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Uremic toxins are chemicals, organic or inorganic, that accumulate in the body
fluids of individuals with acute or chronic kidney disease and impaired renal
function. More than 130 uremic solutions are included in the most
comprehensive reviews to date by the European Uremic Toxins Work Group,
and novel investigations are ongoing to increase this number. Although
approaches to remove uremic toxins have emerged, recalcitrant toxins that
injure the human body remain a difficult problem. Herein, we review the
derivation and elimination of uremic toxins, outline kidney–gut axis function
and relative toxin removal methods, and elucidate promising approaches to
effectively remove toxins.
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1 Introduction

Uremic toxins are described as organic or inorganic chemical substances, that
accumulate in the body fluids of individuals with acute or chronic kidney disease (CKD)
and renal dysfunction (Glassock et al., 2022). They are metabolites that are generated
daily from food by metabolism and excreted into the urine through glomerular
filtration or active transport by renal proximal epithelial cells (Vanholder et al.,
2003), which may cause uremic syndrome due to the cumulative effect of these
disturbances in renal elimination and subsequently, toxicity (Meyer and Hostetter,
2007; Almeras and Argilés, 2009). Up to 75 individual clinical symptoms, including
memory and cognitive dysfunction, asthenia, headache, confusion, anorexia,
gastroparesis, hematologic anemia, hemostatic disorders, hypertension,
atherosclerosis, coronary artery disease, pruritus and skin dryness, calciphylaxis,
growth impairment, impotence, infertility, sterility, osteomalacia, β2-microglobulin
amyloidosis, increased susceptibility to infection, metabolic acidosis,
hyperphosphatemia, hyperkaliemia, and many other diseases (Almeras and Argilés,
2009), may lead to damage to every organ, a reduced quality of life and an increase in
morbidity and mortality.

The most thorough reviews to date, prepared by the European Uremic Toxins Work
Group (EUTox), list no less than 130 uremic solutes, and new studies continue to add to
this number (Vanholder et al., 2003). Based on molecular weight and chemical
characteristics, uremic toxins are divided into three categories. The first category
consists of free, water-soluble, low-molecular-weight solutes (<500 Da), for example,
creatinine and urea, which are readily and efficiently eliminated by conventional
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dialysis. The second, middle molecules (≥500 Da), include
peptides and proteins, with representative examples being β2-
microglobulin and α1-macroglobulin, which can only be
eliminated by dialysis treatment performed using dedicated
dialyzer and are characterized by larger pores on the
membrane surface due to their molecular weight. Last but not
least, protein-bound solutes are often referred to as protein-
bound uremic toxins (PBUTs), which have a high binding affinity
for albumin or other carrier proteins, which severely disturbs the
clearance rate of conventional hemodialysis (HD) treatments,
even with high-flux methods (Vanholder et al., 2003; Vanholder
et al., 2008; Wu et al., 2011; Duranton et al., 2012; Itoh et al., 2012;
Viaene et al., 2013; Chmielewski et al., 2014; Clark et al., 2019).

Given the complex and difficult quantification of uremic toxins,
it is a daunting task to match an isolated solute or a set of solutes to a
definite symptom. Such difficulty is imposed by a variety of solutes
and compounded by the multiplicity of ill effects encountered in
uremia (Meyer and Hostetter, 2007). At present, the prevailing
viewpoint is that certain unexplained symptoms of uremia are
largely caused by the accumulation of organic wastes due to the
dysfunction of renal removal processes. Because little is known
about the toxicity and mechanisms of uremia toxins in the human
body when they act alone or in combination, the study of these
toxins has been focally organized on the basis of their source and
elimination.

2 Generation of uremic toxins

Progress in medicine with the extended applications of gas
chromatography, mass spectrometry, and high-performance
liquid chromatography has altered the way in which is it
determined if a serous solution is toxic. Nevertheless, the
problem of tracing the metabolism of a solute and its renal and
systemic toxicological effects remains. Thus, unraveling the source
of uremic toxins could help to find new ways to remove them more
efficiently. Each uremic solute may have multiple sources, although
we focus on only one in this review. The pathways of uremic toxin
production are shown in Figure 1 and Table 1.

2.1 Uremic toxins from the gut microbiome

Over the past 2 decades, research on the interactions between
the host and the microbiota has grown substantially, and it is now
apparent that commensal bacteria are involved in the regulation of
numerous physiological processes in the host (Schroeder and
Bäckhed, 2016). The gut microbiome, which performs a variety
of tasks and can be thought of as a metabolically active endogenous
‘organ’, is the collective microbial genome of the gut microbiota
(Ramezani and Raj, 2014a). Under physiologic conditions, the
digestion of food, development of host immunity, control of gut

FIGURE 1
(A) The gut microbiome generate uremic toxins. Production of indoxyl sulfate by gut microbiome leads to myocardial fibrosis and atherosclerosis,
production of p-Cresyl sulfate leads to atherosclerosis, production of dimethylamine leads to activation of platelet. (B) Endogenous metabolism by liver
produce uremic toxins. Production of guanidinosuccinic acid leads to central nervous system injury, production of β2-Microglobulin leads to destructive
arthritis, production of urea leads to intestinal barrier damage and anemia. (C) Exogenous intake supplies a source of substrates. The resulting
production of hippuric acid causes endothelial cell injury.
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endocrine function and neurological signaling, alterations in drug
action andmetabolism, removal of toxins, and production of various
chemicals with properties that influence the host have all been
attributed to the gut microbiome (Fan and Pedersen, 2021). Beyond
these, the gut microbiome engages in a number of complementary
metabolic processes that are not fully developed in the human host,
including the breakdown of undigestible plant polysaccharides
(Hooper et al., 2002), synthesis of certain vitamins (Hill, 1997),
biotransformation of conjugated bile acids (Hylemon and Harder,
1998), and degradation of dietary oxalates (Duncan et al., 2002;
Ramezani and Raj, 2014a). For instance, using the individual-
specific and temporally stable microbial profiles, including
bacterial SNPs and structural variations, Chen et al. develop a
microbial fingerprinting method. When observing the microbial
associations with metabolites, there were 27 associations related to
different uremic toxins, especially hippuric acid. (Chen et al., 2021).

The gut microbiome can generate uremic toxins from various
substrates, including amino acids and the choline class of
compounds (Wang et al., 1002). The bacterial proteolytic
fermentation process in the large intestine accounts for most of
the potentially toxic end products. This is also why most gut-derived
toxins are nitrogenous compounds. In the process of fermentation,
several factors are responsible for the mechanism and are increased

by CKD, which creates a latently different intraluminal
environment, including the ratio of carbohydrates to proteins,
colonic transit time, and bacterial composition in the intestines
(Evenepoel et al., 2009). The gut microbial metabolic toxins that are
often mentioned and studied include indoles, phenols, aliphatic
amines, and polyols (Table 1) (Figure 1A). Many colon-derived
solutes metalized by the microbiome are PBUTs (Mair et al., 2018).
Indole and its derivatives are directly transformed by intestinal
microorganisms in the gut through tryptophan metabolism (Agus
et al., 2018), many of which are ligands for the aryl hydrocarbon
receptor (Zelante et al., 2013). Tryptophan is first converted into
indole by gut microbial tryptophanase enzymes, and then indole is
transported to the liver. Then the tryptophan is hydroxylated and
sulfated by human hepatic cytochrome P450s and sulfotransferase
enzymes, which form the circulating and harmful uremic toxin
indole sulfate (IS) (Banoglu et al., 2001), respectively. Moreover,
fermentation of aromatic amino acids may generate a variety of
bioactive end products, such as phenol and p-cresol (tyrosine)
(Rowland et al., 2018). P-Cresyl sulfate (pCS) is one of the most
thoroughly studied and harmful phenolic uremic toxins, which is
produced through multiple steps involving intestinal microbial and
host liver factors (Graboski and Redinbo, 2020). Gut microbial
enzymes convert tyrosine to p-cresol either directly through

TABLE 1 Derivation and mechanism of uremic toxins.

Uremic toxins Meyer and Hostetter (2007), Graboski and Redinbo (2020)

Group Indoles Phenols Aliphatic
amines

Hippurates AGEs Peptides and
small proteins

Guanidines Nucleosides

Example Indoxyl sulfate p-Cresyl
sulfate

Dimethylamine Hippuric acid Carboxymethyllysine β2-
Microglobulin

Guanidinosuccinic
acid

Pseudouridine

Derivation Microbial
metabolism

Microbial
metabolism

Microbial
metabolism

Exogenous
intake and
microbial
metabolism

Exogenous intake Endogenous
metabolism

Endogenous
metabolism and
microbial
metabolism

Endogenous
metabolism

Pathogenies/
Mechanism

Increased
expression of
genes linked to
tubulointerstitial
fibrosis Miyazaki
et al., (1997),
vascular stiffness
Adijiang et al.,
(2010), aortic
calcification
Adijiang et al.,
(2010), and
cardiovascular
mortality Barreto
et al., (2009);
oxidative stress in
endothelial cells
Dou et al., (2004);
vascular smooth
muscle cell
proliferation
Adelibieke et al.,
(2014);
nephrotoxicity
Niwa and Ise,
(1994); Miyazaki
et al., (1997)

Further
development
of CKD,
cardiovascular
disease (CVD),
and mortality
in
hemodialysis
patients
Liabeuf et al.,
(2010); Wu
et al., (2011);
decreased
production of
endothelial
adhesion
molecules
when
cytokines are
present Dou
et al., (1999);
endothelial
permeability
(Neirynck
et al., 2012)

Platelet
activation Gao
et al., (2021);
neurotoxicity,
hemolysis, and
lysosomal
function
inhibition
Adijiang et al.,
(2010)

Nontoxic;
increased anion
gap acidosis;
may lead to
glucose
intolerance and
impair the
functions of
platelet
cyclooxygenase
and
erythropoiesis
Ramezani et al.,
(2016)

NF-κB/MAPK/JNK
signaling;
extracellular matrix
(ECM) formation of
crosslinks; impaired
endothelial
progenitor cell
function; RAGE
signaling Ma et al.,
(2023)

Inappropriate
activation of
various
hormone or
cytokine
receptors;
systemic
inflammation;
accelerated
vascular
disease
Adijiang et al.,
(2010)

Uremic platelet
dysfunction;
central nervous
system
dysfunction;
decreased
neutrophil function
Luft, (2008)

CMPF, 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid; AGE, advanced glycation end product.
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tyrosine lyases or through a multistep process involving tyrosine
transaminases and 4-hydroxylphenylacetate decarboxylases (Saito
et al., 2018). A small portion of the p-cresol produced by the gut
stays in the gut and is transformed into p-cresyl glucuronide by host
epithelial UDP-glucuronosyltransferase, while the majority of the
p-cresol is absorbed into systemic circulation (Graboski and
Redinbo, 2020). Then, hepatic sulfotransferases transform the
p-cresol that enters systemic circulation into the uremic toxin
pCS (Gryp et al., 2017). The study by Gryp et al., 2020, suggests
that although the increase of plasma levels of PBUTs produced in the
intestine is mainly a result of renal dysfunction, gut bacteria remain
an important potential target when considering new treatment
methods to prevent the accumulation of uremic toxins. (Gryp
et al., 2020).

2.2 Uremic toxins from endogenous
metabolism

As early as 1964, Dawes proposed that endogenous metabolism
is simply the sum of the metabolic processes that take place inside of
a living organism when there are no substances or materials acting
specifically as exogenous substrates. The liver is the essential organ
that governs a substantial portion of metabolism and serves as a hub
to link diverse metabolic pathways. Since urea was the first organic
solute identified in the blood of patients with kidney failure, it is
quantitatively the most significant solute eliminated by the kidney,
with both HD and peritoneal dialysis (PD) currently being
prescribed to achieve target values for urea clearance (Meyer and
Hostetter, 2007). In the liver, to produce one molecule of urea, two
ammonia molecules and one CO2 molecule are shuffled into the
cycle. One ammonia molecule combines with carbon dioxide and
the currently available precursor from the previous ornithine cycle
to subsequently form citrulline. The other ammonia is then
combined to form arginine. Arginine is known to take part in
the production of creatine, thereby boosting energy and reducing
exhaustion, similar to methylguanidine. Uric acid and xanthine are
also endogenous molecules produced without interference by
intestinal absorption (Gouroju et al., 2017). Guanine
monophosphate is converted into guanosine by nucleotidase,
which, together with a nucleoside and inosine, is further
converted to the purine-based compounds hypoxanthine and
guanine by purine nucleoside phosphorylase. Hypoxanthine is
oxidized by xanthine oxidase to form xanthine, and guanine is
deaminated by guanine deaminase to produce xanthine. Xanthine is
then again oxidized by xanthine oxidase to form the final product,
uric acid. Additionally, a few scholars have argued that uremic toxin
synthesis may originate from mitochondria, which closely ties the
function and generation of uremic toxins to mitochondrial
metabolism, possibly through key biochemical pathways (Popkov
et al., 2019). For example, creatinine (or closely related creatine)
metabolism is tightly associated with mitochondria (Wyss and
Kaddurah-Daouk, 2000); organic acids, including argininic acid,
hippuric acid, indole-3-acetic acid, orotic acid, α-keto-δ-
guanidinovaleric acid, γ-guanidinobutyric acid, uric acid, and
kynurenic acids, represent another group of uremic toxins, the
metabolism of which is dependent on mitochondria; and some
nucleotide derivatives, uric acid, xanthine, hypoxanthine, urea,

and phenylacetylglutamine, are closely associated with
mitochondrial metabolism (Popkov et al., 2019) (Figure 1B).

2.3 Uremic toxins generated from
exogenous intake

Exogenous intake, the gut microbiome and endogenous
metabolism are three intersecting sources of uremic toxins
that are inseparable (Figure 1C). Exogenous intake supplies a
source of substrates, many of which provide substances that the
human body cannot naturally synthesize. Hippurate, a kind of
uremic toxin, is primarily obtained from plant-based foods, as
only a small quantity is produced endogenously from the amino
acid phenylalanine (Brunelli et al., 2021; De Simone et al., 2021).
Diet therefore determines hippurate production, a process in
which Clostridia spp. are involved (Ramezani et al., 2016). In
addition, furans, advanced glycation end products (AGEs), and
polyols are also produced in this way (Gouroju et al., 2017). AGEs
are heterogeneous compounds formed through a nonenzymatic
Maillard reaction sequence in which reducing sugars are
covalently linked to protein amines, most commonly lysine
and arginine residues (Stinghen et al., 2016). Fructoselysine,
methylglyoxal, glyoxal, and 3-deoxyglucosone are the
precursors of circulating AGEs, and the majority of these
precursors are byproducts of various metabolic and oxidative
processes, such as glycolysis, lipid peroxidation, and the
breakdown of glycolytic intermediates (Abordo et al., 1999).
The modern diet is full of dangers that greatly contribute to
the body’s AGE pool, especially when cooked at high heat in dry
conditions (Mallipattu et al., 2012; Snelson and Coughlan, 2019).
Examples include cereal, baked goods, and powdered milk, which
raise systemic AGE levels.

3Metabolism and elimination of uremic
toxins

Currently, as fundamental and life support therapies, traditional
HD and PD are still the mainstream methods by which uremic
toxins are removed from the body. HD is one of the common
methods of renal replacement therapy for toxin removal. Material
exchange is carried out through the principles of dispersion,
ultrafiltration, adsorption and convection to remove metabolic
wastes, maintain the electrolyte and acid-base balance, and
remove excess water from the body. Both HD and PD are
currently prescribed to achieve target values for urea clearance
(Meyer and Hostetter, 2007). Nevertheless, previous studies have
argued that urea itself causes only a minor portion of uremic illness
(Johnson et al., 1972). Thus, it is imperative to take efficient means to
remove excess fluids and electrolytes, especially toxic metabolic
wastes, or selectively remove uremic toxins that are known to
cause specific symptoms, thus reducing the high morbidity and
mortality of dialysis-dependent patients. Among them, PBUTs are
hard to remove due to their attachment to the transport protein
human serum albumin. Accumulating evidence has shown that it is
not just downstream toxin removal that we need to focus on;
reducing upstream toxin production can be a successful strategy
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by providing more approaches. The eliminations of uremic toxins
are shown in Figure 2.

3.1 Reduction in the generation of gut-
derived uremic toxins

New, emerging approaches have exhibited a distinctive effect on
the elimination of uremic toxins of gut origin, which is accompanied
by the evolution of various biotechnologies. Therefore, targeting the
gut might be a promising adjuvant way to tackle stubborn uremic
toxins.

The gut microbiome and CKDs share a complex bilateral
relationship. (Mishima et al., 2017) designed a clever experiment
that compared germ-free (GF) and specific pathogen-free (SPF) IQI
mice and found that mice with renal failure housed under GF
conditions had significantly lower levels of microbiota-derived
uremic solutes in their plasma metabolites. In addition,
compared to SPF mice with renal failure, mice with renal failure
under GF conditions caused the disappearance of colonic short-
chain fatty acids (SCFAs), a reduction in the utilization of intestinal
amino acids, and more severe renal damage, which may further
exacerbate renal damage in GF mice with renal failure. The authors
thought that development without microbiota has detrimental
effects on CKD progression and contributes significantly to the
formation of toxic uremic solutes (Mishima et al., 2017).
Additionally, a previous study demonstrated that it is possible to

control host IS levels by targeting the microbiota and suggested a
possible strategy for treating renal diseases (Devlin et al., 2016).

Bacterial metabolism plays a nonnegligible role in toxin
generation. As Evenepoel et al. (Evenepoel et al., 2009)
summarized, bacterial species can be roughly categorized as
saccharolytic (i.e., those that predominantly ferment
carbohydrates) or proteolytic (i.e., those that are predominantly
protein fermenters) (Hida et al., 1996; Takayama et al., 2003; Taki
et al., 2005; Goldfarb et al., 2007). It is widely acknowledged that the
availability of nutrients, notably the ratio of available carbohydrates
to nitrogen, which affects the degree of saccharolytic vs proteolytic
fermentation, is the most significant regulator of bacterial
metabolism (McOrist et al., 2011). Hence, the composition,
dynamics, and stability of the gut microbiome could be a
therapeutic target for removing uremic toxins (Ramezani and
Raj, 2014b). Huang et al. developed a probiotic screening
platform based on gut-derived uremic toxin-reducing probiotics
and selected two strains (Lactobacillus paracasei and Lactobacillus
plantarum) that display kidney protective functions. These bacteria
act by reducing kidney injury and fibrotic-related proteins,
decreasing oxidative stress and proinflammatory reactions and
elevating immune responses, reversing gut dysbiosis, and
restoring the abundance of commensal bacteria, especially SCFA
producers, which leads to improved intestinal barrier integrity via
modulation of the microbial composition and metabolite
production (Huang et al., 2021a) (Figure 2C). By improving the
available carbohydrates to nitrogen ratio, increasing the production

FIGURE 2
(A) Extracorporeal hemodialysis techniques. Therapeutic HD removes solutes primarily by adsorption, diffusion, and convection across
semipermeable membranes. (B) Peritoneal dialysis removes excess water and toxins via the peritoneum, a natural semipermeable membrane, and
provides more flexibility and independence for patients. The understanding of solute and water transport processes across the peritoneum underlies the
efficiency of PD. (C) Probiotics act by reducing kidney injury and fibrotic-related proteins, decreasing oxidative stress and proinflammatory reactions
and elevating immune responses, reversing gut dysbiosis, and restoring the abundance of commensal bacteria. (D) Intraluminal adsorption onto high-
affinity surfaces may also serve as an effective intervention for toxin removal. An oral preparation of activated charcoal, AST-120 has demonstrated its
effectiveness in toxin removal. (E)Natural products have been considered a promising and effective treatment for ESRD. Rhubarb enema treatment could
restore the intestinal mucosal barrier by modifying several functional enteric bacteria. The use of Danhong injection or salvianolic acids inhibits CKD
progression by removing uremic toxins.
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of SCFAs, lowering the colonic pH, lengthening the colonic transit
time, and suppressing the enzymes that catalyze the reactions that
result in relative toxins, prebiotics and probiotics may help bring
about such a change in the colonic environment (Rossi et al., 2012).
Vaziri et al. demonstrated a significant difference in the abundance
of 175 bacterial operational taxonomic units between uremic and
normal rats, most notably observed as decreases in the
Lactobacillaceae and Prevotellaceae families (Vaziri et al., 2013),
which can be supplemented by probiotics. In PD patients receiving
probiotics, the levels of serum cytokines and endotoxin significantly
decreased after 6 months of treatment (Wang et al., 2015). For
patients with stage 3–5 CKD, prebiotics significantly reduced the
levels of uremic toxin of intestinal origin and favorably affected the
gut microbiome (Ebrahim et al., 2022). By targeting one or a few
healthy bacteria to promote their growth and/or activate their
metabolism, synbiotics, a combination of prebiotics and
probiotics, have been shown to have a positive effect on the host
and improve the survival and implantation of live microbial dietary
supplements in the gastrointestinal tract (Pandey et al.,
2015).(Haghighat et al., 2020) designed a randomized double-
blind controlled trial to explore the effects of probiotic and
synbiotic supplementation in HD patients, and found that
administration of synbiotics was more effective than probiotics
for improving inflammatory markers, endotoxin and anti-HSP70
serum levels. The rise in the genetic engineering of bacteria reduces
gut microbial-target uremic toxins as promising and potential
candidates (Lim and Song, 2019). Similar to prebiotics, fecal
microbiota transplantation (FMT) is a therapeutic method that
targets the restoration of intestinal flora balance and curbing
diseases stemming from such imbalances. This technique offers a
fresh approach to eradicating uremic toxins. In clinical practice,
FMT entails introducing fecal matter from healthy donors into the
patient’s gut, allowing for the establishment of a robust and healthy
microbiome. (Wang et al., 2020) conducted a comprehensive study
that showed that a decrease of the driver gut bacterial species
abundance should attenuate the severity of the disease, by
transplanting the fresh gut microbiota from either patient with
ESRD or healthy donors into germ-free CKD mice.

Numerous studies have demonstrated that dietary changes may
reduce uremic toxin levels. A vegetable-based diet high in fiber
appears to offer important advantages to CKD or dialysis-dependent
patients (de Brito-Ashurst et al., 2009; Goraya et al., 2012; Kalantar-
Zadeh et al., 2015; Rossi et al., 2015; Kandouz et al., 2016). A high-
fiber, low-protein, plant-based diet may favorably alter the gut
microbiota in a manner that reduces uremic toxin production
and inhibits CKD progression (Kalantar-Zadeh et al., 2020).
Additionally, very low protein diets (protein intake of 0.4 g/kg/
day) were linked to better preservation of kidney function and a
slower rate of end-stage renal disease (ESRD) development (Rhee
et al., 2018). According to an 8-week randomized controlled trial
that included 50 ESRD patients, supplementation of the diet with a
high content of fermentable fiber decreased the serum levels of some
nitrogenous products, such as serum creatinine and p-cresol,
without changing the IS levels in maintenance HD patients
(Khosroshahi et al., 2019). SCFAs, a fermentation end product
with anti-inflammatory and histone deacetylase inhibiting
properties produced by the intestinal microbiota, may modulate
the inflammatory response and lessen the effects of hypoxia in

kidney epithelial cells by enhancing mitochondrial biogenesis
(Andrade-Oliveira et al., 2015). Supplementation with SCFAs,
especially sodium propionate, could effectively lower the essential
gut-derived uremic toxins indoxyl and p-cresol sulfate (Marzocco
et al., 2018). Targeting the gut microbiome and making dietary
changes are relatively safe methods without clear side effects that are
suitable for maintenance dialysis patients.

3.2 Strengthening the removal of uremic
toxins

3.2.1 Peritoneal dialysis
PD is a widely used renal replacement therapy. It removes excess

water and toxins via the peritoneum, a natural semipermeable
membrane, and provides more flexibility and independence for
patients (Figure 2B). The understanding of solute and water
transport processes across the peritoneum underlies the efficiency
of PD. The continuous capillary endothelium, peritoneal interstitial
space, andmesothelium are pathways in which solutes and water can
be exchanged between the plasma in the peritoneal capillaries and
the fluid in the peritoneal cavity (Devuyst and Rippe, 2014). The
water channel aquaporin-1 (AQP1) is constitutively produced in the
endothelial cells lining peritoneal capillaries and allows osmotic
water transfer across these barriers. In PD, where water is
osmotically extracted into the peritoneal fluid by hyperosmolar
dialysate solutions, AQP1 offers a water-only channel for fluid
clearance (Verkman, 2006). To date, a few case‒control studies
have found that HD is far more effective that PD in removing
PBUTs (Yoshida et al., 2007; Pham et al., 2008), and automated PD
also less effectively removes PBUTs than continuous ambulatory
PD, an advantage (Eloot et al., 2015) that may be related to residual
renal function in PD patients. A systematic review andmeta-analysis
showed that the only statistically significant difference between the
quality of life of patients on HD and PD is in regards to the effects of
kidney disease, which happens to be better in patients undergoing
PD (Zazzeroni et al., 2017).

3.2.2 Extracorporeal hemodialysis techniques
Therapeutic HD removes solutes primarily by adsorption,

diffusion, and convection across semipermeable membranes
(Figure 2A). The driving force for solute diffusion is the
concentration gradient across the membrane, and for convection,
generally referred to as ultrafiltration, the driving force is the
transmembrane hydrostatic pressure. In recent years, how to
effectively remove PBUTs from the serum of HD patients has
become a research hotspot in the field of blood purification.
Increasing the treatment time and frequency to prolong the HD
time can only improve the clearance rate of small, water-soluble
molecular solutes and medium and large molecular toxins (Basile
et al., 2011). Long-term HD at night had little effect on improving
the clearance of PBUTs (Meijers et al., 2011) and did not meet
expectations. Initial experience suggested that hemofiltration (HF)
and hemodiafiltration (HDF) may augment the removal of larger
molecules and protein-bound solutes through increased convective
clearance (Blankestijn et al., 2010; Eloot et al., 2012; Susantitaphong
et al., 2013). Therefore, increasing the level of free PBUTs and
extracorporeal adsorption are indispensable. PBUTs in the blood
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mostly bind reversibly to the Sudlow I or II site of serum albumin via
noncovalent bonds, but this binding is affected by the temperature,
pH, dilution factor of the blood and concentration of ions and drugs.
Infusing ibuprofen, a binding competitor, into the arterial bloodline
during HD significantly increases the dialytic removal of IS and pCS
and thereby leads to a greater reduction in their serum levels
(Madero et al., 2019). Moreover, high sodium concentrations in
the substituate of predilution HDF at increased plasma ionic
strength could improve PBUT removal (Krieter et al., 2017). In
addition, some studies have found that the use of high dissolved
hydrogen dialysate can promote the dissociation of IS from the
albumin binding site, increase the level of free IS and improving the
scavenging effect of IS in the filtrate (Tange et al., 2015).

Combining extracorporeal HD with the adsorption technique
seems to be another trend in removing PBUTs. A hemoperfusion
cartridge containing an adsorbent substance, such as activated
charcoal or a resin, is used in this procedure to circulate blood
extracorporeally. Adsorbents are substances that, as a result of their
physical and chemical properties, adsorb other elements that
dissolve on their surface (Botella et al., 2000). Almost all solutes
in plasma are protein-bound to some extent (Keller et al., 1983).
Additionally, the toxins that are protein-bound are not eliminated
by HD, and the plasma proteins that bind drugs are too large to be
removed via extracorporeal therapies other than apheresis (Lam
et al., 1997; Roberts and Buckley, 2007). The molecular mass of
substances amenable to extracorporeal removal has increased since
the introduction of HP, which has improved to clear greater
amounts of uremic toxins, especially middle molecules. In HD,
conventional dialyzers may clear substances up to 15,000 Da,
whereas high cutoff hemofilters may clear substances closer to
50,000 Da in size (Gondouin and Hutchison, 2011; Kirsch et al.,
2017). Sorbents were first used in nephrology byMuirhead and Reid,
who utilized an ionic resin to remove uremic toxins from dogs in
1948 (Muirhead and Reid, 1948). In recent years, there is a
significant focus on researching, developing, and testing new
adsorption materials. The bottom-up assembled adsorbents of the
intrinsically biocompatible protein cage ferritin have been developed
lately. Through the introduction of chemical modification to
selectively target the inner surface, coupled with the
functionalization of hydrophobic molecules, the level of adsorbed
uremic toxins is greatly increased (Böhler et al., 2022). Traditional
adsorption membrane materials are generally made of a mixture of
traditional polymer materials and adsorption particles. The polymer
matrix of the membrane is mostly polymer polyethersulfone/
polyvinylpyrrolidone (PES/PVP), which is blended with various
new nanomaterials to adsorb PBUTs. Moreover, metal-organic
frameworks (MOFs) have shown promising performance in the
adsorption of PBUTs, a class of crystalline micro/mesoporous
hybrid materials composed of metal ions or metal clusters
interconnected by organic linkers. An ultramicroporous olefin-
linked COF (NKCOF-12) with good biocompatibility and
excellent adsorption was successfully prepared via the melt
polymerization synthesis method by Wei and his colleagues (Wei
et al., 2023). At present, this kind of new composite materials with
micro-nano-scale metal framework and organic ligands is a new
direction of adsorbent research because of its superior adsorption
performance, high specific surface area, and good biocompatibility.
A pilot clinical trial in Vietnam showed that a combination of HD

and hemoperfusion with HA 130 resin for 3 years helped to reduce
the cardiovascular-related mortality rate (Nguyen Huu et al., 2021).

Additionally, in a randomized control trial, patients who received
polymyxin B hemoperfusion displayed significant decreases in
cytokines after 3 days compared to those who received only
standard treatment (Srisawat et al., 2018), and some researchers
believe that prolonged polymyxin therapy might be associated with
better clinical outcomes in patients with septic shock (Kawazoe et al.,
2018). Currently, there is an efflux of newly designed materials with
higher absorption rates and limited albumin removal. Magnani and
Att, 2021, summarized the state of the art blood purification
strategies and showed that adsorption-based extracorporeal
techniques, particularly HDF with endogenous infusion and
hemoperfusion, integrated directly with current HD systems that
adsorbed large amounts of middle molecular weight molecules and
PBUTs (Magnani and Atti, 2021). Apart from traditional charcoal,
many resin sorbents, mainly those that are cellulosic or polymeric,
demonstrate a more efficient rate of clearance (Yamamoto et al.,
2018; Gemelli et al., 2019; Rocchetti et al., 2020). (Liu et al., 2021)
prepared new biosafe and efficient nitrogen-containing porous
carbon adsorbent (NPCA) beads for the clearance of PBUTs, the
removal mechanism of which is ascribed to effective competition
between the nitrogen-containing NPCA and proteins for PBUT
binding. Shen et al., 2020. indicated that the dialysate supported by
cationic liposomes significantly improved the efficiency of removing
certain PBUTs, which suggests the potential of this cationic
absorbent as an ideal scavenger for PBUTs in blood purification
(Shen et al., 2020). Nevertheless, the use of hemoperfusion has
declined to approximately 1% of HD utilization in the United States
and has been traditionally used primarily for poisoning (Ghannoum
et al., 2016) including paraquat poisoning (largely in Asia, and often
in combination with HD) (Ouellet et al., 2014; Li et al., 2018).

HDF with sorbent-regenerated endogenous ultrafiltrate
reinfusion (HFR) is a type of HDF in which the replacement
fluid consists of the patient’s ultrafiltrate that has been
regenerated through a cartridge with hydrophobic styrene resin.
HFRmay provide a favorable compromise between the optimization
of toxin removal and the possible loss of beneficial physiological
substances (Aucella, 2012). According to clinical research, HFR is
associated with a better physical component in terms of health-
related quality of life than bicarbonate HD that is independent of
age, sex, dialysis vintage and invalidity score (Borrelli et al., 2016). In
addition, HFR provides new treatment ideas for other diseases, such
as multiple myeloma and acute kidney injury.

Hemoperfusion (HP) is based on the mass separation of
adsorbents. A blood purification technique that introduces the
patient’s blood into a perfusion device equipped with a solid
adsorbent and removes exogenous or endogenous toxins, drugs,
or metabolic waste from the blood that cannot be cleared by dialysis
through adsorption. HD can only remove substances with high
diffusion, non-protein binding, and small to medium molecular
weight. The combination therapy of HD and HP improves the
detoxification potential of chronic uremia, and is superior to HD in
regularly clearing the accumulation of medium and large-molecule
uremic toxins in the body (Splendiani et al., 1987). HD + HP has a
potential role in improving patients’ quality of life and survival rate.
HDF combined with HP treatment mainly removes middle
molecular substances, while the latter ensures that a large
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amount of toxin metabolites are cleared through diffusion and
convection. The combination of the two treatments can exert
synergistic clearance and adsorption effects, prevent further
damage to the patient’s kidney function, control the prognosis of
the condition, and improve the patient’s physical symptoms (Fan,
2021).

3.2.3 Gut-target toxin removal techniques
Intraluminal adsorption onto high-affinity surfaces may also

serve as an effective intervention for toxin removal. An oral
preparation of activated charcoal has demonstrated its
effectiveness in toxin removal (Botella et al., 2000; Cupisti et al.,
2020). AST-120, prescribed to CKD patients for over 2 decades, is an
orally available intestinal adsorbent composed of porous carbon
particles that are 0.2–0.4 mm in diameter (Niwa et al., 1991;
Schulman et al., 2014) (Figure 2D). A systematic review
produced conclusive evidence on the effectiveness of AST-120 in
delaying the progression of CKD (Su et al., 2021). (Sato et al., 2017)
concluded that uremic toxins can accumulate in a variety of organs
and that AST-120 may be useful in the treatment or prevention of
organ dysfunction in CKD, possibly by reducing tissue
accumulation of uremic toxins. In detail, AST-120 has the
capacity to bind to the precursor of IS in the intestinal tract,
efficiently suppress IS production in the liver (Nagata and
Yoshizawa, 2020), effectively reduce serum and hippocampal IS
levels and reverse cognitive impairment in CKD mice (Li et al.,
2021a). Furthermore, in diabetic mice, AST-120 reduced the serum
levels of AGEs and enhanced the neovascularization of ischemic
limbs, which may be due to changes in macrophage polarization and
the corresponding shifts in inflammatory cytokines (Huang et al.,
2021b), and prevented the decrease in soluble Flt-1 expression,
which is an endogenous antagonist of atherosclerotic progression
in CKD (Nakada et al., 2019). Similarly, AST-120 was proven in a
clinical trial to ameliorate microvascular endothelial dysfunction
and carotid arterial intima-media thickness in HD patients (Ryu
et al., 2016). This may be because AST-120 decreases the generation
of reactive oxygen species by endothelial cells to impede ensuing
oxidative stress (Liu et al., 2018; Hwang et al., 2019). Along with its
effect on cardiovascular disease, AST-120 may alleviate
inflammation and oxidative stress in primary central nervous
system cells and IS-induced neuronal death through activation of
nuclear factor-κB (NF-κB) and aryl hydrocarbon receptors (Adesso
et al., 2018).

The use of intestinal phosphate binders is a proven and effective
method to lessen the load of phosphorus on the kidneys to limit the
increased risk of CKD-mineral and bone disorder (MBD) and its
associated morbidity and mortality as well as stop the illness from
progressing (National Kidney Foundation, 2003; Malberti, 2013).
However, considering the difficulty of constantly maintaining
phosphate-restricted diets, it is more practical to
pharmacologically target the intestinal fractional absorptive
capacity by blocking phosphate transporters or altering the
intestinal epithelium tight junctions so that they are less
permeable to phosphate ions (Yu et al., 2010; Stremke and Hill
Gallant, 2018). Phosphate binders fall into two categories: 1)
calcium-based binders (calcium carbonate, calcium acetate, and
calcium acetate/magnesium carbonate) and 2) noncalcium-based
binders (sevelamer, lanthanum, and, more recently, iron-based

binders) (Laville et al., 2021). Researchers discovered in a
randomized controlled experiment that phosphate binders
effectively reduced serum and urine phosphorus and slowed the
evolution of secondary hyperparathyroidism in CKD patients with
normal or nearly normal levels of serum phosphorus. However,
phosphate binders, including calcium acetate, lanthanum carbonate
and sevelamer carbonate, also promote the progression of vascular
calcification (Block et al., 2012). That is, the researchers believed that
the safety and efficacy of phosphate binders in CKD remain
uncertain (Block et al., 2012). Another adverse view came from
an Australian research team who concluded that treating patients
with stage 3b/4 CKD with lanthanum for 96 weeks had no effect
compared to placebo in terms of reducing arterial stiffness or aortic
calcification. These results refute the idea that intestinal phosphate
binders can lower cardiovascular risk in CKD patients with
normophosphatemia (Toussaint et al., 2020). Repositioned
phosphate binders do not seem to be able to significantly lower
circulating levels of these toxic substances, although they impede the
absorption of both phosphate and gut-derived uremic toxins (Laville
et al., 2021) and reduce toxin damage to the body.

Colonic dialysis has long been used in China to help remove gut-
derived toxins to delay CKD progression. Colon dialysis involves
injecting filtered water into the human colon to clean the colon,
remove toxins from the body, and fully expand the contact area
between the colonic mucosa and the drug. Then, a special medicinal
liquid is injected for its absorption by the colon through the colonic
mucosa and out of the body. Toxins can be discharged over time and
finally reinfused with special traditional Chinese medicine
preparations and retained. The colonic mucosa is used to absorb
the active ingredients drugs in the colon, producing a therapeutic
effect on the kidneys and reducing reflux, turbidity and serum
uremic toxins. Colonic dialysis could significantly improve the
richness of the gut microbiome, bringing it closer to the profile
in healthy subjects (Li et al., 2021b), acting as an effective
supplementary therapy to delay the progression of stage
4–5 CKD (Dai et al., 2019). With the Chinese herbal formula
Gubenxiezhuo, colonic dialysis could significantly ameliorate
inflammation to modulate the distribution of the gut microbiota
in uremia (He et al., 2019).

3.2.4 Natural products as a therapeutic approach
Natural products are usually identified as chemical substances

produced by living organisms that can be found in nature and have
distinct pharmacological effects. Natural products have been
considered a promising and effective treatment for ESRD, as they
may facilitate the removal of uremic toxins and reduce the damage
uremic toxins cause to the human body (Figure 2E).

The intestinal mucosal barrier and gut microbiome may be
prospective therapeutic targets against the progression of CKD
(Yang et al., 2019). Modern pharmacological studies have shown
that rhubarb contains free anthraquinone derivatives such as rhein,
emodin, chrysophanol, aloeemodin, and emodin-3-methyl ether.
Animal experiments revealed that rhubarb enema treatment could
decrease serum levels of IS, renal oxidative stress, and NF-κB levels,
attenuate histopathological changes, and restore the intestinal
mucosal barrier by modifying several functional enteric bacteria,
which may be associated with reduced inflammation and
ameliorated kidney tubulointerstitial fibrosis (Lu et al., 2015;
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Ji et al., 2020). Supporting data have shown that α-ketoacid
significantly improves the intestinal barrier and affects the
intestinal microbial community, showing a renoprotective effect
against adenine-induced CKD (Mo et al., 2021). In addition,
resveratrol or resveratrol butyrate ester have been proposed to
shape the gut microbiota composition and target the gut–kidney
axis to prevent adenine-induced kidney injury and hypertension.
This may be related to reduced renal expression of SCFA G protein-
coupled receptor 41 and olfactory receptor 78, antagonizing the AhR
signaling pathway, and the increased abundance of beneficial
bacteria such as the genera Akkermansia, Blautia, and
Enterococcus (Hsu et al., 2021). The traditional Chinese medicine
formulation Qiong-Yu-Gao, which is made from the radices of
Rehmanniae, Poria, and ginseng, significantly reduced gut dysbiosis,
changed the levels of bacterial metabolites—increasing SCFAs such
as acetic acid and butyric acid and decreasing uremic toxins such as
IS and pCS—and suppressed histone deacetylase expression and
activity (Zou et al., 2022).

Beyond the kidney–gut function axis, natural products exhibit various
abilities to inhibit CKD progression by removing uremic toxins. Li et al.,
2021a, proposed that the use of Danhong injection or salvianolic acids as
protein-bound competitors is superior to previously reported strategies and
drugs for the removal of the PBUTs IS and pCS (Li et al., 2019). Many
convincing data have been obtained from a number of clinical trials and
animal experiments demonstrating that natural products exert their
nephroprotective effects via diverse signaling pathways, especially the
TGF-β pathway, thus increasing exchange transport and decreasing
oxidative stress and apoptosis to facilitate the excretion of uremic toxins
(Wang et al., 2018; Wang et al., 2019; Ishimitsu et al., 2021; Yu et al., 2021;
Zheng et al., 2021; Liu et al., 2022; Ren et al., 2022).

Numerous natural products contain intricate active ingredients
that target various biological factors, rendering them a promising
option for individuals suffering from CKD. This method is less
invasive and simpler than conventional toxin removal approaches.
However, despite the advantages, natural products are not yet
extensively used due to the challenge of identifying and
researching the mechanisms of their active ingredients. This area
of study will be a critical focus of future research.

4 Summary

Uremic toxins have deleterious effects on the human body and
managing the retained solutes that are poorly eliminated by the
applied treatment remains a difficult challenge. Although
complicated composition of uremic toxins is being unraveled
largely using mass spectrometry, there is a need for experiments
using mouse models, cells system and physiologically relevant
experimental conditions combined with questionnaire survey.
PBUTs are notoriously difficult to remove, however, in order to
reduce its accumulation and toxicity, the question remains whether
to reduce production or promote its free state in the circulation. The

need for precise and accurate characterization of uremic toxins will
continue to grow as our knowledge of their amount, accumulation,
and toxicity evolves. It remains a knotty problem that matching a
single toxin or a group of toxins to a symptom. The field is in urgent
need of animal models and organoid experiments with which to
study accumulation, removal, and toxicity of uremic toxins. The
rapid development of medical technology focused on toxin removal
has hindered toxicological research to a certain extent, and more
research is needed for a better understanding of uremic solutes and
their toxic effects. It has been noted that the gut-kidney axis has
provided valuable insights in the study of kidney disease and uremic
toxins. In light of this, researchers and medical professionals may
consider exploring potential avenues for targeting the gut in efforts
to eliminate these toxins in the future. This will make dialysis more
rational and should lead to more effective treatments.
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