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Introduction: The process of cerebral vessels maintaining cerebral blood flow (CBF)
fairly constant over a wide range of arterial blood pressure is referred to as cerebral
autoregulation (CA). Cerebrovascular reactivity is the mechanism behind this
process, which maintains CBF through constriction and dilation of cerebral
vessels. Traditionally CA has been assessed statistically, limited by large, immobile,
and costly neuroimaging platforms. However, with recent technology advancement,
dynamic autoregulation assessment is able to provide more detailed information on
the evolution of CA over long periods of time with continuous assessment. Yet, to
date, such continuous assessments have been hampered by low temporal and spatial
resolution systems, that are typically reliant on invasive point estimations of pulsatile
CBF or cerebral blood volume using commercially available technology.

Methods: Using a combination of multi-channel functional near-infrared
spectroscopy and non-invasive arterial blood pressure devices, we were able to
create a system that visualizes CAmetrics by converting them to heatmaps drawn on
a template of human brain.

Results: The custom Python heat map module works in “offline” mode to visually
portray the CA index per channel with the use of colourmap. The module was tested
on two different mapping grids, 8 channel and 24 channel, using data from two
separate recordings and the Python heat map module was able read the CA indices
file and represent the data visually at a preselected rate of 10 s.

Conclusion: The generation of the heat maps are entirely non-invasive, with high
temporal and spatial resolution by leveraging the recent advances in NIRS
technology along with niABP. The CA mapping system is in its initial stage and
development plans are ready to transform it from “offline” to real-time heat map
generation.

OPEN ACCESS

EDITED BY

Bruno Moreira Silva,
Federal University of São Paulo, Brazil

REVIEWED BY

Magdalena Kasprowicz,
Wrocław University of Science and
Technology, Poland
Igor Braz,
Centro Universitário de Volta Redonda,
Brazil
Anas Rashid,
University of Torino, Italy

*CORRESPONDENCE

Amanjyot Singh Sainbhi,
amanjyot.s.sainbhi@gmail.com

SPECIALTY SECTION

This article was submitted to Clinical and
Translational Physiology,
a section of the journal
Frontiers in Physiology

RECEIVED 14 December 2022
ACCEPTED 10 January 2023
PUBLISHED 23 January 2023

CITATION

Sainbhi AS, Froese L, Gomez A, Marquez I,
Amenta F, Batson C, Stein KY and Zeiler FA
(2023), High spatial and temporal
resolution cerebrovascular reactivity for
humans and large mammals: A
technological description of integrated
fNIRS and niABP mapping system.
Front. Physiol. 14:1124268.
doi: 10.3389/fphys.2023.1124268

COPYRIGHT

© 2023 Sainbhi, Froese, Gomez, Marquez,
Amenta, Batson, Stein and Zeiler. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Physiology frontiersin.org01

TYPE Original Research
PUBLISHED 23 January 2023
DOI 10.3389/fphys.2023.1124268

https://www.frontiersin.org/articles/10.3389/fphys.2023.1124268/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1124268/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1124268/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1124268/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1124268/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1124268/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2023.1124268&domain=pdf&date_stamp=2023-01-23
mailto:amanjyot.s.sainbhi@gmail.com
mailto:amanjyot.s.sainbhi@gmail.com
https://doi.org/10.3389/fphys.2023.1124268
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2023.1124268


KEYWORDS

cerebrovascular reactivity mapping system, cerebral autoregulation, near-infrared
spectroscopy, neuroimaging system, cerebral heat maps, high temporal resolution, high
spatial resolution, NIRS-based indices

Introduction

The concept of cerebral autoregulation (CA) refers to the cerebral
vessels being able to maintain cerebral blood flow (CBF), relatively
constant, over a wide range of arterial blood pressure (ABP) (Fog,
1938; Lassen, 1959). The mechanism behind this process is known as
cerebrovascular reactivity (CVR) where constant blood flow is
maintained through the constriction and dilation of cerebral
vessels. CA can be visually represented by the Lassen
autoregulatory curve, which plots CBF against cerebral perfusion
pressure (CPP) or mean arterial pressure (MAP) (Lassen, 1974).
This curve depicts relatively constant CBF between the lower and
upper limits of autoregulation (LLA and ULA). The LLA and ULA are
important and if CPP/MAP moves below the LLA or above the ULA
then the autoregulatory mechanisms are unable to maintain the CBF,
hence exposing the brain to pressure-passive flow states of
hypoperfusion (i.e., ischemia) or hyperperfusion (i.e., hyperemia),
respectively (Fog, 1938; Lassen, 1959; 1974). CA impairment
manifests by change in positions of the autoregulation limit on the
Lassen autoregulatory curve or, in the worst of cases, a complete
absence of this curve (Budohoski et al., 2013; Zeiler et al., 2020b). Such
impairments have been documented in various neuropathological
states (Budohoski et al., 2013; Xiong et al., 2017; Budohoski and
Czosnyka, 2018; Czosnyka et al., 2020), including traumatic brain
injury (TBI) (Czosnyka et al., 1997; Sorrentino et al., 2012; Donnelly
et al., 2019; Zeiler et al., 2020a; Bennis et al., 2020; Åkerlund et al.,
2020; Depreitere et al., 2021). Recent literature suggests that leaving
the brain exposed to the burden of impaired CA is a significant driver
of poor long-term outcomes in various neurological conditions (Güiza
et al., 2015; 2017; Donnelly et al., 2019; 2021; Zeiler et al., 2020a;
Åkerlund et al., 2020), which makes it crucial to monitor CA
continuously and accurately at the bedside.

Autoregulation can be assessed by two different types of techniques
termed static and dynamic autoregulation. The main difference between
them is the time scale where static autoregulation looks at changes from
minutes to hours while dynamic autoregulation examines changes from
seconds to minutes. Both techniques assess autoregulation by looking at
pulsatile cerebral blood volume (CBV) or CBF and changes in driving
pressure, however, static autoregulation looks at these measures after they
have reached steady state while dynamic autoregulation assesses CA
during rapid manipulation of CPP/MAP or spontaneous oscillations of
CPP/MAP (Tiecks et al., 1995; Purkayastha and Sorond, 2012; Sainbhi
et al., 2022). It is important to note that these two techniques do not
define their temporality, so static vs. dynamic does not refer to the
technique being continuous vs. intermittent.

Continuous vs. intermittent techniques point to the temporal
resolution of the CA measurement, where continuous refers to
regularly updating measures and intermittent refers to a single
momentary measure at a point in time (i.e., snapshot). Traditionally,
CA has been assessed intermittently but with the advancement of
technology, continuous measures of CA are becoming more popular
since they can provide more detail on the evolution of CA over long
periods of time. Recently, we have conducted a narrative review on
various non-invasive and minimally-invasive modalities which assess CA

in an intermittent, semi-intermittent, or continuous manner (Sainbhi
et al., 2022), andwe refer the interested reader to this piece formore details
and various methodologies of CA measurement.

Continuous CA indices are termed CVR metrics since they have
not been fully validated as measures of the Lassen autoregulatory
curve. These CVR metrics evaluate the relationship between slow
vasogenic fluctuations in CPP/MAP and a surrogate for pulsatile CBV
or CBF. Invasive, minimally-invasive, and non-invasive modalities can
be used to obtain raw continuous physiological signals and derive the
surrogate measures for pulsatile CBV/CBF. Such invasive modalities
include intracranial pressure (ICP) (Czosnyka et al., 1997; Jaeger et al.,
2006; Zweifel et al., 2008; Sorrentino et al., 2012), brain tissue oxygen
(PbtO2) (Jaeger et al., 2006; Dengler et al., 2013), thermal diffusion
flowmetry (TDF) (Rosenthal et al., 2011; Dias et al., 2015; Highton
et al., 2015), and laser Doppler flowmetry (LDF) (Brady et al., 2008;
Zweifel et al., 2010c; Lee et al., 2011; 2012; Zeiler et al., 2018a; 2018c).
The minimally-invasive modalities include magnetic resonance
imaging (MRI) (Saeed et al., 2011), positron emission tomography
(PET) (Steiner L. et al., 2003; 2003a; 2003b; Coles et al., 2004; Zweifel
et al., 2008), and computed tomography (CT) (Wintermark et al.,
2006; Chieregato et al., 2007; Peterson and Chesnut, 2009) while the
non-invasive modalities include transcranial Doppler (TCD)
(Czosnyka et al., 1997; 2003; Schmidt et al., 2003) and near-
infrared spectroscopy (NIRS) (Zweifel et al., 2010b; Diedler et al.,
2011; Zeiler et al., 2017a; Chen et al., 2020; Sainbhi et al., 2022). CVR
metrics based in time-domain from various modalities have seen
widespread adoption by clinicians at bedside due to their simple,
natural interpretation over the frequency-domain metrics. Preclinical
models are scarce to validate these measures against the Lassen
autoregulatory curve. A recent systematically conducted scoping
review from our group has demonstrated that most measured
indices, namely ICP and NIRS based metrics, were able to
accurately distinguish CPP/MAP from above and below the LLA in
pre-clinical models (Sainbhi et al., 2021). However, none of the studies
were able to assess the ULA due to cardiac failure at higher CPP/MAP
in these animal models (Sainbhi et al., 2021).

Currently the most established method for the continuous bedside
assessment of CVR is the pressure reactivity index (PRx, correlation
between ICP andMAP) since it has been validated to accurately detect
the LLA in animal models (Zweifel et al., 2008; Lee et al., 2009). The
ICP-based indices are limited by their spatial resolution and their
requirement of invasively monitoring ICP that requires neurosurgical
or neurocritical care expertise only available in specialist centres.
Recently, NIRS-based indices have been described, leveraging the
non-invasive nature of commercially available cerebral oximetry
systems, and they can be used as a substitute for ICP-based indices
(Lee et al., 2009; Zweifel et al., 2010b; Smielewski et al., 2010). Dr. Lee
and others have shown that Total Hemoglobin Index (tHbx), the
moving linear correlation between slow waves of total hemoglobin
(tHb), correlates with PRx (r = 0.73) in animals (Lee et al., 2009). In
32 human TBI patient data, tHbx has also shown a significant
correlation between PRx and tHbx (r = 0.65, p < 0.0001) (Zweifel
et al., 2010b). This can overcome the invasive limitations of the
standard PRx index, while providing the added advantage of
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evaluating hemispheric differences in CVR. However, it requires large
comparative prospective trials to fully understand its role in bedside
care provision (Gomez et al., 2021b).

As mentioned, a non-invasive method for the derivation of
continuous CA indices in humans leverages NIRS technology. This
technique uses continuous NIRS-based hemoglobin values or
regional tissue oxygen saturation (rSO2) measures as a surrogate
for pulsatile CBV (Lee et al., 2009; Brady et al., 2010; Zweifel et al.,
2010b; Zeiler et al., 2017a; 2017b; Mathieu et al., 2020; Gomez et al.,
2021a; Gomez and Zeiler, 2021; Zeiler, 2021). The CVR metrics are
defined as moving Pearson’s correlation coefficients between slow-
wave (i.e., 0.05–0.005 Hz) (Howells et al., 2015) fluctuations in a
driving pressure for CBF, such as CPP/MAP, and a surrogate for
pulsatile CBV/CBF, such as oxyhemoglobin (HbO),
deoxyhemoglobin (HHb) or rSO2 (Lee et al., 2009; Brady et al.,
2010; Zweifel et al., 2010b; Zeiler et al., 2017a; 2017b; Mathieu et al.,
2020; Gomez et al., 2021a; Gomez and Zeiler, 2021; Zeiler, 2021).
These NIRS-based indices have been validated in animal models to
accurately detect the LLA (Brady et al., 2008; 2010; Lee et al., 2009;
Sainbhi et al., 2021) and clinical data support associations with ICP
based cerebrovascular reactivity measurement through rough
estimates (Zweifel et al., 2008; 2010a; Zeiler et al., 2017a;
2017b). However, further work is required to understand the
importance of NIRS-based cerebrovascular indices.

NIRS-derived CA measures using a combination of commercially
available NIRS devices and non-invasive ABP (niABP) assessments have
been previously described (Zweifel et al., 2010b; Gomez et al., 2021a;
Gomez and Zeiler, 2021), highlighting the ability to derive continuous CA
metrics in real-time at the bedside in an entirely non-invasive manner.
However, multi-channel functionality is currently lacking in the
commercial NIRS systems, for clinical settings, since they are limited
to typically two channels (i.e., bifrontal assessments) and have a poor
sampling frequency of ~ 1Hz (Zweifel et al., 2008; 2010a; Gomez et al.,
2020; 2021a). Thus, true non-invasive topographical mapping of CA
function of the entire brain has been limited to snap-shot neuroimaging
methods based onCTorMRI, with a lack of continuous portable systems.
Such neuroimaging systems rely on expensive fixed equipment, with
lengthy scan acquisition times to generate these intermittent images of
CA capacity. As such, they are typically relegated to a limited number of
centers, and not accessible to thewider research and clinical communities.

Thus, to improve the understanding of continuously assessed CA
in humans and large mammals, a tool is needed with both improved
spatial and temporal resolution which can facilitate real-time imaging
of cerebrovascular function. With recent advances in NIRS
technology, custom functional NIRS (fNIRS) (Reinhard et al., 2014;
Chen et al., 2020; Sainbhi et al., 2022) systems are available that offer
multi-channel capabilities and a sampling frequency of 250 Hz,
facilitating full cerebral pulse-waveform data acquisition
simultaneously from multiple brain regions. Multi-channel fNIRS
systems have been used with non-invasive ABP measurement for
CA assessment in the frequency domain along with visualizing CA
changes (Reinhard et al., 2014; Schumacher et al., 2019; Tian et al.,
2021). Building upon prior advances in the field, it is feasible to
develop CA mapping system that visually display heat map signatures
of time domain CA capacity while providing user-friendly
customizable interface. With high temporal and spatial resolutions
this will provide an entirely non-invasive bedside neuroimaging
platform for cerebrovascular function in time domain that is
portable and easy to use in a clinical setting.

This paper highlights the creation of a multi-channel high
spatial and temporal resolution CA mapping system in time
domain, using advanced fNIRS along with niABP monitor. Such
work has led to a new wearable and portable imaging system which
is capable of deriving CA maps of the entire brain, to visualize the
derived time domain CA metrics, with high sampling rates at each
point.

Materials and methods

Ethics

All research was conducted in accordance with local regulatory
approvals, and ethics approval obtained from our University of
Manitoba research ethics board (HS25527; B2022:051). All data
presented was collected from the author/co-authors, obtained with
fully informed consent for collection, and displayed in a de-
identified manner within this manuscript. All methods were
carried out in accordance with relevant guidelines and
regulations, and the Declaration of Helsinki was taken into
consideration and followed.

Physiologic monitoring systems

We leveraged a custommulti-channel fNIRS systemOxyMonMk III
(Artinis Medical Systems, Elst, Netherlands), as seen in Figure 1A.
Equipped with eight transmitting optodes and eight receiving optodes
along with an additional eight reference optodes. The system also utilizes
a NIRS cap to hold various optodes in place with optode holders;
Figure 1B shows the NIRS cap with optodes on a human head and
an example of a receiver and transmitter optodes can be seen in
Figure 1C. The combination of a transmitter and receiver optode pair
creates normal channels separated by 30 mm whereas a transmitter and
reference optode pair creates a short channel separated by 10 mm. The
short channels are subtracted from normal channels to eliminate scalp
noise and it is important to note that this system is able to eliminate scalp
noise separately at each channel. This device comes with its own software
called OxySoft (version 3.2.72) from where the channel layouts can be set
and customized from recording with 8 separate channels, using separate
receiver and transmitter optodes as seen in Figure 2A, to having a grid of
multiple channels sharing receiver and transmitter optodes, as
conceptualized in Figure 2B.

Next, to derive NIRS-based indices of CA, we required a
continuous full-waveform ABP system, which could acquire data
non-invasively and be coupled with the NIRS system described
above. Thus, we utilized the continuous niABP signal from a
Finapres Nova (Finapres Medical Systems, Enschede, Netherlands),
as seen in Figure 1D, which uses a finger-cuff technique for full-
waveform digital artery ABP acquisition and brachial artery
reconstruction (using a reference brachial arm cuff). Also,
Figure 1B shows the niABP finger cuff on a human finger.

High-frequency data acquisition

All signals are recorded in high-frequency time series
using Intensive Care Monitoring “Plus” (ICM+) software
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(version 8.5.4.6; Cambridge Enterprise Ltd., Cambridge)
connected to the data streams from the two systems.
Signals from all the monitoring devices described below
are recorded in time series using this software throughout the

recording period. An example of these pure cerebral
signals (short channel subtracted from normal channel)
from a single channel are shown in Figure 3 along with the
niABP signal.

FIGURE 1
Finapres Nova and OxyMon Mk III devices (A), Displays a portion of multi-channel the OxyMon Mk III device used to collect HbO, HHb, tHb, HbDiff, and
rSO2. (B), Displays the NIRS cap on human head along with niABP cuff on the finger. (C), Displays transmitting optode (yellow) along with both short receiver
(orange) and normal receiver (blue) for a channel on the NIRS cap in close up. (D), Displays the Finapres Nova device used to collect niABP via finger-cuff
technique. ABP, arterial blood pressure; niABP, non-invasive continuous arterial blood pressure; HbO, oxyhemoglobin; HHb, deoxyhemoglobin, tHb,
total hemoglobin; HbDiff, difference between HbO and HHb; NIRS, near-infrared spectroscopy; rSO2, regional cerebral oxygen saturation.

FIGURE 2
Conceptual NIRS channel layouts on a human brain template (A), Conceptual 8 channel setup of NIRS device on a template of the right and left
hemispheres of a human brain. (B), Conceptual 24 channel grid setup of NIRS device on the left hemisphere of a human brain. Ch, channel; NIRS, near-infrared
spectroscopy; Rx, receiver; Tx, transmitter. Note—grid layouts are entirely customizable for evaluating one or all regions of the brain with the required
optodes, with the given rectangular grid in panel B provided as just an example.
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The backend communications of these devices have been
accomplished in our lab, facilitating success. The NIRS system uses
its own software, OxySoft, to perform and view measurements with an
option to output the data in real time using Lab Streaming Layer (LSL;
https://github.com/sccn/labstreaminglayer). OxySoft is also able to
create custom graphs by manipulating the hemoglobin values to
create a new trace. For example, an rSO2 trace can be created as a
ratio of HHb to tHb multiplied by 100 to get a percentage value. LSL
system unifies collection of measurement time series, handling both
networking and time-synchronization. The Finapres device outputs
the niABP signal in an analogue format which is digitized using Data
Translations DT9804/DT9826 converters (Data Translation,
Marlboro, MA) and an LSL data stream is created using Python
interface to LSL (PyLSL; https://github.com/labstreaminglayer/liblsl-
Python). To record these data streams from both systems using ICM+,
custom modules in Python have been developed. These modules
separately read both the NIRS and Finapres streams using PyLSL
and transfer the data to virtual communication (COM) ports. Then
the virtual COM ports are used as input signals for the ICM + which is
used for data storage. For the NIRS signal, the module is setup to add

the 3.22 s delay to the NIRS LSL signal streams when transferring the
data to the COM port. This delay to the NIRS signal was added to
match the output signal delay of the niABP signal as measured in a
series of tests whose results are shown in Supplementary Appendix SA
(single run) and Supplementary Appendix SB (multiple runs).

The niABP is obtained with the Finapres device at 100 Hz
sampling frequency, sampled through an entirely non-invasive
finger-cuff. The output signal has a delay as compared to the
signal shown on the device screen. To quantify this delay, in a
single run, we performed 100 tests to compare the start time of the
finger-cuff disconnection to the time the signal drop showed in the
output signal using pyDTOL library (https://github.com/jensb89/
pyDTOL) with Python 2.7. These 100 delays, given in
Supplementary Appendix SA, gave an average delay of 3.24 s.
This average delay was similar to the average delay of 3.18 s
found in 10 separate runs where 10 tests were conducted in
each run as shown in Supplementary Appendix SB. The delay of
3.22 s was added to the NIRS signal which was calculated by
averaging the average delays from Supplementary Appendix SA,
SB; Figure 4 displays an example of the delay test as seen on the

FIGURE 3
Example of NIRS signals from a single channel along with niABP signal. An example of NIRS signals of HbO, HHb, tHb, HbDiff, and rSO2 shown from
channel 1 along with an example of niABP signal.NiABP, non-invasive continuous arterial blood pressure; HbO, oxyhemoglobin; HHb, deoxyhemoglobin,
NIRS, near-infrared spectroscopy; tHb, total hemoglobin; HbDiff, difference between HbO and HHb; rSO2, regional cerebral oxygen saturation.
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Finapres display (Figure 4A) and in the output of the Python
module (Figure 4B).

Signals from the NIRS system at each channel are HbO, HHb, tHb,
the difference between HbO and HHb (HbDiff) of regular channels,
short reference channels, and the final pure cerebral signals obtained
by removing scalp noise along with recording raw optical densities
(OD) values. The NIRS system uses wavelengths ranging from
842–847 nm to calculate the relative HbO values and to calculate
the relative HHb values, it uses wavelengths in the range of
761–762 nm. These NIRS signals are recorded using a total of eight
channels with one channel per brain lobe (Frontal, Parietal, Occipital,
and Temporal lobes) resulting in four channels placed on each left and
right hemispheres of the brain. In addition to the eight normal
channels, signals from eight reference channels are also recorded.
Another example of a larger grid map has a total of 24 channels
arranged in a 4 x 4 grid of receiver and transmitter optodes on the left
hemisphere of the brain. The NIRS system is able to output these
signals at a sampling frequency of 250 Hz.

Physiologic data processing

At each channel, five indices are derived by first decimating the raw
signals using non-overlapping moving average filters of 10-s duration
which allows us to focus on the slow-wave vasogenic fluctuations
associated with CA. Then Pearson correlation coefficients are
calculated using 30 consecutive 10-s mean values of each NIRS signals
and the niABP signal which are updated every 10-s. These five indices are
Oxyhemoglobin Index (HbOx—correlation between HbO and niABP),
Deoxyhemoglobin Index (HHbx—correlation between HHB and
niABP), Total Hemoglobin Index (tHbx—correlation between tHb
and niABP) (Lee et al., 2009; Zweifel et al., 2010b), Hemoglobin
Difference Index (HbDiffx—correlation between HbDiff and niABP)
which is the difference between HbO and HHb, and Cerebral Oximetry
Index (COx—correlation between rSO2 and niABP) (Brady et al., 2010;
Gomez et al., 2021a), as given in Table 1. These indices were generated
using ICM + software and then outputted as comma-separated values
(CSV) file.

FIGURE 4
Example of Finapres Nova signal output delay test (A), Displays the niABP output on the Finapres Nova display. (B), Displays the output of Pythonmodule
for retrieving the start and end timestamps. The drops in the signal from (A) correlate to “enter” being pressed on (B) to start a test and the end timestamp is
automatically outputted when measures of the signal has dropped below a minimum value. NiABP, non-invasive continuous arterial blood pressure.

TABLE 1 Derived indices at each channel.

Abbreviation CVR metric Correlation between

HbOx Oxyhemoglobin Index HbO and niABP

HHbx Deoxyhemoglobin Index HHb and niABP

tHbx Total Hemoglobin Index tHb and niABP

HbDiffx Hemoglobin Difference Index HbDiff and niABP

COx Cerebral Oximetry Index rSO2 and niABP

niABP, non-invasive arterial blood pressure; CVR, cerebrovascular reactivity; HbO, oxyhemoglobin; HHb, deoxyhemoglobin; tHb, total hemoglobin; HbDiff, difference between oxyhemoglobin and

deoxyhemoglobin; rSO2, regional cerebral oxygen saturation (ratio between HHb, and tHb).
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The custom multi-channel NIRS platform and the niABP
systems have been integrated by developing a custom module in
Python to export the HbO, HHb, Hb, and HbDiff at 250 Hz
sampling frequency. Data at a matching sampling frequency is
exported from Finapres NOVA device in an analogue format and

digitized using Data Translation converter. This high frequency
data was linked in time-series using the data-acquisition platform,
ICM+, in keeping with previous work from the lab using
commercial NIRS platforms (Gomez et al., 2020; 2021a). In
keeping with previous work on the derivation of continuous CA

FIGURE 5
Heat map module visually displaying HbO autoregulation index for 8 channels. Shows the screenshot of the Python heat map module’s GUI running in
“offline”mode for HbO autoregulation index of an 8 channel recording. The colour bar represents the CVR index scale from Blue = -1 (intact CVR) to Red = +1
(impaired CVR). CVR, cerebrovascular reactivity; GUI, graphical user interface; HbO, oxyhemoglobin.

FIGURE 6
Heatmapmodule visually displaying HbO autoregulation index for 24 channel grid. Shows the screenshot of the Python heat mapmodule’s GUI running
in “offline”mode for HbO autoregulation index of a 24 channel grid recording. The colour bar represents the CVR index scale from Blue = -1 (intact CVR) to
Red = +1 (impaired CVR). CVR, cerebrovascular reactivity; GUI, graphical user interface; HbO, oxyhemoglobin.
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indices (Zweifel et al., 2010b; Lang et al., 2015; Zeiler et al., 2017b;
Gomez et al., 2021a), the raw data was decimated using non-
overlapping moving average filters of 10-s duration to focus on
the slow-wave vasogenic fluctuations associated with CA and filter
out confounders from other frequency ranges, such as Mayer waves
(Fraser et al., 2013; Howells et al., 2015). The Pearson correlation
coefficients were calculated using 30 consecutive 10-s mean data
from the NIRS and niABP signal and updated every 10-s. This
generated five continuously updated CA indices per channel which
were used as input to generate a heat map using the custom Python
module developed to provide a visual representation of the CA
indices data which ranges from −1.0 to +1.0.

Heat maps

Python module was developed to depict the calculated indices
visually as a form of heat map. The current graphical user interface
(GUI), as shown in Figures 5, 6, was created using Python binding,
PySide6 (https://pypi.org/project/PySide6/), from the Qt for
Python project (https://doc.qt.io/qtforpython/) along with
PyQtGraph library (https://pyqtgraph.readthedocs.io/en/latest/).
The Pandas (https://pypi.org/project/pandas/) and NumPy
(https://numpy.org/doc/stable/) libraries were used to store the
exported CSV file from ICM + software containing the calculated
indices in a data frame and then read from it at a certain frequency
(i.e., every 10-s) to update the heat map by converting the read
value to a colour based on the colour map. The layouts of the
optode positions relative to the 2D outline of the human brain,
index type, and the rate of display were all hardcoded in the
Python module. To clarify, ICM+ is used for long term data
storage with the potential for “offline” heat map derivation at a
later date with data stored in CSV format. The Python pipelines to
read NIRS and niABP signals were mindfully developed to read
data for “online” generation of updating heat maps, further
discussed in Future Directions section.

Results

The custom Python heat map module works in “offline” mode
which means it can visually portray the CA index per channel with the
use of colourmap. So, after saving the calculated Pearson correlation
coefficients from ICM + software in a CSV file, the module is able to
read that data and display it at a desired frequency.

The module was tested on two different mapping grids using
data from two separate recordings. All signals were acquired and
stored in ICM + then they were decimated using non-overlapping
moving average filters of 10-s duration. This resulted in the
creation of the five CA indices, HbOx, HHbx, tHbx, HbDiffx,
and COx) (described in Table 1), that was stored as a CSV file.

The Python heat map module was able to read the CA indices
from the CSV file created used ICM + software. It was successful in
visually displaying a selected CA index at the preselected rate of 10-
s. Figures 5, 6 show screenshots of the heat map module displaying
a selected CA index, HbOx, for both 8 channel and 24 channel grid
types.

The maximum number of channels the current lab setup of
OxyMon with eight receivers and eight transmitters can facilitate is

48 channels at a frequency of 250 Hz although Artinis Medical
Systems offer fNIRS systems with 100 + channels at 250 Hz
frequency. Such frequency facilitates multi-channel acquisition
of the full pulse-waveform for all fNIRS measures. It must be
acknowledged, the derivation of continuous CA indices
necessitates focusing on the vasogenic slow-wave frequency
band, through application of low-pass filters as described in our
data analysis and figures. Such CA indices are derived in a
continuously updating fashion and linked in time-series with
the full-waveform fNIRS and niABP data sets. This facilitates
the ability to interrogate the complex relationship between CA
and other metrics that are only derived from cerebral and systemic
pulse-waveform data, such as pressure-flow dynamics, compliance/
compensatory reserve, and autonomic function.

Discussion

Currently, the novel mapping system is in its initial
development stage. The NIRS data was recorded at 250 Hz and
niABP data was recorded at 100 Hz in the ICM + software with the
help of custom Python pipelines. Using ICM + software, the
recorded data was decimated using non-overlapping moving
average filters to focus on the slow-wave vasogenic fluctuations
associated with CA and then Pearson correlation coefficients were
calculated from the mean data of NIRS and niABP signals with an
update frequency of 10-s, producing five continuously updated CA
indices per channel.

This system relies on non-invasive devices to obtain niABP as the
driving pressure for CBF, and surrogates for pulsatile CBV/CBF which
are HbO, HHb, Hb, and HbDiff. By using fully non-invasive devices
like NIRS and Finapres, we eliminate any risk of potential harm to the
subject being evaluated. Currently, most of the existing imaging
methods that assess autoregulation use either invasive or
minimally-invasive devices, so leveraging the use of non-invasive
devices provides a safer and more portable system to acquire the
CA measurements. Compared to minimally-invasive neuroimaging
based methods which employ immobile platforms such as CTP
(Wintermark et al., 2004), Xe-CT (Chieregato et al., 2007), PET
(Derdeyn, 2007), and MRI (Saeed et al., 2011), that assess CA
statically in an intermittent fashion, NIRS assesses CA dynamically
as a continuous measure, giving more data on the autoregulatory
process.

The custom built NIRS device enables the customizability of the
channel layouts with the eight receivers, 8 transmitters, and
8 reference receivers. So, the maximum number of channels that
can be configured with the current lab setup of this device is
48 channels at a frequency of 250 Hz. Along with changing the
channel configuration in the OxySoft software for the NIRS device,
the channel configuration in the heat map module can also be
changed with the flexibility of Python bindings from Qt for Python
project. We have the freedom of adding various buttons, input
fields, and log output to the heat map GUI for easy reconfiguration
of properties such as channel layouts, and user-selected windows
for data analysis by using Python. In the future, the number of
channels can be expanded with the addition of split receiver fibers
or OxyMon units.

Further, our current NIRS cap layout may be problematic for
routine use within the ICU setting. The NIRS cap displayed within

Frontiers in Physiology frontiersin.org08

Sainbhi et al. 10.3389/fphys.2023.1124268

https://pypi.org/project/PySide6/
https://doc.qt.io/qtforpython/
https://pyqtgraph.readthedocs.io/en/latest/
https://pypi.org/project/pandas/
https://numpy.org/doc/stable/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1124268


the current manuscript and description is the first rendition of
what we expect to be many. It currently facilitates multi-channel
(short and long) capacity, as well as ability for multi-channel EEG
(if desired). It is acknowledged, that for regular ICU use this
may not be ideal, given the presence of wounds/incisions and need
for access to the scalp for drains and/or intra-cranial monitoring.
As such, as we move forward, we plan to explore the development
of custom “band-like” arrays that facilitate access to
commonly utilized areas of the calvarium (i.e., such as
Kocher’s point). Further to this, the neoprene material of the
current cap is not ideal for an environment where blood products
may come into contact as a result of scalp wounds or incisions.
Subsequently, further cap development for ICU use will
include considerations for easily cleanable materials, using
accelerated hydrogen peroxide solutions, that are compliant
with more widely accepted infection prevention and control
measures.

Since the PRx index and NIRS-based indices are Pearson
correlation coefficients, they have the same range of −1.0 to
+1.0. Although the thresholds for favorable or unfavorable
outcome could be different since PRx has survival threshold of
0.25 and favorable outcome threshold of 0.05 (Sorrentino et al.,
2011; 2012; Zeiler et al., 2018b) while an increase of COx >
0.38 has been seen when mean velocity index (Mx), a TCD-
based CA index, is above its threshold of 0.45 (Brady et al.,
2010). Future healthy volunteer studies from our group will
look at defining thresholds of normal and impaired CA using
these NIRS-based indices.

A major asset of this system is its portability since it can be used
continuously at the bedside or in out-patient clinic settings. With
accurate monitoring of CA at the bedside, it can provide CA data
which may help overturn the poor long-term outcomes in various
neurological conditions. The ICP-based index, PRx, is the current
“gold standard” for continuous bedside assessment but is limited by
the invasive monitoring of ICP requiring neurosurgical or
neurocritical care expertise. Since NIRS-based hemoglobin
indices, such as tHbx, have previously been shown to correlate
well with PRx (Lee et al., 2009; Zweifel et al., 2010b), then NIRS-
based indices from our system can be used in place of ICP-based
indices to overcome both the invasive and limited spatial resolution
issues. Both research and clinical environments can benefit from
the non-invasive nature, portability, ease of use, and relative low
cost of this system. It has been found, through feasibility studies,
that NIRS devices have practical use in pre-hospital setting for
assessment of TBI patients as compared to the limited portability of
CT and MRI machines (Weatherall et al., 2012).

Current limitations

Presently, the system has a few limitations starting with only
being able to generate cerebral heat maps in “offline” mode which
requires a CSV file to be provided containing the precalculated
autoregulatory indices. Secondly, the cerebral heat map display
settings such as update frequency, number of optodes, and optode
placement on the brain outline are hardcoded in the custom Python
module without an option to adjust the settings easily with the help
of GUI. Third, data acquisition modules are not integrated with the
heat map module, limiting the system from being able to generate

heat maps in real time during data acquisition. Fourth, each optode
needs to be corrected after the NIRS cap is on a human head
otherwise it affects signal quality.

Future directions

The custom Python heat map module is at its preliminary stage
of development. There are future development plans for this
module. First, is to add index calculations (moving average and
Pearson correlation using sliding window) as part of the module,
eliminating the need to perform these calculations with another
software. With these calculations, the time resolution windows will
be adjustable for generation of the maps. Using Python, an
autoregulatory index calculations module is in the works and it
will leverage Python’s multiprocessing library to split the
calculation for multiple channels amongst different processes.
Also, once the module has been tested, it will get integrated into
the heat map module. Second, the optode placements are currently
hardcoded in the module but they will easily be adjustable using the
GUI along with changing the number of optodes shown on the
map. Third, the heat maps module will be integrated with the data
acquisition modules to be able to generate heat maps in real time
along with saving the calculated indices data to be viewed at a later
time. So, this module will have “online” and “offline” modes to be
able to generate the heat maps while acquiring data or using
previously acquired data based on the user’s desires. Fourth, a
feature of creating prediction maps for CA will be added using
time-series and machine learning forecasting techniques on
varying time scales. Univariate and multi-variate time-series
modelling of cerebrovascular reactivity indices and niABP using
Box-Jenkins time-series methodologies will be used to demonstrate
the feasibility of point and interval prediction of cerebral
physiologic signals by deriving autoregressive integrative moving
average (ARIMA) and vector ARIMA (VARIMA) (Thelin et al.,
2020; Zeiler et al., 2021). Results from this has potential to advance
the application of machine learning and computational approaches
to the developed novel imaging platforms that can predict cerebral
physiologic responses based on past data. Integrating data from
this device, with other continuous cerebral physiologic devices
(i.e., ICP, PbtO2,and TCD) will facilitate future work on cerebral
network physiologic analysis and cerebral physiologic state-space
modelling, potentially with state forecasting models. Similarly,
integrating cerebral physiologic data with systemic
cardiovascular and autonomic data streams will enable true
continuous real-time interrogation of cardio-cerebral crosstalk.
Finally, physiologic data from this type of platform can facilitate
integrating novel physiologic data, other big data from proteome
and genome of humans and other mammals which can expand our
understanding of fundamental mechanisms involved in
cerebrovascular control.

Preliminary measurements have indicated that increasing the
number of channels with multiple traces from OxySoft require
more random accessed memory (RAM) for recording signals in
ICM+. OxySoft may be using more resources than needed to
calculate and update all the traces in real time which is not
useful to us since we are using a different data acquisition
platform, ICM+. To reduce the load on the computer, it may be
beneficial to only output the hemoglobin values from OxySoft of
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the normal and short channels than to calculate the difference
between them to get pure cerebral signals along with the rSO2 value
using Python in the LSL to COMmodule. This needs more detailed
investigation of the pipeline to correctly identify where more RAM
is being used and if it can be reduced by offloading some
calculations to a different part of the pipeline. Limiting the
resources to a bare minimum during data acquisition will help
free resources needed for future additions to the module such as
“online” heat maps and predictive maps.

Currently there are plans to perform various perturbation
challenges in healthy volunteers to create a baseline and in the
future, it can be compared with patients with neurological
conditions. Such work will evaluate postural change, CO2

challenges and neurovascular coupling (using ANAM
standardized testing) in a block-trial design and has recently
been supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC; NCT05433129).

Conclusion

By leveraging the recent advances in NIRS technology along
with niABP, we were able to create a multi-channel high spatial and
temporal resolution CA mapping system. The system is in its initial
stage and development plans are ready to transform this system
from generating heat maps in “offline” mode to real-time heat map
generation along with adding prediction capabilities using time-
series and machine learning forecasting techniques. We hope it will
help in improving our understanding of CA in humans and large
mammals in the near future.
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