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Background: An elevated core temperature (Tcore) increases the risk of
performance impairments and heat-related illness. Internal cooling (IC) has the
potential to lower Tcore when exercising in the heat. The aim of the review was to
systematically analyze the effects of IC on performance, physiological, and
perceptional parameters.

Methods: A systematic literature search was performed in the PubMed database
on 17 December 2021. Intervention studies were included assessing the effects of
IC on performance, physiological, or perceptional outcomes. Data extraction and
quality assessment were conducted for the included literature. The standardized
mean differences (SMD) and 95% Confidence Intervals (CI) were calculated using
the inverse-variance method and a random-effects model.

Results: 47 intervention studies involving 486 active subjects (13.7% female; mean
age 20–42 years) were included in the meta-analysis. IC resulted in significant
positive effects on time to exhaustion [SMD (95% CI) 0.40 (0.13; 0.67), p < 0.01]. IC
significantly reduced Tcore [−0.19 (22120.34; −0.05), p < 0.05], sweat rate [−0.20
(−0.34; −0.06), p < 0.01], thermal sensation [−0.17 (−0.33; −0.01), p < 0.05],
whereas no effects were found on skin temperature, blood lactate, and
thermal comfort (p > 0.05). IC resulted in a borderline significant reduction in
time trial performance [0.31 (−0.60; −0.02), p = 0.06], heart rate [−0.13 (−0.27;
0.01), p = 0.06], rate of perceived exertion [−0.16 (−0.31; −0.00), p = 0.05] and
borderline increased mean power output [0.22 (0.00; 0.44), p = 0.05].
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Discussion: IC has the potential to affect endurance performance and selected
physiological and perceptional parameters positively. However, its effectiveness
depends on the method used and the time point of administration. Future research
should confirm the laboratory-based results in the field setting and involve non-
endurance activities and female athletes.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/,
identifier: CRD42022336623.

KEYWORDS

ice, menthol, athlete, perceptional cooling, physical cooling, time trial, sweat rate, core
temperature

1 Introduction

High ambient and radiant temperature, absolute humidity, and
factors such as urbanization and heat storage in crowded stadiums
may cause “heat stress” in athletes (Bongers et al., 2020). Under these
conditions, an athlete’s ability to dissipate the exercise-induced heat
production is limited, leading to significantly elevated core
temperature and increased risk of performance impairments
(Bongers et al., 2020) and heat-related illness (Wendt et al.,
2007), including disease (heat edema, heat rash, heat cramps,
heat syncope), heat exhaustion, and the most severe form, heat
stroke (Howe and Boden, 2007). Typical symptoms of heat
exhaustion are dizziness, malaise, nausea, vomiting, or excessive
fatigue, and without treatment, the potentially life-threatening heat
stroke may develop as core temperature elevates >40°C (Howe and
Boden, 2007).

Exertional heat illness has been reported at a rate of 0.47 per
10,000 athlete-exposures among US collegiate athletes (Yeargin
et al., 2019), with heat cramps, heat exhaustion, and dehydration
being the most prominent types and 8.2% of all cases requiring
emergency transport. However, the prevalence of heat-associated
diseases might rise since athletes will have to train and compete
under more challenging thermal conditions. Besides the fact that
global warming will probably lead to an increase in the frequency
and length of heat waves, including heat waves occurring in
previously temperate environments (McGeehin and Mirabelli,
2001), also major sports events are often organized in extremely
hot and/or humid conditions [e.g., Olympic Games in Tokio 2020,
Fédération Internationale de Football Association (FIFA) World
Cup in Qatar 2022].

To reduce the risk of performance impairments and exercise-
induced heat illness when exercising in hot-humid conditions
cannot be avoided, athletes need to apply cooling strategies
before (pre-cooling) or during (mid-cooling) exercise to lower
core temperature. Cooling applications, in general, can improve
exercise performance in hot environments due to reductions in
thermal strain and an increased heat storage capacity (Bongers et al.,
2017). They can be classified into external (i.e., cold-water
immersion, ice packs, ice vests) and internal (ingestion of ice,
cold-water, and menthol) applications. Several systematic reviews
and meta-analyses demonstrate a positive effect of cooling on
physical performance (Jones et al., 2012; Bongers et al., 2015;
Ruddock et al., 2017; Choo et al., 2018; Douzi et al., 2019; Jeffries
and Waldron, 2019; Zhang, 2019; Bongers et al., 2020; Keringer
et al., 2020; Rodríguez et al., 2020), with external applications such as

cold water immersion and ice vests being the most effective
strategies for pre- and mid-cooling, respectively (Bongers et al.,
2020).

However, not every cooling method providing performance
benefits in the laboratory setting is feasible for real-life
competition. For example, due to sport-specific regulations,
practical considerations, local environmental conditions, high
performance costs (even though regulations and conditions
would allow for external cooling) it might not be possible to
employ external cooling such as cold-water immersion or ice
vests (Bongers et al., 2020). In contrast, internal cooling
applications are more applicable during exercise in a field-based
setting and are usually well-tolerated and cheap (Bongers et al.,
2017).

There exist two different types of internal cooling: physical and
perceptional cooling. The application of physical cooling with a
medium of high heat capacity (e.g., ice or cold-water ingestion)
might cause a decrease in core temperature and a consequent delay
in the onset of thermally induced fatigue (Wegmann et al., 2012). In
a recent meta-analysis by Zhang 2019, the ingestion of ice-slurries
was associated with moderate performance improvements in hot
environments (Zhang, 2019). However, internal heat losses caused
by the ingestion of cold fluids might decrease the evaporative
potential of the skin (Morris et al., 2016; Jay and Morris, 2018).
Therefore, some authors recommend to ingest cold-water/ice-slurry
only during exercise in hot, humid, and calm conditions, but not in
warm, dry, and windy environments (Jay and Morris, 2018). On the
other hand, high-intensity exercise may cause excessive elevations in
heat production and sweat rate, and small reductions in sweat rate
would only minimally reduce evaporative heat loss, suggesting a net
beneficial effect (Bongers et al., 2020). Furthermore, it could be
argued that a reduction in sweat rate following the ingestion of cold-
water or ice-slurry could prevent dehydration-dependent
performance decrements (Murray, 2007).

In contrast, perceptional cooling may affect physiological
outcomes and performance indirectly by inducing a sensation of
cooling (Keringer et al., 2020). The most comment agent is menthol,
a cyclic monoterpene alcohol that possesses various biological
properties such as antimicrobial, anticancer, anti-inflammatory
activities, and well-known cooling characteristics (GPP et al.,
2013). Internal menthol application leads to an activation of
“transient receptor potential melastatin-8" (TRPM8)-channels
causing a reduced thermal sensation and physiological effects
similar to “physical cooling” (Zheng, 2013). A recently published
study by Han et al., 2020 (Han et al., 2020) showed that intranasal
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menthol activated several brain regions related to nociceptive and
trigeminal processing. However, it remains unclear whether and to
what extent this activation has a performance impact. Three
systematic reviews assessed the effects of internal and external
menthol application on performance in the heat (Douzi et al.,
2019; Jeffries and Waldron, 2019; Keringer et al., 2020).
According to one review, internal menthol was superior to an
external application (Jeffries and Waldron, 2019), whereas
another review reported contrary results (Keringer et al., 2020),
and one did not show any effect (Douzi et al., 2019).

So far, no systematic review has focused exclusively on the effect
of different internal cooling methods (ice-/cold-water and menthol
ingestion). In most of the above-mentioned systematic reviews, no
separate analysis was performed, differentiating between internal
and external or various internal cooling methods. Therefore, this
review aims to systematically screen and evaluate the literature on
the effects of internal cooling on various outcomes (n = 11),
including performance, physiological, and perceptional
parameters. Several previous reviews assessed the effect of cooling
on aerobic performance without the differentiation between
performance and capacity (Jones et al., 2012; Bongers et al., 2015;
Douzi et al., 2019; Jeffries and Waldron, 2019; Zhang, 2019; Bongers
et al., 2020). However, aerobic performance relates to completing a
certain task as fast as possible (e.g., time trials), whereas endurance
capacity refers to the exercise time to volitional fatigue at a constant
workload or speed (e.g., time to exhaustion) (Saris et al., 2003).
Endurance capacity is more often studied since the technique is
relatively easy to control, and the constant workload allows
comparison of metabolic and other measurements between
intervention and control trials. Yet, for the assessment of true
aerobic performance, time trials are the more valid and realistic
approach since there are only a few events where athletes have to
exercise as long as possible (Saris et al., 2003). Therefore, in this
systematic review, the effect of internal cooling on performance was
further differentiated by the exercise protocol used (e.g., time trials
vs. time to exhaustion).

2 Methods

Data was reported according to the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) statement
(Page et al., 2021). The meta-analysis was registered in PROSPERO
(no. CRD42022336623).

2.1 Search strategy

The following outcomes were considered for the present meta-
analysis: (1) performance (time to exhaustion, finish time of time
trials, mean power output), (2), physiological (core temperature,
skin temperature, sweat rate, heart rate, blood lactate), and (3)
perceptional parameters (rate of perceived exertion, thermal
sensation, thermal comfort).

A systematic literature search was performed by one
researcher (JH) on 17 Dec 2021, using the database of
MEDLINE (via PubMed). Details of the search strategy can be
found in Supplementary Material S1. Keywords included terms

related to internal cooling (e.g., ice-slurry, menthol),
performance, physiological (e.g., heart rate, sweat rate) and
perceptional outcomes (e.g., rate of perceived exertion, thermal
sensation), and population (e.g., athletes, active) and were
combined by Boolean logic (AND). Articles were limited to
human subjects, English or German language, and publication
after 1 Jan 2000. In addition, an unsystematic search was
performed by screening the full texts of relevant review articles
identified through abstract screening of the systematic search for
additional references.

2.2 Study selection

Studies were selected following a two-step approach. In the first
step, two researchers screened the abstracts identified through a
database searching for inclusion and exclusion criteria
(Supplementary Material S2). The agreement between the two
researchers was quantified using kappa statistics (Orwin et al., 1994).

In the second step, full texts of all identified abstracts were
retrieved and screened for inclusion and exclusion criteria. Studies
were included as long as data for at least one of the above-mentioned
outcomes were reported. Only studies with isocaloric or
isovolumetric fluid intake in the trials were included to avoid
confounding effects on performance. We considered studies
conducted in hot environments (>30°C) but also in neutral-warm
environments (20°C–30°C). The first author was responsible for the
study selection of full texts. A list of excluded articles can be obtained
in Supplementary Material S3.

2.3 Study classification

After inclusion, the studies were divided according to (1) the
time point of cooling relative to exercise [before (pre-), during (mid-),
before and during (pre- + mid-)], and (2) cooling method
(physical, perceptional). Studies comparing multiple internal
cooling interventions with the same control condition were
included repeatedly.

For interventions involving the administration of fluid, we
further classified the treatment groups according to drink
temperature: (1): intervention: beverages with a
temperature ≤10°C, (2), control: beverages with a
temperature >18 and ≤50°C.

2.4 Data extraction, transformations, and
quality assessment

The first author extracted all data from the articles’ text or tables
and entered them into a synoptical table. Values for the physiological
and perceptional outcomes were extracted at exhaustion, at the end of
the exercise, or at the last time point reported, except sweat rate, for
which we used the total across the whole trial. However, for
performance outcomes, we chose the mean value for power output
during the performance trial and end-exercise time for time trial or
time to exhaustion protocols. Authors of n = 45 articles were contacted
to receive further data (response rate: 75.6%).
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To harmonize data, several transformations were performed
(further details in the statistics section): (1): The dose of the used
internal cooling method was transformed to mg (menthol) or g · kg-1
(ice or cold-water), assuming 1 mL corresponds to 1 g, and by
dividing absolute intake by mean body mass. (2) Heat index was
calculated using the reported mean ambient temperature and
relative humidity by applying the Rothfusz equation developed
and adopted by the National Oceanic and Atmospheric
Administration (Rothfusz, 1990). Since the equation is invalid for
conditions of temperature and relative humidity which warrant a
heat index value below about 26.67% (Zune et al., 2020), the
reported mean ambient temperature instead of the heat index
was chosen for studies reporting ambient temperatures <27°C
and relative humidity <40%. In studies reporting wet-bulb globe
temperature or no relative humidity, wet-bulb globe temperature or
ambient temperature values were entered in the column heat index,
respectively. (3) For studies using opposite scales for thermal
comfort assessment (lower values indicating more comfortable
and higher values more uncomfortable thermal comfort; n = 4),
the mean value was mirrored onto the mean of the respective scale
while the standard deviation remained the same. (4) For the
calculation of total exercise duration, the duration of the activity
was taken for steady-state exercise [min]. In contrast, the mean of
the time needed in the intervention and control groups was
calculated for time trials [min].

Two researchers independently assessed the risk of bias
according to Cochrane collaboration guidelines (Higgins et al.,
2022). The study authors were not contacted to receive further
information to confirm the details of their applied methods.

2.5 Statistical analysis

Baseline characteristics of each study sample were reported as
mean with standard deviation. RevMan 5 (The Cochrane
Collaboration, 2020) was used to perform the meta-analysis.
Differences between intervention and control with regard to
performance, physiological or perceptional parameters were
expressed as standardized mean differences (SMD) with 95%
Confidence Intervals (CI’s) using the inverse-variance method
and a random-effects model. The SMD was chosen because of
methodological differences between the studies. Effects were
considered as trivial (SMD <0.2), small (0.2 < SMD <0.5),
medium (0.5 < SMD <0.8), and large (SMD ≥0.8) according to
Cohen (Cohen, 1992).

Statistical heterogeneity was assessed by examining forest plots,
CI’s, and calculating the I2 index. I2 values of 25%, 50%, and 75%
indicated low, medium, and high heterogeneity, respectively. An I2 >
50% demonstrated significant heterogeneity between studies. Funnel
plots were used to assess possible bias in reporting and publication
(data available upon request from the authors). When likely
[i.e., sufficient studies (n ≥ 10) (Ryan, 2016)], meta-regression
was performed to identify covariates for the dispersion of the
main effect size. Possible covariates included dose, heat index,
and exercise duration. Meta-regression was performed using SPSS
version 23 (IBM Corp., Chicago, IL, United States), and bubble plots
of significant regression models were created to visually show
associations (Lajeunesse, 2021).

3 Results

3.1 Study characteristics

Our search identified 558 abstracts. Initially, 101 reports seemed
possibly relevant, but after a thorough full-text review, only
47 studies were included (Lee and Shirreffs, 2007; Lee et al.,
2008; Lee et al., 2008; Burdon et al., 2010; Ihsan et al., 2010;
Stanley et al., 2010; Byrne et al., 2011; Siegel et al., 2011; Bain et
al., 2012; Siegel et al., 2012; Burdon et al., 2013; Hue et al., 2013;
Brade et al., 2014; Morris et al., 2014; Burdon et al., 2015; Hue et al.,
2015; James et al., 2015; Lamarche et al., 2015; Pryor et al., 2015;
Schulze et al., 2015; Zimmermann and Landers, 2015; Hailes et al.,
2016; Morris et al., 2016; Stevens et al., 2016; Tay et al., 2016; Flood et
al., 2017; Gerrett et al., 2017; Takeshima et al., 2017; Zimmermann et
al., 2017; Zimmermann et al., 2017; Jeffries et al., 2018; Ng et al.,
2018; Snipe and Costa, 2018;Watkins et al., 2018; Aldous et al., 2019;
Gibson et al., 2019; Ng et al., 2019; Thomas et al., 2019; Iwata et al.,
2020; Naito et al., 2020; Nakamura et al., 2020; Onitsuka et al., 2020;
Saldaris et al., 2020; Alhadad et al., 2021; Gavel et al., 2021; Parton et
al., 2021; Tabuchi et al., 2021). The kappa value of 0.76 for the
agreement between the two researchers assessing the eligibility of
records was considered to reflect a “substantial” agreement (Orwin
et al., 1994). Figure 1 displays a PRISMA flow chart of the literature
search. A description of the included studies is given in
Supplementary Material S4.

Data of 486 subjects (13.7% female) with a reported mean age
between 20 and 42 years were included. Ambient conditions ranged
between 22°C–49.6°C and 15.4%–80% relative humidity.

In total, n = 17, n = 16, and n = 9 studies assessed the effect of
pre-, mid-, and pre- + mid-exercise ice/cold-water cooling,
respectively. For menthol, n = 4 and n = 3 studies used pre-, and
pre- + mid-exercise cooling, respectively. The dose of ice/cold-water
ingestion ranged from 1.25–30 g kg-1. All included studies applying
menthol used mouth rinsing instead of ingestion. Therefore, in the
following, the term menthol mouth rinsing will be used. The
accumulated dose of menthol mouth rinsing was in the range of
2.5–200 mg.

The correlation for the SMD with dose, heat index, and exercise
duration was only calculated for ice/cold-water ingestion, and
correlations were calculated for all outcomes except for time trial
performance and blood lactate. For menthol mouth rinsing, the
number of studies was insufficient for correlation analyses.

3.2 Risk of bias in the included studies and
heterogeneity

The studies included generally had, dependent on the category, a
low, unclear, or high risk of bias (SupplementaryMaterial S5). Only two
studies reported information on the randomization procedure
conducted to generate groups (Flood et al., 2017; Jeffries et al.,
2018). No study reported attempts to conceal allocation to an
intervention or control group; therefore, the risk of bias was
considered “high”. Only one study reported double-blinding of
participants and personnel to the interventions administered (Parton
et al., 2021); two studies were single-blinded (Flood et al., 2017; Jeffries
et al., 2018). The remaining studies did not report any blinding;
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therefore, the risk of bias in the outcome measure was estimated as
“high”. However, we acknowledge that blinding of internal cooling is
difficult due to the distinctive sensory properties of menthol and ice/
cold-water. All studies were assigned a “low” risk of attrition bias, since
there were either no missing data or missing data were balanced across
the intervention groups. Finally, in all but eight studies (Byrne et al.,
2011; Siegel et al., 2011; Hue et al., 2015; Lamarche et al., 2015; Hailes
et al., 2016; Gerrett et al., 2017; Watkins et al., 2018; Alhadad et al.,
2021), outcome data were reported incompletely in the original article,
so not all results were entered into the meta-analysis and these studies

were rated with a “high” risk for reporting bias. However, most authors
provided additional data upon request. Another reason for the high
percentage of studies rated with “high” risk for reporting bias is the
large number of outcomes (n = 11) considered in this study. For
example, several studies reported sufficient data for performance but
not for all physiological and perceptional outcomes.

According to I2 values, the total and subgroup heterogeneity for
all outcomes was indicated as low tomedium. In addition, the funnel
plots showed no bias in reporting and publication. Therefore, no
further sensitivity analyses were performed.

FIGURE 1
Overview of the selection process of the included studies for this review. n indicates the number of studies. 1 Total number differs from the sum of
subscores as several studies reported multiple outcomes.

FIGURE 2
Meta-analysis of standardized mean difference in time trial performance [min] with 95% CI between internal cooling and control. F, female; HI, heat
index; M, male; PPO, peak power output; RH, relative humidity; RPE, rate of perceived exertion; SS, steady-state exercise; Temp, ambient temperature;
TT, time trial; VO2peak, peak oxygen consumption.
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FIGURE 3
Meta-analysis of standardizedmean difference in time to exhaustion [min] with 95% CI between internal cooling and control. F, female; GXT, graded
exercise test; HI, heat index; M, male; MVC, maximum voluntary contraction; PPO, peak power output; RH, relative humidity; RPE, rate of perceived
exertion; SS, steady-state exercise; Temp, ambient temperature; TTE, time to exhaustion; VO2max, maximum oxygen consumption; VO2peak, peak
oxygen consumption; Wmax, maximum power.

FIGURE 4
Meta-analysis of standardized mean difference in mean power output [W] with 95% CI between internal cooling and control. F, female; GXT, graded
exercise test; HI, heat index; INT, intermittent exercise; M, male; PPO, peak power output; RH, relative humidity; RPE, rate of perceived exertion; SS,
steady-state exercise; Temp, ambient temperature; TT, time trial; TTE, time to exhaustion; VO2max, maximum oxygen consumption; VO2peak, peak
oxygen consumption.
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3.3 Effectiveness of internal cooling on
performance

Seven studies were included to assess the effects of internal
cooling on time trial performance (Figure 2). Internal cooling
resulted in a borderline significant reduction in time trial
performance [SMD (95% CI) −0.31 [−0.60; −0.02), p = 0.06].
The effect is mainly explained by the application of mid-
exercise ice or cold-water, which resulted in a borderline
significant reduction in time trial performance [−0.47
(−0.89; −0.04), p = 0.06], whereas non-significant effects
were obtained for pre-exercise ice or cold-water and
menthol mouth rinsing (all p > 0.05).

Twelve studies were included to assess the effects of internal
cooling on time to exhaustion (Figure 3). There was a significant
positive small effect of internal cooling on time to exhaustion when
pooling all studies [0.40 (0.13; 0.67), p < 0.01]. However, the
subgroup analysis showed that only pre-exercise application of

ice or cold-water resulted in a significant positive moderate effect
[0.52 (0.10; 0.95), p < 0.05].

Fifteen studies were included to assess the effects of internal
cooling on mean power output (Figure 4). When pooling all studies,
a borderline significant positive effect of internal cooling on mean
power output was observed [0.22 (0.00; 0.44), p = 0.05]. When
looking at subgroup analysis, there were no significant effects for
specific internal cooling methods (all p > 0.05).

3.4 Effectiveness of internal cooling on
physiological parameters

Thirty-five studies were included to assess the effects of internal
cooling on core temperature at the end of exercise (Figure 5).
Internal cooling resulted in a significant reduction in core
temperature, with the effect considered trivial [−0.19 (−0.34;
−0.05), p < 0.05]. However, the subgroup analysis showed that

FIGURE 5
Meta-analysis of standardized mean difference in core temperature [°C] with 95% CI between internal cooling and control. 1 Studies with significant
positive performance effects of internal cooling. 2 Studies with no performance effects of internal cooling. F, female; GXT, graded exercise test; HI, heat
index; INT, intermittent exercise; M, male; MVC, maximum voluntary contraction; PPO, peak power output; RH, relative humidity; RPE, rate of perceived
exertion; SS, steady-state exercise; Temp, ambient temperature; TT, time trial; TTE, time to exhaustion; VO2max, maximum oxygen consumption;
Wmax, maximum power.
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only pre-plus mid-exercise application of ice or cold-water resulted
in a significant reduction of core temperature with small effect
[−0.32 (−0.57; −0.06), p < 0.05].

Twenty-seven studies were included to assess the effects of
internal cooling on skin temperature at the end of exercise
(Figure 6). No effect of internal cooling on skin temperature
were observed when pooling all studies (−0.12 [-0.27; 0.03], p =
0.13). However, mid-exercise application of ice or cold-water
resulted in a significant reduction of skin temperature with small
effect [−0.44 (−0.71; −0.17), p < 0.01].

Thirty-three studies were included to assess the effects of
internal cooling on total sweat rate (Figure 7). Internal cooling
resulted in a significant reduction in total sweat rate, with the
effect considered small [−0.20 (−0.34; −0.06), p < 0.01].
However, the subgroup analysis showed that only mid-
[−0.30 (−0.55; −0.04), p < 0.05] application of ice or cold-
water resulted in a significant reduction of total sweat rate
with small effect.

Thirty-one studies were included to assess the effects of
internal cooling on heart rate at the end of exercise (Figure 8).
Internal cooling resulted in a borderline significant reduction in
heart rate [−0.13 (−0.27; 0.01), p = 0.06]. Subgroup analysis
revealed that mid-exercise application of ice or cold-water

resulted in a borderline reduction of heart rate [−0.22 (−0.46;
0.01), p = 0.06].

Six studies were included to assess the effects of internal cooling
on blood lactate at the end of exercise (Figure 9). No effects of
internal cooling on blood lactate were observed when pooling all
studies [−0.06 (−0.44; 0.31), p = 0.75] or performing subgroup
analysis (all p > 0.05).

3.5 Effectiveness of internal cooling on
perception

Twenty-five studies were included to assess the effects of internal
cooling on rate of perceived exertion at the end of exercise
(Figure 10). Internal cooling resulted in a borderline significant
reduction of rate of perceived exertion [−0.16 (−0.31; −0.00), p =
0.05]. However, the subgroup analysis showed that mid-exercise
application of ice or cold-water resulted in a significant reduction of
rate of perceived exertion with small effect [−0.40 (−0.74; −0.06),
p < 0.05].

Twenty-three studies were included to assess the effects of
internal cooling on thermal sensation at the end of exercise
(Figure 11). Internal cooling resulted in a significant reduction of

FIGURE 6
Meta-analysis of standardized mean difference in skin temperature [°C] with 95% CI between internal cooling and control. 1 Studies with significant
positive performance effects of internal cooling. 2 Studies with no performance effects of internal cooling. F, female; GXT, graded exercise test; HI, heat
index; INT, intermittent exercise; M, male; MVC, maximum voluntary contraction; PPO, peak power output; RH, relative humidity; RPE, rate of perceived
exertion; SS, steady-state exercise; Temp, ambient temperature; TT, time trial; TTE, time to exhaustion; VO2max, maximum oxygen consumption;
VO2peak = peak oxygen consumption.
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thermal sensation, with the effect considered trivial {−0.17 [−0.40
(−0.74; −0.06), p < 0.050.33; −0.01], p < 0.05}. However, no internal
cooling method resulted in significant effects when looking at
subgroup analysis (all p > 0.05).

Eleven studies were included to assess the effects of internal
cooling on thermal comfort at the end of exercise (Figure 12). No
effects of internal cooling on thermal comfort were observed when
pooling all studies [−0.05 (−0.29; 0.19), p = 0.69] or performing
subgroup analysis (all p > 0.05).

3.6 Relationship between SMD and dose,
heat index, and exercise duration

Meta-regressions were performed only for ice/cold-water internal
cooling, as data for menthol cooling was insufficient for regression
analyses. Furthermore, due to the limited number of studies, we did
not differentiate between time points of administration (i.e., pre-vs.
mid-vs. pre- + mid-exercise). The results of meta-regressions between
the SMD of ice/cold-water internal cooling for performance,

physiological, and perceptional outcomes, dose, heat index, and
exercise duration are shown in Supplementary Material S6. In
Figure 13, significant associations are shown as bubble plots. Heart
rate and skin temperature SMD were significantly associated with the
dose and exercise duration (all p < 0.01). There were no significant
associations between heat index and SMDs for heart rate (p = 0.96)
and skin temperature (p = 0.55). There was a borderline significant
association between time trial performance SMD and dose (p = 0.09)
and for sweat rate SMD and heat index (p = 0.08). No significant
associations with dose, heat index, and exercise duration were
observed for all other outcomes (p > 0.05).

4 Discussion

The purpose of the present review and meta-analysis was to
systematically analyze and quantify the effects of internal cooling
methods on performance and physiological as well as perceptional
parameters while exercising in the heat. Our main findings
demonstrate that internal cooling improves physical performance

FIGURE 7
Meta-analysis of standardized mean difference in sweat rate with 95% CI between internal cooling and control. 1 Studies with significant positive
performance effects of internal cooling. 2 Studieswith no performance effects of internal cooling. F, female; GXT, graded exercise test; HI, heat index; INT,
intermittent exercise; M, male; MVC,maximum voluntary contraction; PPO, peak power output; RH, relative humidity; RPE, rate of perceived exertion; SS,
steady-state exercise; Temp, ambient temperature; TT, time trial; TTE, time to exhaustion; VO2max, maximum oxygen consumption; VO2peak =
peak oxygen consumption.
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FIGURE 8
Meta-analysis of standardized mean difference in heart rate [bpm] with 95% CI between internal cooling and control. 1 Studies with significant
positive performance effects of internal cooling. 2 Studies with no performance effects of internal cooling. F, female; GXT, graded exercise test; HI, heat
index; INT, intermittent exercise; M, male; MVC, maximum voluntary contraction; PPO, peak power output; RH, relative humidity; RPE, rate of perceived
exertion; SS, steady-state exercise; Temp, ambient temperature; TT, time trial; TTE, time to exhaustion; VO2max, maximum oxygen consumption;
VO2peak = peak oxygen consumption.

FIGURE 9
Meta-analysis of standardizedmean difference in blood lactate [mmol/L] with 95%CI between internal cooling and control. 1 Studies with significant
positive performance effects of internal cooling. 2 Studies with no performance effects of internal cooling. F, female; GXT, graded exercise test; HI, heat
index; INT, intermittent exercise; M,male; PPO, peak power output; RH, relative humidity, SS, steady-state exercise; Temp, ambient temperature; TT, time
trial; VO2max, maximum oxygen consumption.
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and reduces overall sweat rate, core temperature and thermal
sensation at the end of the exercise. These effects, however,
depend on the method (physical vs. perceptional cooling) as well
as the time of administration (pre-vs. mid-vs. pre- andmid-cooling).

Our main finding of the present study was that internal cooling
resulted in improvements in physical performance, which is in
agreement with some (Bongers et al., 2015; Zhang, 2019;
Rodríguez et al., 2020) but not all (Jones et al., 2012; Ruddock
et al., 2017; Choo et al., 2018) systematic reviews on the topic. We
overcame this apparent discrepancy in the literature by
differentiating between time to exhaustion, typically used as a
measure of aerobic capacity, and time trial performance,
considered a more realistic and valid measure of performance
(Saris et al., 2003). Along this line, we found that time to
exhaustion was significantly prolonged by internal cooling,
whereas the effect of internal cooling on time trial performance
was only borderline significant. The positive impact on aerobic
capacity is likely linked to our finding of improved perceptional
outcomes, such as a lower rate of perceived exertion. For example, in
several studies in which cold water or ice ingestion resulted in a
significantly longer time to exhaustion (Lee et al., 2008b; Siegel et al.,
2012), the authors reported lower rates of perceived exertion during
exercise, but notably not at the end of the exercise bout. Considering

that subjective exertion is closely linked to the time to exhaustion
(Presland et al., 2005), lower rates of perceived exertion, as seen in
our analysis, likely allowed the subjects to exercise for a longer
duration until exhaustion was achieved. Thermal sensation, which is
an essential mediator of behavioral thermoregulation that integrates
with the rate of perceived exertion as the predominant controller of
the self-selected work rate of exercise (Flouris and Schlader, 2015),
was also significantly reduced in our analysis, suggesting that
performance improvements are likely linked to lower sensations
of heat and exertion.

In addition to changes in exertion perception, physiological
outcomes likely explain performance improvements. Our meta-
analysis demonstrated significant reductions in core temperature
and sweat rate and a borderline significant reduction in heart rate
following internal cooling. Ingesting (ice-) cold beverages will lower
core temperature as considerable amounts of internal heat will be
absorbed, and a consequent delay in the onset of thermally induced
fatigue might occur (Wegmann et al., 2012). In addition, brain
temperature might be reduced (Onitsuka et al., 2018), increasing the
probability of thermal sensation and performance improvements
during later stages of exercise. Due to the activation of
gastrointestinal thermoreceptors (Villanova et al., 1997), positive
effects on the inhibitory feedback on core temperature and

FIGURE 10
Meta-analysis of standardized mean difference in rate of perceived exertion with 95% CI between internal cooling and control. 1 Studies with
significant positive performance effects of internal cooling. 2 Studies with no performance effects of internal cooling. F, female; GXT, graded exercise test;
HI, heat index; INT, intermittent exercise; M, male; PPO, peak power output; RH, relative humidity; RPE, rate of perceived exertion; SS, steady-state
exercise; Temp, ambient temperature; TT, time trial; TTE, time to exhaustion; VO2max, maximum oxygen consumption; VO2peak, peak oxygen
consumption.
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subsequent performance improvements might occur. However,
several studies reported no differences or even reductions (Byrne
et al., 2011) in core temperature, although exercise intensity was
higher or exercise duration prolonged (Lee et al., 2008b; Burdon
et al., 2010; Schulze et al., 2015; Takeshima et al., 2017) after
internal cooling. This finding might be explained by the fact that
athletes were able to perform at higher exercise intensity when
applying internal cooling. Therefore, internal heat production
might be greater, affecting physiological and perceptional
outcomes. Since we chose to limit our analysis of physiological
and perceptional outcomes to measurements taken at the end of
the exercise, our results might be diluted by differences in exercise
intensities or duration. We can conclude that studies showing no
differences in end-exercise physiological outcomes with higher
exercise intensity or duration support the positive effects of the
internal cooling intervention on physiological parameters. In
contrast, findings of increased core temperature at exhaustion
following internal physical cooling are likely due to
higher intensity or longer exercise duration in the trial (Siegel
et al., 2012; Nakamura et al., 2020). When interpreting the impact
of internal cooling on physiological or perceptional outcomes, it
is therefore always crucial to take into account the time
course and their relationship with exercise intensity and
performance.

In contrast to previous systematic reviews (Ruddock et al., 2017;
Choo et al., 2018), we observed a significant reduction in whole-body
sweat rate following internal cooling. According to Morris et al. (Morris
et al., 2016), human abdominal thermoreceptors detect intra-abdominal
temperature changes, and due to their sufficient integration within the
central nervous system, they can further elicit thermoeffector responses
at the skin surface. A reduction of whole-body sweat rate and further
evaporative heat loss from the skin might result in a lower, rather than
greater, net heat loss and subsequently a greater heat storage during
exercise (Morris et al., 2016). Therefore, the authors recommend to
ingest beverages of any temperature, but not ice-cold drinks, during
competition in hot and dry environments, where evaporative heat loss
plays a greater role in total heat dissipation (Morris et al., 2016). On the
other side, a lower core temperature likely reduces the sweat rate
necessary for cooling (Montain et al., 1995). A lower sweat rate
might further reduce the risk of dehydration. Since performance
impairments might occur with sweat loss rates >2–4% of body mass
(Thomas et al., 2016), the performance improvements of internal cooling
might also be partially explained by lower sweat loss.

In the present study, we found only a borderline significant
reduction in heart rate following internal cooling. These results
concur with previous systematic reviews, which reported no internal
cooling effect on heart rate (Bongers et al., 2015; Ruddock et al.,
2017; Choo et al., 2018). As for other physiological and perceptional

FIGURE 11
Meta-analysis of standardized mean difference in thermal sensation with 95% CI between internal cooling and control. 1 Studies with significant
positive performance effects of internal cooling. 2 Studies with no performance effects of internal cooling. F, female; GXT, graded exercise test; HI, heat
index; INT, intermittent exercise; M, male; PPO, peak power output; RH, relative humidity; RPE, rate of perceived exertion; SS, steady-state exercise;
Temp, ambient temperature; TT, time trial; TTE, time to exhaustion; VO2max, maximumoxygen consumption; VO2peak, peak oxygen consumption.
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outcomes, this discrepancy might be explained by our inclusion of
data collected at the end of the exercise only. Further, our results do
not imply there were no positive effects of internal cooling on skin

blood flow or stroke volume, as heart rate in this context is only an
index of these variables (Ruddock et al., 2017). Since, in the present
study, we did not include skin blood flow, an essential factor for

FIGURE 12
Meta-analysis of standardized mean difference in thermal comfort with 95% CI between internal cooling and control. 1 Studies with significant
positive performance effects of internal cooling. 2 Studies with no performance effects of internal cooling. F, female; HI, heat index; INT, intermittent
exercise; M,male; RH, relative humidity; RPE, rate of perceived exertion; SS, steady-state exercise; Temp, ambient temperature; TT, time trial; TTE, time to
exhaustion; VO2max, maximum oxygen consumption.

FIGURE 13
Meta-regression analyses exploring potential heterogenity of heart rate as a result of (A) dose, (B) exercise duration; and skin temperature as a result
of (C) dose, (D) exercise duration. The bubbles are drawn with sizes proportional to the weight of individual studies. The solid line represents linear
predicitions for the effect size while the curved lines represent lower and upper 95% CIs.
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thermoregulation, as an outcome, our analysis does not provide
conclusive evidence about the underlying physiological mechanisms
related to reductions in sweat and heart rate.

Physical cooling seems more effective than perceptional cooling
in improving physiological parameters and physical performance
when comparing cooling strategies. In agreement with another
meta-analysis (Keringer et al., 2020), we found no effects of
perceptional cooling on physiological outcomes, as menthol is a
non-thermal cooling stimulus that acts on thermoreceptors,
inducing sensations of coolness without physical reductions in
body temperature (Watson et al., 1978). We further found no
effects of menthol cooling on performance, which is in line with
two previous (Douzi et al., 2019; Keringer et al., 2020) but in contrast
with one meta-analysis (Jeffries and Waldron, 2019). The positive
performance effects of perceptional cooling reported in some studies
may probably be due to previously reported changes in perceptional
outcomes (Jeffries and Waldron, 2019; Keringer et al., 2020), which
we were also unable to demonstrate in our analysis. These
perceptional effects are likely caused by an activation of cold
sensors, leading to reduced thermal sensation and physiological
reactions similar to physical cooling (Zheng, 2013).

The time point of application might be an essential factor in
evaluating the efficacy of internal cooling. We found that cooling
before and during exercise significantly reduces core temperature,
which can be explained by the continuous facilitation of heat storage
capacity and extended exercise duration in the heat (Siegel and
Laursen, 2012). Our finding that pre- or mid-physical cooling did
not reduce core temperature might be explained by the
aforementioned limitation to outcome data recorded only at the
end of the exercise. However, it is also possible that the effects of pre-
cooling might already disappear throughout the exercise. The time
point of cooling also impacted effects on perceived exertion, which
was reduced only for mid-exercise cooling. Further, physical cooling
during exercise seems more effective in improving aerobic
performance, whereas ingestion before exercise may be more
beneficial to increase aerobic capacity. Taken together, the most
benefits are likely to occur when cooling before and during exercise.

Although the benefits of internal cooling on physical performance
have been demonstrated in several studies and were confirmed in the
present analysis, the optimal dose and time point of ingestion remain
unclear. Usually, a total dose of ~500–700 mL of ice/cold-water (~7.5 g ·
kg-1), divided into smaller amounts (~1.25 g · kg-1 every 5 min until
reaching the total dose), is recommended to offer greater cooling and
better tolerance (Naito et al., 2017). In the present analysis, total doses
ranged from 1.25–30 g kg-1, and positive performance effects have been
reported even in studies at the lower end of the spectrum (4.0–6.8 g kg-
1) (Ihsan et al., 2010; Burdon et al., 2013; Nakamura et al., 2020). Our
meta-regression failed to confirm the previously reported dose-
response effect of physical cooling on performance (Zhang, 2019),
as the relationship between dose and improved time trial performance
SMD was only borderline significant. Regardless, the study with the
largest dose (~21 g · kg-1) had the greatest positive effect on time trial
performance (Burdon et al., 2013), also indicating that even with higher
doses, the positive effect of cooling may outmatch possibly negative
effects of weight gain due to increased fluid intake. However, athletes
should always consider that overdrinking increases the risk for
hyponatremia, causing several health and performance impairments
(Thomas et al., 2016). Ingestion of cold drinks might also increase

voluntary fluid consumption during exercise in the heat (Mündel et al.,
2006). A greater volume of cold fluid might further act as a heat sink,
thereby reducing heat stress’s effects and possibly increasing the time
needed to reach an exercise-limiting core temperature. Furthermore,
higher voluntary fluid ingestion might reduce the risk of dehydration
and might have a beneficial impact on physical performance (Thomas
et al., 2016). In conclusion, further studies are needed to determine the
dose-response relationship with performance and what the minimum
and maximum doses for performance improvements are.

Our results support previous findings (Zhang, 2019) that physical
cooling improves performance independent of environmental
conditions. These results indicate that internal cooling might already
be effective in neutral-warm environments (20°C–30°C). Furthermore,
our results show that physical cooling might improve aerobic
performance independent of the exercise duration. Our results
imply that even athletes exercising with high intensity and short
duration might benefit from internal physical cooling.

Considering that most studies showed no beneficial effect of
internal perceptional cooling on core and skin temperature while
exercise intensity is increased, one might speculate that perceptional
cooling could increase the risk of heat-related illness and non-desirable
cardiovascular events (Gillis et al., 2010; Barwood et al., 2020).
However, other authors claim that internal perceptional cooling
with menthol is an effective and safe method to improve
performance without adverse effects (Keringer et al., 2020). Menthol
has toxic properties, and an acceptable daily intake value of 0–4 mg kg-1

body mass was allocated (World Health Organization, 2019).
According to the FAO/WHO Expert Committee on Food Additives
the highest estimated dietary exposure of menthol is ~51 mg d-1,
estimated by the maximized survey-derived intake (MSDI) method
(World Health Organization, 2019). When menthol is used as a
flavoring agent (as in mouth rinsing) at current intake levels, no
safety concerns are raised (World Health Organization, 2019;
Barwood et al., 2020). Therefore, the safety of internal menthol
application, including dosage, likely depends on whether the
substance enters the human body or not. Athletes wishing to use
menthol cooling should be familiar with safe intake protocols, which
should bewell-practiced prior to competitive use (Barwood et al., 2020).
However, the lack of beneficial effects on performance and the risk of
adverse side effects (low, but possible) imply that menthol mouth
rinsing should not be applied until further evidence is available.

4.1 Strengths and limitations

To our knowledge, this is the first systematic review integrating
the effects of various internal cooling applications on performance
as well as physiological and perceptional outcomes while exercising
in the heat. However, we acknowledge several limitations. For
example, to maximize the standardization of our data, we limited
most outcomes to the last time point of reported data (i.e., at the end
of the exercise). And while exercise intensity might be highest at this
time point, we may have omitted effects during earlier stages of
exercise. However, we considered end-exercise outcomes integrating
data across the intervention period as most relevant for athletic
performance. Unfortunately, not all studies reported data suitable
for inclusion in our meta-analysis. Although we contacted the
authors to receive further data for the meta-analysis and had a
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relatively high response, numerous data were unavailable, and the
reporting bias in most studies was considered high.

Furthermore, most studies did not blind their interventions,
leading to an increased risk for performance bias, although we
acknowledge that conducting double-blind experiments involving
cooling is challenging, if not impossible. Most of the included studies
were performed in a laboratory setting, with male endurance-trained
subjects and no adequate placebo condition. Future studies with
adequate experimental design and blinding are required to assess the
effects of menthol cooling in field-based sporting contexts, female
and elite athletes, and sports other than endurance activities.

Finally, although the number of studies investigating perceptional
cooling was small, it was well above what is considered the minimum
number for meta-analysis, according to the Cochrane Consumers and
Communication Review Group (Ryan, 2016).

5 Conclusion

Our research highlights that internal cooling has the potential to
improve endurance performance and selected physiological and
perceptional parameters. However, its effectiveness depends on
the method used (i.e., physical vs. perceptional cooling) as well as
the time of administration. Our results suggest that physical cooling
is more effective for performance improvements than perceptional
cooling, although the number of studies assessing the effects of
perceptional cooling was low. Further studies are needed to
formulate safe intake recommendations and evaluate possible side
effects of internal cooling. In addition, more studies are required to
assess the impact of internal cooling on exercise performance rather
than exercise capacity. Future research should confirm the
laboratory-based results in the field setting and involve a more
inclusive study demographic with regard to sex and exercise type.
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