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The current guidelines for the ascending aortic aneurysm (AsAA) treatment
recommend surgery mainly according to the maximum diameter assessment.
This criterion has already proven to be often inefficient in identifying patients at
high risk of aneurysm growth and rupture. In this study, we propose a method to
compute a set of local shape features that, in addition to the maximum diameter
D, are intended to improve the classification performances for the ascending
aortic aneurysm growth risk assessment. Apart from D, these are the ratio DCR
between D and the length of the ascending aorta centerline, the ratio EILR
between the length of the external and the internal lines and the tortuosity T. 50
patients with two 3D acquisitions at least 6 months apart were segmented and
the growth rate (GR) with the shape features related to the first exam computed.
The correlation between them has been investigated. After, the dataset was
divided into two classes according to the growth rate value. We used six different
classifiers with input data exclusively from the first exam to predict the class to
which each patient belonged. A first classification was performed using only D
and a second with all the shape features together. The performances have been
evaluated by computing accuracy, sensitivity, specificity, area under the receiver
operating characteristic curve (AUROC) and positive (negative) likelihood ratio
LHR+ (LHR−). A positive correlation was observed between growth rate and DCR
(r = 0.511, p = 1.3e-4) and between GR and EILR (r = 0.472, p = 2.7e-4). Overall,
the classifiers based on the four metrics outperformed the same ones based
only on D. Among the diameter-based classifiers, k-nearest neighbours (KNN)
reported the best accuracy (86%), sensitivity (55.6%), AUROC (0.74), LHR+ (7.62)
and LHR− (0.48). Concerning the classifiers based on the four shape features,
we obtained the best accuracy (94%), sensitivity (66.7%), specificity (100%),
AUROC (0.94), LHR+ (+∞) and LHR− (0.33) with support vector machine (SVM).
This demonstrates how automatic shape features detection combined with risk
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classification criteria could be crucial in planning the follow-up of patients with
ascending aortic aneurysm and in predicting the possible dangerous progression
of the disease.

KEYWORDS

cardiovascular diseases, ascending aorta aneurysm, biomechanical features,
classification, aorta, machine learning, growth rate, risk assessment

1 Introduction

Ascending aortic aneurysm (AsAA) is a risky dilatation of
a weakened area of the ascending aorta (AAo) which may lead
to dissection or rupture (Guo et al., 2018). Unfortunately, it is
generally a silent pathology and the first symptoms may already
indicate a serious and late-stage clinical situation with severe, life-
threatening internal bleeding (Papagiannis, 2017). The estimated
pooled incidence is between 5 and 10/100,000 individuals per
year (Kuzmik et al., 2012; Melo et al., 2021). To date, the main
criterion for elective ascending aortic surgery of non-urgent cases
is the maximum diameter assessment whose decision threshold is
generally fixed at 55 mm (Anfinogenova et al., 2022). Unfortunately,
this does not seem to correctly reflect the AsAA patient’s risk of
rupture (Elefteriades and Farkas, 2010; Tozzi et al., 2021) and is
often considered insufficient as criterion of choice (Sonsino et al.,
2022). In fact, many studies show aneurysms with diameters
below the threshold for elective surgery which experience rupture
while other aortas with huge diameters remain stable over time
in terms of size (Smoljkić et al., 2017). Recently, the aneurysm
growth rate (GR) (Oladokun et al., 2016) has also been included
as a decision criterion for elective surgery. Therefore, as further
stated in the clinical guidelines (Members et al., 2014), patients with
rapid growth of the aortic diameter (more than 3 mm/year) should
be considered for preventive surgical replacement. Furthermore,
the process of aneurysm growth seems to be accelerated by the
presence of a bicuspid aortic valve and congenital pathologies
(Davies et al., 2007). For these reasons, the research is now focused
on determining new biomarkers (Califf, 2018) for early diagnosis
that can predict the aneurysm evolution and allow an accurate
risk assessment. Some of those proposed have been associated
to the shape of the aneurysm (Lindquist Liljeqvist et al., 2021)
and mainly introduced for the abdominal aorta aneurysm (AAA).
Among the measures related to the AAA shape, the vessel
tortuosity and asymmetry seem to be highly relevant for predicting
the rupture (Pappu et al., 2008; Doyle et al., 2009). According to
Grobman and Stamilio (2006), the identification of local features
on the shape of the abdominal aorta is valuable in assessing
the risks of aneurysm rupture and establishing index thresholds
for selecting patients to be surgically treated. An interesting
framework describing the steps for a robust characterization
of vascular geometries was proposed by Piccinelli et al. (2009)
and applied to cerebral aneurysms. Here, all the steps from
the image segmentation to the geometric characterization of the
vascular structure are shown. The possibility of using algorithms
to identify higher-risk patients has already been widely discussed
(Saeyeldin et al., 2019). Shum et al., using a retrospective dataset

of 76 patients, estimated geometric indices and regional variations
in wall thickness and presented a decision tree algorithm to
classify the data according to rupture criteria (Shum et al., 2011).
Lee et al. (2013) proposed a classifier based on statistical machine
learning for the curvature features of the abdominal aorta to
evaluate the risk of rupture while Rengarajan et al. (2020) integrated
biological information with geometric data to assess the same
risk. Concerning the AsAA, the importance of estimating the
length of the ascending tract for the decision of surgery has been
demonstrated (Krüger et al., 2016; Wu et al., 2019). Kruger et al.
presented a risk score based on the centerline length and on the
maximum diameter (Krüger et al., 2018). Additionally, Poullis et al.
(2008) showed how higher curvatures of the ascending aorta
corresponded to higher forces exerted on the wall, explaining
the potential effect this feature may have on the risk of aortic
dissection. The AsAA risk of rupture has been assessed by
considering also indices deriving from the ratio of the patient’s
diameter and the height or body surface area (Zafar et al., 2018).
Liang et al. (2017) presented a machine learning approach to
evaluate a risk score for some patients previously tested with a
structural simulation that brought the model to rupture. Jiang et al.
(2020), using abdominal aortic aneurysm longitudinal data, Growth
and Remodeling (G&R) techniques and Probabilistic Collocation
Method (PCM), demonstrated how the diameter evolution over
time can be better predicted using Deep Belief Network (DBN)
compared to classical non-linear mixed-effect models (Sweeting
and Thompson, 2012). Kim et al. (2022) used convolutional neural
networks (CNNs) to predict the abdominal aortic aneurysm growth
by integrating information of the vessel radius, thrombus thickness,
Time Averaged Wall Shear Stress (TAWSS) derived from fluid-
dynamic simulation and information of the exponential growth
rate.

In this paper, we propose a method to obtain shape features
to identify patients at high risk of AsAA growth. Besides the
diameter, already proposed in the guidelines, these are the ratio
between the diameter and the centerline length, the ratio between
the length of the external and internal lines and the tortuosity of the
ascending tract. Using longitudinal data derived from50 patients, we
segmented each image dataset to obtain a patient-specific geometry.
After, we investigated the correlation between each shape feature
computed on the first exam and the aneurysm growth rate calculated
by exploiting the two acquisitions. Finally, using the shape features
computed for the first examonly, we used and compared six different
machine learning (ML) classifiers in order to predict the patients
that could present adverse and fast AsAA evolution and show how
these new local features can complement the information currently
provided by the diameter alone.
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FIGURE 1
Full workflow for identifying patients at high risk of aneurysm growth.

2 Materials and methods

The full pipeline of this study is presented in Figure 1. The
current section is structured as follows: in Section 2.1 the dataset
used for this study is described. In Section 2.2 we explain how
the segmentation was performed while in Section 2.3 the methods
for obtaining the shape features are presented. After, the method
to compute the growth rate is reported in Section 2.4 and we
conclude with Section 2.5 explaining the classification methods
used to predict the risk class to which each patient belongs.

2.1 Data

To compute and evaluate the shape features, we used a
retrospective dataset collected from the registry systems of three
centers: the University Hospital of Rennes (Rennes, France), the
University Hospital of Dijon (Dijon, France) and the University
Hospital of Toulouse (Toulouse, France). The study has been
conducted in accordance with ethical standards. The acquisitions
were performed between December 2006 and September 2022 and
the dataset was previously anonymized. Only the patients with at
least two pre-operative 3D exams for which the official clinical
report stated a condition of dilated aorta were included. We used
both CT and MRI-Angiography images removing all the image
dataset for which the resolution was worse than 1 mm × 1 mm ×
1 mm. Additional exclusion criteria comprised 1) patients younger
than 25 years, 2) prior valvular surgery, 3) aneurysms related to
an infection or systemic inflammatory disease, 4) presence of
acute aortic syndrome including dissection (type A, Stanford) and
intramural hematoma, 5) diagnosis of congenital tissue disorders
such as Marfan syndrome (Pyeritz and McKusick, 1979) and 6)
existence of artefacts in the images. For each patient, we then
considered the time interval between the two available acquisitions
and 7) we excluded those with less than 6 months between the two
longitudinal exams. Overall, 50 subjects, for a total of 100 exams,
were included: 29 patients with a double ECG-gated acquisition, 21
with at least one non-gated. The longitudinal dataset included 86
(86%) CT-Scans and 14 (14%) MRI-Angiography. 72 acquisitions
(72%) were performed with contrast agent injection and 28 (28%)

TABLE 1 Characteristics of the dataset.

Total = 50

Males (%) 33 (66%)

Age (in years) 58.1 ± 13.2

Bicuspid valve 20 (40%)

without. The main characteristics of the patients, including the age
at the date of the first acquisition, are given in Table 1.

2.2 Segmentation

For each patient, the segmentation of the whole thoracic aorta,
from the aortic annulus to the descending aorta at the level of
the diaphragm, was obtained using 3DSlicer (Fedorov et al., 2012).
CT-Scans and MRI images were initially segmented using a semi-
automatic local thresholdingmethod (Senthilkumaran andVaithegi,
2016) based on the grey level histogram derived from the analysis
of three sets of voxels. Each set consisted of a different number of
voxels (depending on the resolution of the images) distributed inside
a sphere of radius 5 mm with the centre located at the middle of
each of the three principal portions of the aorta: the ascending aorta,
the aortic arch and the descending aorta. After extracting the 3-
dimensional surface with Flying Edges algorithm (Schroeder et al.,
2015), post-processing erosion and expansion methods were used
to separate the structure of the aorta from other tissues and organs
(Radl et al., 2022).The resulting surface underwent amanual editing
process for verifying that it corresponded to the inner lumen of
the vessel and for the correction of possible improperly segmented
portions, especially in the case of geometries derived from MRI
acquisitions. A median filter was then applied with a kernel size of
3 mm. At the end of the segmentation procedure, for each patient a
tessellated surface made up of 8000–15000 triangular elements has
been obtained.

2.3 Shape-based features

The geometric features we propose are all influenced by
conformation, direction and length of the centerline (Dey and Zhao,
2002). Itwas extracted using theVascularModelingToolkit (VMTK)
through Voronoi diagrams (WSCG, 2003) after an automatic
detection of the inlet and outlets seed points (Saitta et al., 2022).
The segmented domain S related to the AAo and the corresponding
centerline tract C were isolated with a first cut perpendicular to C
at the level of the annulus and a second one in correspondence to
the ostium of the brachiocephalic trunk.Themethods to derive each
shape feature are detailed below.

2.3.1 Diameter
The AAo intra-luminal diameter is measured by extracting n =

100 sections Ψk for k = 1,…,n perpendicular toC and equally spaced
along it. Figure 2A shows one of the thoracic aorta segmentations,
the isolated ascending tract and a subset of 20 sections. On each
section Ψk, the maximum diameter Dmaxk is obtained as the longest
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FIGURE 2
The full aorta segmentation, the discrete ascending aorta domain S and a subgroup of 20 aortic sections perpendicular to the centerline (A). A generic
section Ψk isolated for the calculation of the related maximum diameter Dmaxk

; the centerline of the ascending section C and the segment C0 are also
shown (B). Identification of the point xeck to compute the external curvature line (C). Isolated ascending section with the external and internal curvature
line (ECL and ICL) (D).

of the segments resulting from the intersection between Ψk itself
and a rotating a plane perpendicular to Ψk, passing through xck and
sweeping angles of α = 10° (Figure 2B). In turn, xck is the point of
intersection between Ψk and C. The maximum diameter D for the
entire vessel, current main criterion for elective AAo surgery, is:

D =max{Dmax1
,…,Dmaxn} (1)

2.3.2 Diameter-centerline ratio
By using the maximum diameterD and computing the length of

AAo centerline L(C), we define the diameter-centerline ratio DCR:

DCR = D
L (C)

(2)

2.3.3 External-internal line ratio
Given the tessellated surface S consisting of a set F of triangular

faces Fi such that any point P ∈ S lies in at least one triangle Fi ∈ F, we

can identify a polygonal curve Γxa,xoj on S starting from an arbitrary
point xa ∈Ωannulus and reaching another arbitrary point xo ∈Ωostium
where Ωannulus and Ωostium are respectively the boundaries of S at the
level of the annulus and at the level of the ostium.The lengthL(Γxa,xoj )
is:

L(Γxa,xoj ) = ∑
Fi∈F

L(Γxa,xoj∣Fi
) (3)

where L(Γxa,xoj∣Fi
) is measured according to the euclidean distance.

We define the shortest discrete geodesic ΓG as the shortest path:

ΓG = argmin
xa,xo,j

L(Γxa,xoj ) (4)

The lengthL(ΓG) results to be the shortest geodesic distance.We use
theDijkstramethod (Lanthier, 2000; Dijkstra, 2022) to find the set of
discrete geodesic over the entire aortic domain connecting all points
xa ∈Ωannulus with xo ∈Ωostium andwe select the shortest of them.The
resulting broken line is then smoothed to obtain the aortic internal
curvature line (ICL).
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Afterwards, for each section Ψk, defining xick the point of
intersection between Ψk and ICL, the direction given by the versor
v⃗ck pointing towards the centre of the aorta xck is identified:

v⃗ck =
x⃗ickxck
‖x⃗ickxck‖

(5)

The intersection between the axis along the direction v⃗ck and S
defines a newpoint xeck (Figure 2C).The repetition of this procedure
on the n sections Ψk allows to create a spline corresponding to
the external curvature line (ECL). In Figure 2D, ECL and ICL are
shown. The ratio between the external and internal curvature line
lengths EILR is then computed:

EILR =
L (ECL)
L (ICL)

(6)

2.3.4 Tortuosity
The last local shape feature we compute is the tortuosity T,

defined as:

T =
L (C)
L(C0)

(7)

where C0 is the straight line connecting the first and the last points
of C.

Except for the manual identification of the brachio-cephalic
trunk ostium, the procedure for computing the shape features
is without any user interaction. The geometric decomposition
methods are developed using Python, VTK, ITK and Qt in 3DSlicer
environment.

2.4 Growth rate evaluation

Even if the diameter threshold for elective surgery has not yet
been reached, it is however clear that a patient with rapid AsAA
growth over time should be carefully and constantly monitored
(Geisbüsch et al., 2014). In this regard, we assume that the risk
of aneurysm rupture is intrinsically derived from the risk of
aneurysm growth (Coady et al., 1997; Saliba et al., 2015). Exploiting
longitudinal data, the AsAA GR can be evaluated as ratio between
the difference in maximum diameters and the time interval Δt in
months between the two scans:

GR = D
′′ −D′

Δt
(8)

where D′ is the diameter D related to the first exam and D
′′

to
the second acquisition. The Mann-Whitney test is used to compare
the GR values derived from ECG-gated data with those computed
on patients for whom at least one acquisition was not gated.
The relationship between the proposed local shape features and
the growth rate is then evaluated using Spearman’s correlation
coefficients. Statistical analysis is performed using Matlab (version
9.12.0, R2022a).

2.5 Machine learning classification

We divided the patients into two risk classes according to the
observed growth rate. All patients with GR ≤ 0.25 mm/month

composed the low-risk class (41 patients) while the others
represented the group with rapid growth (9 patients). This
threshold was chosen according to the surgery guidelines previously
mentioned. For every individual, we then tried to predict the
belonging class by using ML classifiers with in input the metrics
derived from the first acquisition acting as possible predictors of
growth. We initially tested the diameter D alone derived from
the first exam in order to predict the GR-related risk class. Then,
a second classification was conducted selecting all the shape
features together. Six different classification models (Silva et al.,
2019) were used: decision tree (DT) (Ali and Smith, 2006), linear
discriminant (LD) (Duda et al., 2000), logistic regression (LR)
(Dreiseitl and Ohno-Machado, 2002), naive bayes (Ren et al., 2009),
support vector machine (SVM) (Cortes and Vapnik, 1995) and
k-nearest neighbours (KNN) (Altman, 1992). Except for LR, the
hyperparameter valueswere optimizedminimizing the classification
error. We use a leave-one-out cross-validation method to assess the
predictive accuracy of the classification models. The accuracy is
defined as:

accuracy = TP + TN
TP + TN + FP + FN

(9)

Sensitivity and specificity are calculated as:

sensitivity = TP
TP+ FN

(10)

specificity = TN
TN+ FP

(11)

where true positive (TP) is the number of fast-growing aortas
correctly identified, true negative (TN) the number of low-risk
shapes correctly identified, false negative (FN) the number of
high-risk geometries incorrectly identified as low risk and false
positive (FP) the number of low-risk shapes incorrectly identified
as high risk. We obtained these values analyzing the confusion
matrix, a 2 × 2 matrix where the diagonal represents the aortas
that were correctly classified and the anti-diagonal represented
misclassifications. In addition to accuracy, sensitivity and specificity,
the performances were measured using the area under the receiver
operating characteristic (AUROC) curve which represents the
probability that the input parameter (parameters) is (are) higher for
the class with fast growth than for the onewith slow growth and thus,
is a measure of discrimination. Finally, to describe the diagnostic
value of the proposed shape features, likelihood ratios (LHRs) are
used:

LHR+ =
sensitivity

1− specificity
(12)

LHR− =
1− sensitivity
specificity

(13)

LHR+ (LHR−) represents the change in the odds of having a
diagnosis in patients with a positive (negative) test.

3 Results

The full dataset presented a mean follow-up of 31 ± 25 months.
AAo segmentations were performed for all 100 acquisitions and the
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FIGURE 3
Correlation between growth rate and (A) maximum aneurysm diameter D, (B) ratio of maximum diameter and centerline length DCR, (C) ratio of
external and internal curvature line length EILR and (D) tortuosity T. The circles around the marker edges indicate patients with two gated acquisitions
in the same phase of the cardiac cycle. The line for linear correlation with 95% fitting confidence bounds is reported, the fitting equation provided and
some of the AAo shapes shown.

shape metrics were extracted for the first exam of all patients. The
median GR was 0.09 mm/month with an interquartile range IQR =
0.17 mm/month, in agreement with what reported in (Coady et al.,
1999; Adriaans et al., 2021). The highest derived growth rate was
0.56 mm/month. The null hypothesis that GRs computed from
ECG-gated and non-gated acquisitions can be attributable to a
distribution with equal median was accepted (p = 0.048).

For the full set of patients, the values of the computed shape
features, expressed as median (IQR), are the following: 48.64 mm
(5.46 mm) for D, 0.50 (0.07) for DCR, 2.32 (0.35) for EILR and
1.21 (0.10) for T. In Figure 3, we report the relationship between
the shape features and the growth rate: the colour of each marker
provides an idea of the GR “intensity,” from light green (no growth)
to bright red (fast growth). A positive correlation is observed
between GR and all four derived measurements. We obtain the

following Spearman’s coefficients: r = 0.169 (p = 0.091) for D, r =
0.511 (p = 1.3e-4) forDCR, r = 0.472 (p = 2.7e-4) for EILR, r = 0.161
(p = 0.121) for T. A statistically significant moderate correlation
between DCR and GR and between EILR and GR is thus evident
while the shape features D and T do not reach the significance
p-level.

Concerning the classification, 9 patients (18% prevalence) were
identified with growth rates above the threshold of 0.25 mm/month.
The confusion matrices are reported in Figure 4 both for the
diameter alone as growth predictor and for the four shape features
together. Table 2 reports the performance of the six classifiers in
terms of accuracy, sensitivity, specificity, LHR+ and LHR−. The
AUROC for the six classifiers is shown in Figure 5. Using only
D as risk class predictor, four of the classifiers (LD, LR, NB, and
SVM) prove unable to identify high-risk patients (sensitivity = 0%).
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FIGURE 4
AUROC results for the decision tree (DT), linear discriminant (LD), logistic regression (LR), naive bayes (NB), support vector machine (SVM), k-nearest
neighbours (KNN) classifiers.

TABLE 2 Classification scores for the six classifiers obtained with leave-one-out cross-validation: decision tree (DT), linear discriminant (LD), logistic regression
(LR), naive bayes (NB), support vector machine (SVM) and k-nearest neighbours (KNN).

DT LD LR NB SVM KNN

Accuracy (D) 82% 80% 76% 82% 82% 86%

Accuracy (D+DCR+
EILR + T)

86% 92% 88% 92% 94% 90%

Sensitivity (D) 33.3% 0% 0% 0% 0% 55.6%

Sensitivity (D + DCR
+ EILR + T)

55.6% 66.7% 66.7% 66.7% 66.7% 55.6%

Specificity (D) 92.7% 97.6% 92.7% 100% 100% 92.7%

Specificity (D + DCR
+ EILR + T)

92.7% 97.6% 92.7% 97.6% 100% 97.6%

LHR+ (D) 4.56 0 0 // // 7.62

LHR+ (D + DCR +
EILR + T)

7.62 27.79 9.13 27.79 +∞ 23.17

LHR− (D) 0.72 1.02 1.08 1 1 0.48

LHR- (D + DCR +
EILR + T)

0.48 0.34 0.36 0.34 0.33 0.45

The symbol // indicates undefined. Best performances are marked in bold.

Among the D-based classifiers, KNN reports the highest accuracy
(86%), sensitivity (55.6%), AUROC (0.74), LHR+ (7.62) and the
lower LHR− (0.48). Instead, the KNN specificity is 92.7%, lower
than that resulting from LD (97.6%), NB (100%), SVM (100%) and
equal to the values obtained through DT and LR. On the other side,

considering the four shape features together, the best performances
are obtained using SVM. It returns the highest accuracy (94%),
sensitivity (66.7%), specificity (100%), AUROC (0.94) and LHR+
(tending to ∞). Even for LHR−, the best performance among the
classifiers is achieved with a value of 0.33. In this case, DT is
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FIGURE 5
Confusion matrices related only to D on the first row and to D, DCR, EILR and T on the second row for the decision tree (DT), linear discriminant (LD),
logistic regression (LR), naive bayes (NB), support vector machine (SVM), k-nearest neighbours (KNN) classifiers. TC means true class while PC means
predicted class.

performing worse showing accuracy = 86%, sensitivity = 55.6%,
specificity = 92.7%, LHR+ = 4.56, LHR− = 0.48 and AUROC = 0.52.
Figure 5 shows how the AUROC is always superior for the classifiers
with the four shape parameters as input compared to the equivalent
diameter-only based classifiers. This is also clear by analyzing
Table 2, where all the values calculated for the classification with the
four parameters are equal to or outperform those of the classification
with the diameter alone, except for the NB classifier specificity.

4 Discussion

In this work, we present a method for computing four local
shape features on the ascending aorta and we compare the ability
to identify patients at high risk of aneurysm growth through six
classifiers based on these local parameters with the same classifiers
based on the maximum diameter alone. We observed how each ML
classifier returns amore accurate risk predictionwhen using the four
shape features together.

The patients used for the shape metrics computation were
derived from gated and non-gated acquisitions. We included a
temporal filtering criterion of 6 months between the first and the
second exam to reduce the uncertainty of the results, especially
for the GR assessment (De Heer et al., 2011; Zubair et al., 2020).
Moreover, we decided not to consider in this study patients with
Marfan syndromeor in general congenital degenerativewall diseases
since they could affect the results given the rapid aneurysm growth
they could exhibit. The uncertainty introduced by using both CT-
Scans and MRI-Angiographies is however mitigated by considering
the selected exclusion criteria and by deriving segmented geometries
corresponding to the intra-luminal regions from both types of
acquisition. Minor and non-significant differences were indeed
described when comparing diameters obtained from these two
imaging techniques (Bons et al., 2019; Frazao et al., 2020).

After the segmentation and identification of the ascending aorta,
the computation of shape metrics is performed on the entire AAo
domain, including theValsalva sinuses.This enables even aneurysms
of the root region to be investigated. D is the only quantity that
provides non-normalized local information with respect to the

shape of the aorta. DCR returns a measurement of diameter in
relation to a local length, which allows a better understanding
of the differences between tall and robust patients and more
slender individuals. EILR, on the other hand, gives information on
the relationship between the external and the internal curvature
line, to be carefully considered in the case of wall expansion
toward the external direction of the aorta, as in saccular or root
aneurysm (David, 2010). Finally, T returns another important piece
of information, different from the previous ones, on how contorted
and twisted the AAo is. Additional parameters such as volume
and surface area of the ascending tract were not included as they
were considered characteristic measures of vessel size and not shape
(Heuts et al., 2020).

We evaluate the growth rate as the difference between the
maximum diameters derived from two exams, normalized by
the distance in months between the two. This is, of course, a
simplification since it seems that the aneurysm evolution follows
an exponential law over time rather than a linear one (Hirose et al.,
1995). In fact, according to Laplace’s law, wall tension is proportional
to the vessel radius for a given blood pressure. So, growth rates
become higher as the aorta progressively enlarges. Several empirical
models have been presented to account for exponential growth rates
exploiting multiple time exams (Gharahi et al., 2015). Information
on how and whether aortic dilatation is accelerating over time
could in fact further improve the prediction results. However, as
most of the patients in the group had only two acquisitions and
an exponential growth rate laws usually require controls over at
least three different time instants for their validation (Martufi et al.,
2013), the linear model was preferred. Additionally, in this study,
D
′′
and D′ can be at different centerline levels. Obviously, obtaining

the maximum diameter at a certain distance from the annulus
for the first exam and evaluating the diameter from the model
related to the second acquisition using the same distance, without a
new search for the maximum along the centerline, would produce
different results in terms of GR with values that would certainly
be lower or at most equal to those we used. As reflected in the
data subdivision, only 9 (18%) patients showed a rapid evolution.
This majority of patients with slow-growing aneurysms probably
derives from the fact that the clinicians themselves, after a first
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3-dimensional acquisition, often decide to make a second
acquisition some months later when, based on clinical data, they
suppose the disease will not evolve quickly and the dilatation
phenomenon will not be abrupt and dangerous. It is worth noting
that there are only 3 (6%) patients with the maximum diameter over
55 mm on whom local metrics were computed and two of these
show a close to zero growth rate. We suppose they had not been
surgically treated due to a precarious health state or because manual
measurements of the diameter returned values below the threshold
for surgery, really close to the value we measured. This, together
with a correlation that is not strong neither statistically significant,
are the reasons why classification based only on D results in failure.
The performances of the individual diameter-based classifiers are,
in fact, fairly low. This suggests that the diameter alone, current
criterion for rupture risk, fails to accurately predict the growth,
at least with respect to the data we collected. KNN, being based
on the vote derived from the neighbouring classes, is the unique
classifier able to discriminate at least 5 of the 9 patients of the high-
GR risk class. Integrating the four features together and using the
same KNN, a performance improvement (Table 2) is appreciable.
However, among the classifiers based on all metrics, the best results
are obtained using SVM. Although the sensitivity of SVM, i.e., the
correct prediction rate for high-risk patients, never exceeds the
66.7% threshold, its accuracy, LHR+ and LHR− make it a good
candidate in terms of utility (Ranganathan and Aggarwal, 2018).
LHR + tending to +∞ indicates that in case of a positive result, a
patient definitely belongs to the high-risk group. LHR−= 0.33means
that a person onwhich aGRunder the threshold is identified is about
3 (=1/0.33) times more likely to have a negative test than someone
with a GR over the threshold. Since LHR+ and LHR− do not depend
on the prevalence value, they are considered robust measures of
the diagnostic capacity of the proposed classifiers. As reported in
(Ray et al., 2010), an excellent classification method would return a
LHR + higher than 10 and a LHR− lower than 0.1. Unfortunately,
SVM fails to reach the threshold related to LHR−. However, we are
confident that adding new parameters such as patient age, aortic
valve type and possible related diseases, hypertension status or
numerical simulation results (Groth et al., 2018; Biancolini et al.,
2020)may improve the classification performances in that direction.
Maier et al. (2010) have indeed proved how numerical simulation
results as the stress at the wall and the ratio of wall stress and
strength could be used to improve the prediction of abdominal
aortic aneurysm rupture. The integration of this information may
help to reduce the misclassifications that occur when using the
shape features alone. Moreover, including detailed patient-specific
material properties (Reeps et al., 2013) and an estimation of the
geometry related to the stress-free state (Gee et al., 2009) could
allow for even more accurate risk assessments. In any case, this is
beyond the scope of this work, which concerns only the analysis of
local parameters related to the ascending aorta shape. The presence
of FNs in this type of classification is one of the most delicate
aspects as it could lead to patients whose pathology is evolving
quickly not being treated beforehand. In this regard, we consider
interesting to observe the geometries related to the three patients
classified as FNs from SVM for the full set of shape features, whose
complete segmentations are shown in Figure 6. Two of them exhibit
aortic coarctation (the only ones in the dataset) while one has an
abrupt change between aortic arch and descending aorta with a very

small radius of curvature. These morphological anomalies, altering
the pressure gradient, obviously affect the fluid dynamics of the
ascending aorta (Oliver et al., 2009). This could be the reason why,
although the shape features of the ascending tract are not such as to
characterize the patient as being at high risk, the disease undergoes
a severe and rapid evolution over time. Four shape features alone
are obviously not sufficient to predict the aneurysm growth but the
results of this work clearly indicate the importance of considering
the shape in studying the evolution of the pathology. Certainly, the
AsAA surgical repair decision cannot derive exclusively from the
analysis of the AAo alone but requires an integration of information
from the upstream region (aortic valve) and the downstream
part (arch and descending section). We also stress that the use
of diameter as a criterion for surgery should not be replaced by
these new features, but rather complemented by them since they,
valuable in improving the assessment of the risk of growth, have
not yet been proven effective in predicting the rupture. Overall,
machine learning methods prove to be excellent candidates for
improving the prediction of ascending aortic aneurysm shapes
prone to rapid growth (Hahn et al., 2021) and delivering more
personalized control and treatment plans (Monsalve-Torra et al.,
2016). They are particularly suitable for integrating large amounts
of data, including patient demographics, lifestyle factors, clinical
history and medical images (Ashkezari et al., 2022). Moreover, ML
algorithms can be used to track shape modifications in time and
provide dynamic predictions of aortic aneurysm growth (Jiang et al.,
2020), allowing for timely intervention. Unfortunately, multiple
3D longitudinal data are generally available for a limited number
of patients and therefore a robust validation of the predictive
ability is still challenging. Although this work shows that linking
shape features derived from longitudinal data and ML classifiers
is a promising approach to predict the aneurysm growth, some
limitations need to be mentioned. The most important are the small
dataset of patients used and the unequal distribution of classes. A
more accurate study must necessarily include a larger number of
patients with ECG-gated acquisitions performed at high resolution.
A robust automatic segmentation method that removes manual
correction processes would then be required, thus avoiding any bias
introduced by the operator (Ashok and Gupta, 2021). Moreover, the
uncertainty of the results is not only due to the segmentation task
but also to the delimitation of the ascending aorta domain. Some of
the patients were probably treated between one acquisition and the
following with drugs such as beta-blockers that definitely affected
the growth of the vessel over themonths thus altering the correlation
results between shape features and GR. It should also be mentioned
that, as this study was exclusively related to the shape, we did not
consider other important features such as material properties of
the aorta wall and vessel thickness (Lin et al., 2022) which could
further improve the results in terms of accuracy. The shape features
described here relate exclusively to local properties. Future work
will incorporate global shape features given by the modes of a
statistical shape model (SSM) (Zheng et al., 2017) that will likely
improve the model prediction. Although Cosentino et al. (2020)
showed that, especially for the first principal modes, there is not a
significant difference in terms of AAo wall shape between patients
with bicuspid and tricuspid aortic valve, a subdivision into two
different subsets would produce better results in terms of accuracy
(Rooprai et al., 2019). Lastly, as previously introduced, it would

Frontiers in Physiology 09 frontiersin.org

https://doi.org/10.3389/fphys.2023.1125931
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Geronzi et al. 10.3389/fphys.2023.1125931

FIGURE 6
The models classified as FNs by SVM based on the four shapes
features: the first two report aortic coarctation while the third shows a
reduced radius of curvature between the arch and descending aorta.

also be interesting to assign a risk score to the valve type, to the
possible level of calcification and to other co-existing risk factors
and observe how the classification results would change according
to them. A more in-depth analysis of the aortic valve would be
consequently required although it is not straightforward to derive
such information for all patients from this retrospective dataset.
After further validations of the predictive capabilities through large-
scale studies by including these multiple factors and overcoming
the limitations described before, the reliability of these methods in
clinical environments could be definitively established.

5 Conclusion

In this paper, we explain how to compute some shape features
useful for classifying patients at high risk of rapid AsAA evolution.
By using ML classifiers based on data derived from 50 patients, this
work provides an indication that a set of AsAA local features could
help in classifying the aneurysm growth potential more accurately
than the maximum diameter alone. By treating large amounts
of data, handling complex relationships and offering personalized
predictions, machine learning can enhance the management and
treatment of this dangerous disease. Deepening this combination
of non-invasive geometric quantification and statistical machine
learning methods and integrating these results with those derived
from the numerical simulation could help in identifying aortic
shapes potentially at risk of aneurysm growth and could certainly
be useful not only for surgery planning but also for both the choice
of therapy and the follow-up timing. In fact, this work might be
important in a clinical environment to assess the risk of rupture of
aneurysms during regular patient follow-up and might allow the
development of personalized decision-making processes that will
take into account not only the aneurysm shape but also several
additional patient-specific data. The new shape features proposed
here should not replace the diameter itself but complement it
in order to have a more detailed understanding of this complex
biological problem. It is obvious, therefore, that in order to consider
these shape parameters as real biomarkers related to the AsAA
evolution, the predictive capacity needs to be further strengthened
by identifying and preparing a larger prospective study.
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