID-associated enteropathy
(Scarpignato and Hunt, 2010). In addition to suppressing
apoptosis, disruption of BACH1 effectively inhibits inflammatory
chemokines such as keratinocyte chemoattractant (KC), MIP1α, and
MCP1 to ameliorate indomethacin-induced intestinal injury in mice
(Harusato et al., 2009; Harusato et al., 2011).

Intestinal ischemia-reperfusion (IR) injury is a complex
disease with high morbidity and mortality (Ding et al., 2020).
The downregulation of BACH1 expression distinctly reduces
the levels of myeloperoxidase, hemoglobin, KC, luminal
protein, and TNFα in intestinal IR injury mice.
Simultaneously, this decreases PMN infiltration into the
small intestine and attenuates the activation of NF-κB to
reduce the levels of adhesion proteins, E-selectin and ICAM-

1. Attenuation of myeloperoxidase and luminal protein
expression can be reversed by reducing HO-1 expression
(Katada et al., 2022). A similar mechanism involving
BACH1 has been observed in cerebral IR injury (Yu et al.,
2020). These findings reveal that BACH1 deficiency alleviates
intestinal IR injury by increasing HO-1 expression.
BACH2 deletion facilitates intestinal epithelial regeneration
by promoting DNA repair of intestinal crypt cells in
radiation-induced intestinal injury (Li et al., 2021).

Pancreatic diseases

Chronic pancreatitis

Chronic pancreatitis (CP) is a multifactorial
fibroinflammatory syndrome of the exocrine pancreas. CP
incidence has been increasing gradually worldwide, with no
effective curative therapy (Beyer et al., 2020).
BACH2 expression downregulates in the pancreas tissue and
circulation of patients with CP. The repression of
BACH2 expression leads to the polarization of T-helper cells
toward Th17 cells and increased inflammation in patients with
CP. Additionally, the rs9111-TT genotype in the 5′-UTR region
of BACH2 decreases the expression of BACH2 and is associated
with clinical features of advanced CP (Sasikala et al., 2018). This
suggests that BACH2 plays an important role in protecting from
CP by regulating immunity.

Conclusion of benign diseases of the
digestive system

BACH proteins play an indispensable role in inhibition of HCV
replication, intestinal mucosal protection, inflammation regulation,
alleviation of steatohepatitis and fibrosis, and digestive-system
damage caused by drugs, poisons, or ischemia-reperfusion.
BACH proteins affect benign diseases mainly through oxidative
stress and inflammation (Figures 4A, B).

In HCV, DILI, cholestasis, IBD, IR injury and other diseases,
BACH1 transcriptionally inhibits HO-1 to mediate oxidative stress
response, which causes aggravated organ function damage and a rise
in related indicators. In addition to affecting multiple diseases
through similar mechanisms, BACH1 affects the same disease
through multiple mechanisms. IR injury is regulated by three
BACH1-mediated pathways: HO-1 transcriptional repression,
NF-Κb activation, and promotion of apoptosis.

BACH1 regulates the biological function of macrophages and
affects the expression of anti-inflammatory and pro-inflammatory
factors, thereby inhibiting or promoting inflammation in IBD and
other inflammation-related diseases. Interestingly, BACH1 deficiency
promotes pro-inflammatory cytokine TNFα expression in bone
marrow macrophages but suppresses TNFα expression in
intestinal macrophages. The regulation of TNFα by BACH1 may
be affected by the microenvironment in which macrophages are
located. BACH2 regulates inflammation and the differentiation of
T cells which affect inflammation or wound healing in IBD, CeD
and CP.
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BACH proteins and cancers of the digestive
system

By 2040, the global cancer burden is expected to reach
28.4 million cases (Sung et al., 2021). BACH transcription
factors, especially BACH1, are involved in the proliferation,
metastasis, angiogenesis, metabolism, and chemotherapy
resistance of many cancers (Padilla and Lee, 2021). In this

section, we focus on discussing the roles of BACH proteins in
digestive-system cancers.

Esophageal cancer

Esophageal cancer ranks seventh as the most prevalent type of
cancer and sixth in mortality worldwide. Esophageal squamous cell

FIGURE 4
Mechanisms of BACH1 in benign diseases of the digestive system. (A) BACH1 regulates inflammation. (B) Effects of BACH1 on biological processes such as
oxidative stress. A Inmacrophages, BACH1 inhibits glycolysis, MMP, andROS and inducesmitophagy via the PINK1/Parkin pathway. BACH1 decreases the number
ofM2macrophages to promote inflammation. Inflammatory factor IL-1β is regulated by BACH1 in a variety of ways, as illustrated. IL-1β promotes the activation of
the NLRP3 inflammasome to promote inflammation. Furthermore, BACH1 regulates inflammation by promoting or inhibiting anti-inflammatory markers,
includingCD206, arginase, and IL-10 and pro-inflammatory cytokines, including IL-6, TNF-α, KC,MIP1α, andMCP1. B BACH1promotes IR injury involving theNF-
κBpathway, apoptosis, andHO-1-mediated protection. BACH1 plays a role in viral replication, anti-interferon response,mucosal protection, and IR injury through
transcriptional repression of HO-1. In addition to inhibiting urinary bile-acid clearance and bile and blood flow, BACH1 affects the levels of some proteins and
metabolites that reflect liver function. Abbreviations: keratinocyte chemoattractant (KC); ischemia and reperfusion (IR);mitochondrialmembrane potential (MMP);
reactive oxygen species (ROS); oxidative phosphorylation (OxPhos); microsomal triglyceride transfer protein (MTP); peroxisome proliferator-activated receptor α
(PPARα); ischemia-reperfusion (IR).
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carcinoma (ESCC) is a common histological subtype of esophageal
cancer (Sung et al., 2021). BACH1 is involved in LncRNA SNHG8/
miR-1270/BACH1 axis in esophageal cancer. LncRNA
SNHG8 decreases the level of miR-1270 to increase the
expression of BACH1, thereby promoting cancer progression
(Wu et al., 2022). BACH1 expression is increased in ESCC
tissues compared with that of healthy esophageal epithelial
tissues. BACH1 induces epithelial-mesenchymal transition (EMT)
by activating CDH2, SNAI2, and vimentin, and facilitates
angiogenesis by upregulating the transcriptional activity of
vascular endothelial growth factor C, thereby promoting the
proliferation and metastasis of ESCC cells (Zhao et al., 2021).
BACH1 inhibits Wnt/β-catenin pathway by recruiting HDAC1 to
affect transcription of TCF4-targeted genes and impairing the
interaction between β-catenin and p300/CBP or TCF4. In this
way, BACH1 suppresses angiogenesis after ischemic injury (Jiang
et al., 2015). BACH1 also inhibits angiogenesis in pancreatic cancer
(Huang et al., 2018). It is suggested that the effect of BACH1 on
angiogenesis is different in different diseases. BACH1 inhibits the
biosynthesis of monounsaturated fatty acids (MUFAs), especially
oleic acid, by transcriptionally inhibiting the SCD1 gene in ESCC
cells. In this way, BACH1 induces ferroptosis. Thus,
BACH1 suppresses hematogenous metastasis in vivo due to high
levels of iron ions and oxidative stress in the blood.
BACH1 promotes lymph node metastasis in vivo because lymph
is rich in MUFAs such as oleic acid. The concentration gradient of
MUFA between the primary lesion and the lymph resulted in the
chemoattraction of ESCC cells to induce metastasis. In addition,
MUFAs act as a protective coating around ESCC cells, protecting
them from ferroptosis (Xie et al., 2023). Further mechanistic studies
are required to elucidate the function of BACH1 in esophageal
cancer.

Gastric cancer
Gastric cancer (GC) is the common malignant tumor and cause

of cancer-related death (Smyth et al., 2020). Fang et al. showed using
bioinformatics analyses that BACH1 overexpression indicated good
prognosis in patients with GC (Fang and Lu, 2020). A recent study
revealed that BACH1 facilitates the polarization of macrophages
towards the M2 phenotype by activating Wnt1 and promotes
macrophage-dependent GC progression (Yang et al., 2022). These
somewhat contradictory results suggest that the role of BACH1 in
GC is complex and may be related to the tumor immune
microenvironment.

Bioinformatics analyses showed that BACH2 increased and was
positively correlated with short survival time in patients with GC of
microsatellite instability-high status (Tian et al., 2020). Methylation
of the BACH2 promoter was reported to be increased in
approximately half of patients with GC and associated with
reduced expression of BACH2. Downregulated expression of
BACH2 occurred in significantly less frequencies in the diffuse-
type gastric cancers compared with that of the intestinal-type gastric
cancers. Moreover, BACH2 deficiency has been shown to promote
GC cell proliferation in vitro (Haam et al., 2014). These findings
indicate that BACH2 is expressed at different levels and may play a
positive or negative role in different GC subtypes. Therefore, BACH
proteins are worthy of further study to reveal their role in gastric
tumorigenesis.

Colorectal cancer
CRC is the second most common cause of cancer-related death,

after lung cancer, with more than 1.9 million cases and
930,000 deaths annually worldwide. CRC accounts for
approximately one in ten cancer cases and deaths globally. The
primary cancer site of CRC is mainly the colon (Sung et al., 2021). A
study showed that Bach1 mRNA levels were more upregulated in
CRC than in paracancerous tissues (Chang et al., 2016; Chang et al.,
2020). Immunohistochemical results showed that
BACH1 expression was decreased in CRC tissues compared with
that of adjacent healthy tissues, whereas no significant difference was
observed in the expression of BACH1 in CRC tissues compared with
that of distant healthy tissues (Chang et al., 2013). Another study
demonstrated that BACH1 expression was lowest in adenomas, high
in colon cancer tissues, and highest in normal tissues adjacent to
colon cancer tissues. Increased BACH1 levels were positively
associated with tumor progression in colon cancer (El-Deek
et al., 2019). BACH1 expression is dynamically altered and likely
to be epigenetically modified in colorectal malignant transformation
and tumor progression.

In colon cancer, BACH1 expression increases and promotes
cancer cell migration by increasing the expression of metastasis-
related genes including MMP-1, MMP-9, MMP-13, SNAIL1,
CXCR4, and HMGA2. The increased metastasis-related genes
may be due to the BACH1-mediated decrease in miR-34a and
let-7a (Davudian et al., 2016). The overexpression of
BACH1 enhances CRC cell proliferation, migration, and invasion
and may be associated with upregulated levels of CD31, vimentin,
and CRC4 (Zhu et al., 2018). BACH1 knockdown inhibits
STARD8 and TIAM2 expression at the transcriptional level,
thereby suppressing CRC metastasis (Chen et al., 2022). Long
non-coding RNA NEAT1 directly binds to let-7g-5p, which
targets and upregulates BACH1 to facilitate EMT and cell growth
of colon cancer (Gao et al., 2021). However, one study showed that
the proliferative capacity of colon cancer cells was not affected by
BACH1 knockdown in vitro (Davudian et al., 2016). More studies
are needed to clarify the role of BACH1 in CRC proliferation. The
association between BACH1 expression and mitochondrial function
is different in CRC with or without metastasis (Chang et al., 2020).
BACH1 negatively regulates mitochondrial metabolism in cancer
cells by affecting transcription of mitochondrial respiratory chain
genes and glucose utilization in the citric acid cycle (Lee et al., 2019).
These findings indicate that BACH1 promotes metastasis by
potentially affecting mitochondrial function. In addition,
circBACH1 augmented the proliferation, migration, and
metastasis of CRC and suppressed apoptosis by inhibiting et-7a-
5p, which targets CREB5 and increased CREB5 expression (Li et al.,
2020).

Gastrin releasing peptide (GRP) and its receptor (GRPR) are
morphogenetic factors, which keep tumor cells at high degree of
differentiation and reduce tumor metastasis ability.
BACH2 expression is specifically downregulated when GRP/
GRPR are aberrantly upregulated in colon cancer (Ruginis et al.,
2006). BACH2 proteins promote immune homeostasis and long-
term tumor immunosuppression by driving the quiescence and
durable maintenance of resting Treg cells. In this way,
BACH2 promotes tumor growth in colorectal adenocarcinoma
(Grant et al., 2020). In addition to affecting adaptive immunity,

Frontiers in Physiology frontiersin.org10

Song et al. 10.3389/fphys.2023.1121353

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1121353


deficiency of BACH2 expression promotes natural killer (NK) cell
maturation, regulates its function, and suppresses tumor metastasis
in mice (Li et al., 2022). In summary, both BACH1 and BACH2 play
promoting roles in the progression of CRC.

Liver cancer
The global incidence of liver cancer is projected to exceed

1 million cases by 2025. Hepatocellular carcinoma (HCC)
accounts for approximately 80% of the total liver-cancer cases
(Forner et al., 2018). The expression of BACH1 was increased in
HCC tissues and positively correlated with worse prognosis.
Increased BACH1 expression facilitated the proliferation and
metastasis of HCC by directly targeting IGF1R and PTK2.

Furthermore, IGF2, which can interact with IGF1R, promotes
BACH1 expression upregulation via the ERK1/2/ETS1 signaling
pathway to form a positive feedback loop in HCC progression (Xie
et al., 2022). BACH1 also facilitated transcription of HK2 which
promotes glycolysis-induced HCC metastasis (Zhao et al., 2022). A
recent study showed that BACH1 promoted cellular inflammatory
factors and suppressed autophagy in HCC by negatively regulating
the p53 pathway (Sun et al., 2021). In contrast to BACH1,
upregulated BACH2 expression may enhance apoptosis in NASP-
depleted HCC cells (Kang et al., 2018).

BACH1 is an essential component of Ten-eleven translocation 1
(TET1)/miR-34a/BACH1 axis, through which TET1 negatively
modulates BACH1 by demethylating and activating miR-34a

FIGURE 5
BACH1 regulates gene expression in digestive system cancers. BACH1 regulates EMT by activating or silencing genes which are critical for epithelial
ormesenchymal cell structure. BACH1 also targets genes encoding ferritin subunits and indirectly promotes EMT by increasing labile iron. BACH1 induces
ferroptosis to drive lymphatic metastasis and inhibit hematogenous metastasis by directly suppressing the transcription of SCD1, which is essential for
oleic acid production. The expression of metastasis-related genes is indirectly promoted or transcriptionally activated by BACH1. BACH1 not only
promotes tumor angiogenesis through VEGFC, but also transcriptionally inhibits HO-1 to inhibit tumor angiogenesis. BACH1 regulatesmultiple biological
steps by directly targeting genes such as TKT andHK2 or indirectly regulating pathways such as the p53 pathway. Abbreviations: vimentin (VIM); epithelial-
mesenchymal transition (EMT).
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(Sun et al., 2021). BACH1 proteins facilitate HCC proliferation,
migration, invasion, EMT progress, and cell cycle. LncRNATRG-AS
and Lnc712 interact with miR-4500 and miR-142-3p, respectively,
to induce an increase in BACH1 expression (Sun X. et al., 2020; Cui
and Ni, 2020). Paradoxically, BACH1 regulated by miR-25-3p and
let-7a-5p induces the accumulation of ROS while suppressing cell
proliferation (Wang et al., 2020). BACH1 binds to the two identified
binding motifs (13271nt and 19595nt) in TKT to inhibiting TKT

expression. The knockdown of TKT expression affects HCC cells in
multiple ways; it sensitizes HCC cells to sorafenib, suppresses cell
proliferation and lung metastasis, decreases glucose uptake in vitro,
alters glutathione metabolism, increases intracellular ROS levels,
and induces oxidative stress-related G1 phase arrest (Xu et al., 2016).

One study reported that circBACH1 accelerated cell cycle
progression to promote HCC growth by interacting with HuR to
block the translation of p27, which regulates cell cycle (Liu et al.,

TABLE 2 BACH1 regulator and their effect in the diseases.

Regulator Disease Pharmacological function References

Degrader Hemin Breast cancer Promotes the degradation of BACH1 Lee et al. (2019); Lu et al. (2021)

Alters metabolic pathways which are
downstream of BACH1 Increases sensitivity of
cancer cells against mitochondrial inhibitors
including metformin and AVO

Inhibits breast cancer growth in vivo and vitro

Lung cancer Promotes the degradation of BACH1 Lignitto et al. (2019)

Suppresses lung cancer metastasis in vivo and
vitro

Degrader Breast and lung cancer Promotes the degradation of BACH1 in breast
and lung cancer

Moreno et al. (2022)

TBE56 (50-fold more potent than hemin) Suppresses breast cancer cell metastasisin
in vitro

Inhibitor Aflatoxin B1 (AFB1)-induced liver injury Inhibits BACH1 Marchese et al. (2018)

M2 Suppresses cell death in vitro

Improves symptoms of weight loss and liver
injury in vivo

Inhibitor HPP (HPP-A, HPP-B, HPP-C, HPP-
E and HPP-4382)

Bone destructive diseases such as
rheumatoid arthritis

Suppresses BACH1 activity Attucks et al. (2014);Wada et al.
(2020)

Hinders binding to the HMOX1 E2 enhancer
in vitro

Inhibits RANKL-mediated osteoclastogenesis
and lipopolysaccharide-induced bone
destruction

Inhibitor benzimidazole Parkinson Inhibits BACH1 Ahuja et al. (2021)

Plays a neuroprotective role in mouse models

Inhibitor Huntington’s disease Inhibits BACH1 Casares et al. (2020)

Isomeric Activates NRF2

O-methylcannabidiolq-uinones Plays a neuroprotective role in vitro

Inhibitor Lung cancer Activates NRF2 Casares et al. (2022)

CDDO-Me and CDDO-TFEA) Reduces BACH1 nuclear levels while
accumulating its cytoplasmic form

Impairs lung cancer cell invasion in vitro

Agonists myricetin Cardiac hypertrophy Upregulates BACH2 expression Jiang et al. (2022)

Downregulates the mRNA levels of
hypertrophic markerBnp and Myh7

Has a BACH2-dependent protective effect in
vivo and in vitro

Abbreviations: oleanane triterpenoid 2-cyano-3, 12-dioxooleana-1, 9 (11)-dien-28-oic acid (CDDO); 1-Piperazineethanol, α-[(1,3-benzodioxol-5-yloxy) methyl] -4-(2-methoxyphenyl) (M2);

High point pharmaceuticals (HPP).
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2020). CircBACH1 was also reported to promote HBV replication
and HCC development by sponging miR-200a-3p to downregulate
MAP3K2 expression (Du et al., 2022). Collectively, circBACH1 is an
oncogenic factor of HCC and BACH1 plays an important role in
HCC progression, metabolism, oxidative stress, and
chemoresistance.

Cholangiocarcinoma (CCA)
CCA is a highly aggressive and chemoresistant malignant

tumor of the digestive system (Rodrigues et al., 2021). A recent
bioinformatics analysis showed that BACH1 expression
decreased in CCA (Liu Z. et al., 2022). Increased
BACH1 expression, mediated by the nuclear accumulation of
FOXO1, represses the transcription of genes encoding
proteasome subunits. Decreased PTEN expression
downregulates the nuclear translocation of FOXO1 via the
PI3K/AKT pathway, resulting in dependency on the
proteasome for CCA cell growth and survival and sensitivity
to proteasome inhibitors. This mechanism may be widespread in
many cancers (Jiang T.-Y. et al., 2020). This study suggests that
BACH1 is a potential biomarker and therapeutic target for
resistance to proteasome inhibitor chemotherapy in CCA and
other cancers.

Pancreatic cancer
Pancreatic cancer is a clinically challenging cancer. The

prognosis of pancreatic cancer is very poor, with a median
survival of less than a year after treatment (Wood et al., 2022).
Therefore, there is an urgent need for efficient treatment methods,
such as molecular targeted therapy.

BACH1 is mainly found in islet cells of the healthy human
pancreas, acinar and ductal cells of CP, and ductal and stromal cells
of pancreatic ductal adenocarcinoma (PDAC). Additionally,
BACH1 is present in urine exosomes. BACH1 is dynamically
expressed in cancer development from the early lesions to
invasive stages and are more highly expressed in cancer tissues
than in normal tissues. Moreover, BACH1 levels are inversely
correlated with prognosis in patients with PDAC (Kim et al.,
2021). BACH1 increases labile iron by inhibiting the expression
of the ferritin subunit genes FTH1 and FTL. On the one hand, labile
iron promotes EMT by inhibiting the expression of the epithelial
gene E-cadherin. On the other hand, labile iron promotes
BACH1 degradation by promoting Fbox22 expression.
BACH1 and labile iron form negative feedback regulation (Liu
et al., 2022). BACH1 has been shown to promote cancer
metastasis by promoting EMT. BACH1 promotes EMT by
suppressing the expression of E-cadherin, FOXA1, and tight

FIGURE 6
BACH1 regulation by transcriptional, post-transcriptional and post-translational mechanisms. IGF1R interacts with IGF2 to promote the transcription
of BACH1 via the ERK1/2/EST1 pathway. In addition, BACH1 targets the IGF1R gene to form a positive feedback loop that continuously promotes
BACH1 expression. BACH1 increases PNET expression by suppressing HO-1 expression at the transcriptional level. PNET induces BACH1 transcription
through transcription factor FOXO1. BACH1 and PNET also form positive feedback. BACH1 mRNA can be directly negatively regulated by miRNAs
but also indirectly regulated by TET1 protein or LncRNAs. TBK1 phosphorylates BACH1 and increases BACH1mRNA and protein levels. Labile iron inhibits
the level of BACH1 mRNA and promotes FBXO22-dependent BACH1 degradation. Moreover, BACH1, which targets the FTH1 and FTL genes encoding
ferritin subunits, reduces ferritin expression to increase the level of labile iron. In this way, BACH1 and iron form negative feedback.
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junction proteins (OCLN, CLDN3, CLDN4) and promoting the
expression of vimentin and SNAI2. ChIP-sequencing analysis
showed that BACH1 directly inhibited the expression of CLDN3,
CLDN4, FOXA1, and PKP2, whereas it directly activated
SNAI2 expression (Sato et al., 2020). The expression of
E-cadherin is induced by FOXA1 and inhibited by SNAI2 (Song
et al., 2010; Carpenter et al., 2015). In vitro and in vivo experiments
showed that BACH1 deficiency had no effect on proliferation (Sato
et al., 2020). Nevertheless, one study showed that BACH1 expression
decreased in patients with PDAC and BACH1 deficiency facilitated
the growth of PDAC cells and angiogenesis, most likely by
upregulating HO-1 to increase the expression of eNOS, VEGF,
and HIF1A, evoke oncogenic AKT and ERK signaling, and
inhibit PTEN expression. BACH1 promotes the expression of
epithelial cell markers E-cadherin and ZO-1, and inhibits the
expression of mesenchymal cell markers ZEB1, vimentin, and
Slug, as well as stemness markers ABCG2 and ALDH1. This
study also demonstrated that the rs372883C allele in the 3′-
untranslated region (3′-UTR) of Bach1 resulted in evidently
higher BACH1 levels than the rs372883T allele in both cancer
and normal tissues. Additionally, patients with PDAC carrying
the rs372883T allele were more resistant to gemcitabine and had
worse overall survival compared with those carrying the rs372883C
allele. It is suggested that patients with BACH1 deficiency were
resistant to gemcitabine and had shorter survival times (Huang et al.,
2018). Interestingly, BACH1 deficiency promotes E-cadherin
expression in AsPC−1 (derived from ascitic fluid of pancreatic
cancer) and SW1990 cells (derived from splenic metastases of
pancreatic cancer), but inhibits E-cadherin expression in CFPAC-
1 (derived from liver metastases of pancreatic cancer) and BXPC-3
cells (derived from orthotopic pancreatic cancer) (Huang et al.,
2018; Sato et al., 2020). It indicated that BACH1 may have different
effects on EMT-related genes in pancreatic cancer cell lines of
different origins. Further mechanistic studies are needed to
elucidate the function of BACH1 in pancreatic cancer.

Conclusion of cancers of the digestive
system

BACH proteins regulate ferroptosis, EMT, angiogenesis,
stemness, autophagy, chemotherapy resistance, metabolism, the
immune microenvironment, proliferation, and metastasis by
binding to the promoter of the target gene to affect gene
expression or indirectly affecting gene expression (Figure 5). We
focus on the mechanism of BACH1 in EMT, angiogenesis,
proliferation, and metastasis. BACH1 regulates EMT by
controlling the expression of EMT key genes such as CLDN3 or
inhibiting the expression of ferritin subunit genes to decrease
E-cadherin expression. The effect of BACH1 on EMT-related
genes may be quite different in cell lines of different origins. For
example, BACH1 inhibits EMT by decreasing vimentin expression
in pancreatic cancer but promotes EMT by increasing vimentin
expression in esophageal cancer. Angiogenesis is inhibited by the
BACH1/HO-1 axis and promoted by the BACH1/VEGFC pathway.
BACH1 regulates cancer proliferation by targeting IGF1R and
PTK2 and affecting angiogenesis and cell cycle. Cell cycle is
promoted by BACH1 and TKT which is transcriptionally

suppressed by BACH1. BACH1 promotes metastasis by inducing
metastasis-related gene expression, HK2-mediated glycolysis,
Wnt1-mediated M2 macrophage polarization, EMT, angiogenesis,
and ferroptosis. BACH2 maintains immune homeostasis and
durable tumor immunosuppression and induces cancer
progression by regulating Treg and NK cells in gastrointestinal
tumors.

Conclusion

BACH transcription factors are important regulators of
pathophysiology in the digestive system. The regulatory role of
BACH proteins is dual in a variety of processes such as
inflammation, EMT, angiogenesis, cell cycle, and macrophage
polarization. For example, BACH1 knockdown promotes
M2 macrophage polarization to alleviate colitis and inhibits
M2 macrophage polarization to inhibit GC metastasis. ROS
production is promoted by BACH1 in cancer cells but inhibited by
BACH1 in macrophages. Different cellular functions regulated by
BACH proteins are interconnected. For example, BACH1-induced
ferrroptosis promotes lymphatic metastasis and inhibits
hematogenous metastasis. In inflammation, EMT, and other
conditions, BACH proteins regulate the same molecule differently in
different cell tissues. For example, BACH1 increases the expression of
hepaticMrp3 and decreases the expression of renalMrp3. The BACH1/
HO-1 pathway plays a role in both benign andmalignant diseases of the
digestive system. In addition to inhibiting HCV replication and IR
injury and promoting mucosal protection and antiviral response,
BACH1-mediated HO-1 upregulates the expression of VEGF and
other molecules and downregulates PTNE expression to regulate
tumor angiogenesis. Although BACH2 has been reported to affect
CP, IBD, and cancer by regulating adaptive immunity, the specific
functions of BACH2 are unclear.

BACH protein expression levels appear to be related to the
severity of IBD, CeD, CP, and the prognosis of patients with cancer.
Therefore, these proteins may serve as biomarkers and therapeutic
targets for digestive diseases, such as IBD, and tumor progression
and prognosis. In addition to BACH expression levels, SNPs in Bach
genes are susceptibility loci for IBD, CeD, PSC, ADTH, CP, and
PDAC and may serve as biomarkers at the genetic level. Currently,
Bach2 SNPs are associated with autoimmune diseases. However, the
causal genetic variants within each susceptibility locus are unclear.
Mouri et al. demonstrated an efficient method to preferentially select
variants and study their relevant roles (Mouri et al., 2022). This will
be useful to better characterize the effect of these SNPs on disease.

Pharmacological studies have identified some regulators of
BACH. For example, hemin specifically degrades BACH1 with
negligible toxicity, inhibits breast cancer growth, and is used to
treat patients with acute porphyria (Sun et al., 2002; Chiabrando
et al., 2014; Bissell et al., 2017; Lee et al., 2019; Lignitto et al., 2019).
Table 2 summarizes some novel molecular compounds capable of
modifying the expression and activities of BACH, as well as their
function in related diseases. Bach1 gene is transcriptionally
repressed by FOXO1 and EST1. BACH1 mRNA and protein
levels are affected by miRNAs, labile iron, LncRNAs,
TBK1 protein, and TET1 protein. BACH1 protein is also subject
to post-translational regulation by TBK1 and labile iron. In addition,
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BACH1 forms positive feedback with PTEN or IGF1R and negative
feedback with labile iron (Figure 6). These findings provide new
ideas for the development of agonists or antagonists targeting BACH
in the digestive system.

There has been some progress in understanding BACH proteins.
However, many important questions remain. For example, both
BACH1 and BACH2 are expressed in the same tissues such as gut,
but their temporal and spatial relationships have not been clearly
defined. In digestive diseases and tumors, further studies are
required to elucidate the mechanisms of action of BACH
proteins and aid in the search for valuable regulators targeting
BACH proteins to treat diseases.
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