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Purpose: Aortic maximal rate of systolic distention (MRSD) is a prognosis factor of
ascending aorta dilatation with magnetic resonance imaging. Its calculation
requires precise continuous tracking of the aortic diameter over the cardiac
cycle, which is not feasible by focused ultrasound. We aimed to develop an
automatic aortic acquisition using ultrafast ultrasound imaging (UUI) to provide
access to the aortic MRSD.

Methods: A phased array probe and developed sequences at 2000 frames/s were
used. A created interface automatically tracked the anterior and posterior aortic
walls over the cardiac cycle. Tissue Doppler allowed a precise estimation of the
walls’movements. MRSDwas themaximumderivative of the aortic diameter curve
over time. To assess its feasibility, 34 patients with bicuspid aortic valve (BAV) and
31 controls were consecutively included to evaluate the BAV-associated
aortopathy at the sinus of Valsalva, the tubular ascending aorta, and the
aortic arch.

Results: UUI acquisitions and the dedicated interface allow tracking of the aortic
diameter and calculating theMRSD for the BAV patients and controls (mean age of
34 vs. 43 years, p= 0.120). A trend toward lower deformation in the different aortic
segments was observed, as expected. Still, only the MRSD with UUI was
significantly different at the sinus of Valsalva in this small series: (0.61 .103.s–1

[0.37–0.72] for BAV patients vs. 0.92 .103.s–1 [0.72–1.02] for controls, p = 0.025).

Conclusion: Aortic deformation evaluated with UUI deserves attention with a
simple and automated measurement technique that could assess the segmental
aortic injury associated with BAV.
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1 Introduction

Bicuspid aortic valve (BAV) associated aortopathy refers to all
structural changes in the ascending thoracic aorta, resulting in a
higher risk of aortic aneurysm and acute complications, such as
aortic dissection or aneurysm rupture. BAV is the most common
cardiac malformation, estimated at 1% of the general population,
and the risk of developing an aneurysm of the ascending aorta is
high in this specific population (Braverman, 2011; Michelena et al.,
2021). Clinical management of the BAV-associated aortopathy is
still difficult, with an uncertain risk of aortic dilatation progression,
although new imaging markers of progression are emerging. Using
new biomechanical markers, such as aortic stiffness and
hemodynamic variations of the aortic flow, may be useful as
prognostic markers (Nistri et al., 2008; Tierney et al., 2018;
Goudot, et al., 2019a; Longobardo et al., 2021; Michelena, 2022).
In the case of BAV, there is indeed an early and segmental aortic
remodeling, resulting in a progressive disappearance of the elastic
plates and an increase in the collagen content of the extracellular
matrix (Goudot, et al., 2019b). The evaluation of aortic deformation
is complex with conventional ultrasound because of the difficulty of
accurately following the aortic walls and visualizing an extended
aortic portion within the same picture. Magnetic resonance imaging
(MRI) can improve aortic wall tracking, even though with a low
frame rate, and Aquaro et al. proposed new prognostic markers for
aortic dilation, such as the Maximal Rate of Systolic Distention
(MRSD) of the ascending aorta, derived from the aortic diameter
variation curve over the cardiac cycle (Aquaro et al., 2013). This
marker appears to be better able to identify early stiffness
abnormalities and to predict subsequent aortic dilatation (Aquaro
et al., 2017). Ultrasound imaging also can finely track the aortic wall,
with a much higher frame rate, and thus lead to the development of
more sensitive markers than B-mode diameter variation. Through
the development of Ultrafast Ultrasound Imaging (UUI), a high
image rate makes it possible to track the ultrasound wall in ultrafast
tissue Doppler (Tanter et al., 2002; Papadacci et al., 2019). Further
use of a phased-array probe now allows access to the wall of the
ascending aorta. Translating such markers usable in
echocardiography would allow easy access to these markers
during follow-up echocardiography, regularly performed in the
case of BAV, because it allows a quick, inexpensive, and non-
irradiating follow-up of the functions of the left ventricle, the
aortic valve, and the ascending aorta. In this work, our objective
was to develop an automated aortic deformation collection in UUI
and apply it to a series of patients with BAV compared to normal
first-degree relatives.

2 Methods

2.1 Population

This is a cross-sectional study of 65 consecutive patients
undergoing dedicated consultation between January 2019 and
July 2020 at the European hospital Georges-Pompidou, a
reference center for BAV disease. First-degree healthy
relatives, i.e., with a tricuspid aortic valve, also screened for
BAV, were used as controls. The ethical committee approved

this study, and patients signed a written informed consent form.
Confirmation of BAV was retained in the case of the short-axis
view of the aortic valve with the presence of only two functional
cusps.

2.2 Transthoracic cardiac ultrasound

Transthoracic echocardiography was performed using
commercially available equipment (IU22®; S5-1, 1–5 MHz,
80 elements probe; Philips Medical Systems©, Andover,
MA). Analysis of the aortic valve and the ascending aorta
was systematically performed following a dedicated protocol
previously published (Goudot, et al., 2019a). The thoracic
aorta was assessed at three segments of interest, each time
in a longitudinal section with registration and alignment using
B mode: The sinus of Valsalva, the initial portion of the
ascending aorta, following the aortic valve, using
parasternal long-axis view. The diameter measurement was
performed from sinus base to sinus base (maximum diameter);
then the ascending tubular aorta, more than 1 cm from the
sinotubular junction, corresponding to a zone of parallel aortic
walls; And the initial portion of the aortic arch, this time in
supra-sternal view.

2.3 Aortic ultrafast ultrasound imaging

Evaluation of the ascending aorta was performed using an
Aixplorer© device (Supersonic Imagine©. Aix-en-Provence.
France), with a phased-array probe (2.75 MHz canter
frequency. 96 elements. SuperSonic Imagine©). After
alignment of the ascending aorta according to the sections
specified above, the acquisitions were performed using plane
waves with five angles (−10; −5; 0; 5; 10), and a frame rate of
2.000 s−1. The acquisition’s duration was 507 ms and was
triggered at the start of the QRS. The study protocol is
synthesized in Figure 1.

Compared to carotid arterial wall imaging, signal analysis of
the aortic wall is much more complex due to the significant
movement of the aorta during the cardiac cycle. For this reason,
we have implemented automated monitoring of the aortic wall.
From the reconstructed B-mode ultrasound image (Figure 2A),
we delineate the axis of the aorta to obtain a TM (time-
movement) representation of the aortic walls over time
(Figure 2B), like the TM-anatomical mode proposed in
conventional imaging, to overcome the orientation of the
probe (Carerj et al., 2003). From the resulting image, the walls
could then be automatically delineated with the possibility of
manual correction. Due to the inaccuracy of the TM-anatomical
mode for evaluating fine variations in aortic diameter, we used
this sequence only for wall location. From the anterior and
posterior wall position coordinates, the tissue Doppler data
contained in the same UUI acquisition were extracted and
allowed the calculation of the velocity of each aortic wall. The
variation in aortic diameter was obtained by calculating the
difference in tissue velocity between the two walls over time
(Figure 3). The presented aortic diameters are measured in
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diastole (minimal diameter, mm). The aortic strain is the
variation of the aortic diameter during the cardiac cycle (%)
according to the formula (Dmax–Dmin)/Dmin with Dmax the
maximum aortic systolic diameter (mm), Dmin, the minimal
diastolic diameter (mm). Aortic wall distensibility (mmHg-1) was
measured as 2(Dmax–Dmin)/[Dminx(SBP–DBP)] with SBP the
systolic blood pressure (mmHg), and DBP the diastolic blood
pressure (mmHg). MRSD and MRDR are, respectively, positive
and negative peaks in the derivative of the aortic diameter curve
over the cardiac cycle, normalized as a percentage of the diastolic
aortic diameter, and are presented in s-1.

2.4 Statistical analysis

Continuous variables are presented by the median [25th–75th

percentiles]. Because of the small number of patients, the lack of
compliance with the conditions for testing for comparability of
means (normal distribution and homoscedasticity of variances), a
Wilcoxon test was used for paired data comparisons. The
correlation was performed using a Spearman rank test. The
interclass correlation coefficient (ICC) assessed the reliability of VI.
Statistical significance was considered at the 0.05 level. Analyses were
performed using R® software (R-Studio®, Boston, MA, United States).

FIGURE 1
Technical methodology overview. A plane wave sequence with five different angles have been adapted for a phased array probe (1–5 MHz
frequency). Starting from a conventional B-mode ultrasound allowing the placement of the probe in front of the aortic segment to be imaged (A), the
plane’s waves’ acquisition was launched at the foot of the QRS. The aortic Diameter is then recorded with the calculation of the Maximal Rate of Systolic
Distension (MRSD) and Maximal Rate of Diastolic MRDR (B). This procedure was repeated on three segments of the aorta (C): sinus of Valsalva,
tubular ascending aorta, and aortic arch; in 34 patients with bicuspid aortic valve (BAV) and 31 healthy relatives (Controls).
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3 Results

3.1 Population

Thirty-four patients with BAV and 31 controls were included
prospectively. Patient characteristics are described in Table 1. As
anticipated, greater aortic dilatation was observed, particularly at
the level of the sinus of Valsalva, the only significant difference
between the two groups (30.6 mm in case of BAV [26.4–33.5] vs.
25.5 mm [23.7–28.1], p = 0.048). The values of systolic and
diastolic blood pressure essential for the interpretation of
arterial stiffness indicators were not significantly different
between the groups.

3.2 Semi-automatic measurement of aortic
deformation by UUI

Intraclass ICC was good at 0.76. Interclass was moderate at 0.73.
In the case of repeated analysis over three acquisitions (3 cardiac
cycles), the inter-observer reproducibility increased with an ICC of
0.86, thus allowing good reproducibility.

3.3 Aortic deformation between patients
with BAV and controls

Diameter measurement results and aortic deformation
parameters are presented in Table 2. Of the small number
evaluated, there was no significant difference in diameter at each
segment of the ascending aorta. i.e., at the sinus of Valsalva, the
tubular ascending aorta, and the aortic arch. We found a smaller
variation in aortic diameter (aortic strain) at each aortic segment,
even though without significant difference between the two groups.
MRSD andMRDR values followed the same trend, with consistently
lower values in BAV patients. The difference inMRSD at the sinus of
Valsalva was the largest, with a significant difference between the
two groups (0.61 .103 s-1 [0.37–0.72] for BAV patients vs. 0.92 .103 s-1

[0.72–1.02] for controls. p = 0.025).

4 Discussion

To our knowledge, this work is the first study to evaluate the
ascending aorta by transthoracic ultrafast ultrasound imaging. In this
work, we demonstrated the feasibility of UUI using a phased array

FIGURE 2
Aortic distensibility measurement method: delimitation of the area of interest of the aorta on the B-mode image. Here at the level of the sinus of
Valsalva (A). Automated wall delineation from the anatomic M-mode (TM image) of the delineated segment (B). Collecting tissue velocity values (Tissue
Doppler imaging) for each aortic wall over time (time) (C). Determination of the aortic diameter variation curve over time (D).
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probe for reliable measurements of aortic deformation. By developing
an automated wall-tracking system, we have created a rapid
measurement of circumferential stiffness parameters in a single
cardiac cycle. From a pilot study using a small series of patients
with BAV, we have found a segmental increase of stiffness
preferentially at the level of the sinus of Valsalva by using the
MRSD measurement, which is not available in conventional
ultrasound. This technique represents a significant advance in aortic
wall imaging as the extraction of tissue Doppler data allows much
greater accuracy than simple B-mode signal tracking of the arterial wall.
This technique has already demonstrated robustness in arterial wall
imaging with a linear probe. The use of a phased array probe
represented an additional difficulty. Still, it was mandatory, given the
need for positioning the probe between two ribs and the depth of the
aorta in transthoracic imaging. By obtaining the diameter variation

curve over time, we were thus able to get MRSD values at each segment
of the ascending aorta. This method could therefore be easily added to
the follow-up of BAV patients. in whom an ultrasound evaluation of
aortic diameters is already recommended (Erbel et al., 2014). While
there are few studies on the prognostic role of these indicators of aortic
stiffness, Aquaro et al. have demonstrated the value of measuring
MRSD in the ascending aorta by MRI in assessing the risk of
subsequent aortic dilatation (Aquaro et al., 2017). The evaluation of
similar morphological markers by transthoracic ultrasound has the
advantage of a simple and easily accessible measurement, which can be
easily integrated into the follow-up of patients with BAV or with an
ascending thoracic aortic aneurysm usually performed by
echocardiography and until now limited to the measurement of
aortic diameters (Erbel et al., 2014). If evaluating an aortic
deformation marker such as the MRSD allows a rapid clinical

FIGURE 3
Schematic positioning of the echocardiography probe in front of each segment of the ascending thoracic aorta: sinus of Valsalva, ascending tubular
aorta, and aortic arch. At the level of each segment is represented an example of tissue Doppler collection, with the representation of the diameter curve
(blue curve) with the maximum positive (MRSD, yellow) and maximum negative (MRDR, red) slopes.
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translation, this methodology must be placed in perspective by the
complexity of the hemodynamic variations in the ascending aorta and
the blood flow-aortic wall interactions. Aortic wall alterations are
indeed at least partly related to the flow constraints applied
(Bollache et al., 2018). The use of wall shear stress
measurement, as shown in 4D flow MRI (Guala et al., 2022;
Kiema et al., 2022; Soulat et al., 2022; Qin et al., 2023), is thus
particularly useful, although yet to be available with
echocardiography. An appealing prospect is the use of
ultrasound innovations in the field flow mapping to combine
aortic wall markers, such as stiffness, and wall shear stress, to
appreciate better the causative phenomena of aortic remodeling
and aneurysmal progression (Cai et al., 2019; Kainuma et al.,
2022).

4.1 Limitation

All the recovered data were processed remotely because the
evaluation of distensibility parameters is unavailable on the
commercial UUI ultrasound device. An automated method for
real-time collecting stiffness parameters could nevertheless be
quickly implemented. The objective of this work was to evaluate
the feasibility of UUI aortic deformation measurements and not
their prognostic role. Caution should be observed when
interpreting statistical comparisons in our cohort. Because of
the small number of patients in this initial exploratory work, only
non-significant trends in distensibility differences were found for
the different aortic segments. Data from the literature converge
towards an increase in the global stiffness of the ascending aorta

TABLE 1 Characteristics of BAV patients and controls. BAV: bicuspid aortic valve; DBP: diastolic blood pressure; SBP: systolic blood pressure; PP: pulse pressure
(SBP–DBP). p-values are obtained from the Mann-Whitney test. Data in bold correspond to statistically significant comparisons (P < 0.05).

BAV patients Controls p-value

N = 34 N = 31

Age (Year) 34 [25–55] 43 [26–55] 0.120

Men (%) 24 (70,6) 23 (74,2) 0.750

Sinus of Valsalva diameter (mm) 30.6 [26.4–33.5] 25.5 [23.7–28.1] 0.048

Tubular ascending diameter (mm) 31.6 [27.9–35.2] 27.5 [24.6–30.2] 0.060

Aortic arch diameter (mm) 25.9 [21.7–29.5] 27. 0 [23.9–29.8] 0.438

SBP (mmHg) 121 [110–130] 118 [111–120] 0.409

DBP (mmHg) 69.9 [63.5–76.2] 61.5 [59.0–69.0] 0.089

PP (mmHg) 49 [43–58] 51 [50–60] 0.126

TABLE 2 Aortic parameters obtained by ultrafast ultrasound imaging for BAV patients and controls. Comparisons are made using a Mann-Whitney test. BAV:
bicuspid aortic valve; MRSD: maximal rate of systolic distension. A Mann-Whitney test obtains the p-values. Data in bold correspond to statistically significant
comparisons (P < 0.05).

Aortic level Aortic deformation parameters BAV patients Controls p-value

N = 34 N = 31

Sinus of Valsalva Strain (%) 8.2 [7.01–10.12] 9.67 [6.9–11.5] 0.472

Distensibility (10−3.mmHg–1) 3.49 [2.78–4.83] 4.84 [3.20–7.32] 0.275

MRSD (103.s–1) 0.61 [0.37–0.72] 0.92 [0.71–1.02] 0.025

MRDR (103.s–1) -0.62 [-0.74 to -0.50] -0.61 [-0.95 to -0.50] 0.493

Tubular ascending aorta Strain (%) 7.9 [7.0–10.0] 9.0 [8.0–12.5] 0.366

Distensibility (10-3.mmHg–1) 1.61 [1.32–2.64] 1.86 [1.22–2.00] 0.502

MRSD (103.s–1) 0.97 [0.75–1.07] 1.05 [0.87–1.18] 0.560

MRDR (103.s–1) -0.70 [-0.96 to -0.55] -0.72 [-0.90 to -0.58] 0.864

Aortic arch Strain (%) 7.0 [4.5–10.0] 7.2 [4.9–8.9] 0.870

Distensibility (10-3.mmHg–1) 1.23 [0.63–1.66] 1.36 [0.84–2.42] 0.483

MRSD (103.s–1) 0.99 [0.80–1.05] 0.91 [0.79–1.13] 0.734

MRDR (103.s–1) -0.54 [-0.65–0.36] -0.75 [-0.94 to -0.55] 0.029
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in the case of BAV, demonstrated in a larger cohort of patients
(Nistri et al., 2008). We cannot appreciate all the heterogeneity of
BAV cases; in particular, the influence of the anatomy of the
aortic valve is not possible here because the great majority of
cases with 1LR BAV, according to the Sievers classification
(Sievers and Claudia, 2007). We did not perform longitudinal
follow-ups of patients, preventing any conclusion on the
potential prognostic role of aortic deformation or stiffness
indicators. This evaluation is part of a subsequent study,
currently being conducted by multimodal imaging, including
two evaluations 2 years apart by MRI, conventional
ultrasound, and UUI (NCT03474159).

5 Conclusion

Ultrafast ultrasound imaging allows simultaneous automated
evaluation of aortic deformation parameters over the cardiac cycle.
The application of this measurement technique on the ascending
aorta appears to be a simple, easily accessible, and reliable technique
for assessing deformation as a potential prognostic tool for
subsequent dilatation.
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