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Metabolic defects increase the risk of skeletal muscle diseases, and muscle
impairment might worsen metabolic disruption, leading to a vicious cycle.
Both brown adipose tissue (BAT) and skeletal muscle play important roles in
non-shivering thermogenesis to regulate energy homeostasis. BAT regulates body
temperature, systemic metabolism, and seretion of batokines that have positive or
negative impacts on skeletal muscle. Conversely, muscle can secrete myokines
that regulate BAT function. This review explained the crosstalk between BAT and
skeletal muscle, and then discussed the batokines and highlighted their impact on
skeletal muscle under physiological conditions. BAT is now considered a potential
therapeutic target for obesity and diabetes treatment. Moreover, manipulation of
BAT may be an attractive approach for the treatment of muscle weakness by
correcting metabolic deficits. Therefore, exploring BAT as a potential treatment
for sarcopenia could be a promising avenue for future research.

KEYWORDS

metabolic defects, thermogenesis, brown adipose tissue, insulin resistance, skeletal
muscle

1 Introduction

Adipose tissue is a vital organ that plays a crutial role in energy metabolism, insulin
sensitivity, and energy balance of the body. It consists of two main types: white fat tissue
(WAT) and brown fat tissue (BAT). Additionally, skeletal muscle is an endocrine organ that
can influence other tissues in the body. While numerous studies have explored the functions
of BAT and skeletal muscle in maintaining energy homeostasis, the exact mechanism of the
direct crosstalk between BAT and muscle dysfunction remains unclear (Bal et al., 2017).

The interscapular depot may be a prominent site of BAT in rodents, playing a crucial role
in systemic energyhomeostasis through thermogenesis (Betz and Enerback, 2018). Brown
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and beige adipocytes are some of the major sites to catabolize stored
energy to generate heat by non-shivering thermogenesis (NST)
through uncoupling protein-1 (UCP-1) (Ikeda and Yamada,
2020; Roesler and Kazak, 2020). By taking up excess glucose and
lipids to generate heat, activation of BAT can prevent obesity and
metabolic abnormalities (Liu et al., 2013a; Yuan et al., 2016; O’Mara
et al., 2020; Orava et al., 2011). Furthermore, BAT is a potential
endocrine organ, capable of regulating metabolism in distal organs,
through secreting of factors in an autocrine/paracrine manner. For
instance, BAT can secret insulin, adiponectin, and leptin, which are
beneficial for improve muscle mass and preventing muscle
weakness.

In this review, we analyze the metabolic mechanism underlying
the crosstalk between BAT and skeletal muscle. BAT also functions
as a complex and highly dynamic endocrine organ, by releasing
signalling molecules, including “batokines,” and bioactive lipids
known as “lipokines,” that may positively or negatively sffect
signaling in skeletal muscle (Villarroya et al., 2013; Villarroya
et al., 2019). Consequenntly, targeting BAT could be a promising
approach for treating metabolic disease like obesity and sarcopenia,
opening uo a new avenue for further exploration.

2 The metabolic role of brown adipose
tissue and skeletal muscle

BAT and skeletal muscle are both crutial for thermogenesis.
While BAT was first identified as a thermogenic organ in the 1960s
(Pan and Chen, 2021), it was commonly believed that BAT only
existed in newborns in humans, with low levels present in adults and
no apparent physiological significance. However, recent advances in
positron emission computed tomography and/or X-ray tomography
(18F-FDG-PET/CT) scanning, combined with molecular
identification of localized tissue sampling, have shown that
functional BAT does exist in adult humans, although it does
decline with age. These findings have challenged the traditional
view of BAT in human physiology (Cypess et al., 2009; Virtanen
et al., 2009). Moreover, adipocytes in BAT contain multilocular
smaller lipid roplets to storage energy, which are also rich
mitochondria contains UCP-1. UCP-1 can dissipate the proton
gradient of mitochondria and generate heat to maintain
temperature of the core body (Pani et al., 2022).

Recent studies have shown that myocytes and brown adipocytes
are both derived from mesenchymal stem cells and share similar
precursor transcriptomes (Bal et al., 2016; Bal et al., 2017; Scheele
and Wolfrum, 2020; Pan and Chen, 2021; Sahu et al., 2023), and
both BAT and skeletal muscle use energy substrates including fat
and glucose, as fuel to generate heat (Pani et al., 2022). From a
metabolic perspective, the thermogenesis of BAT and skeletal
muscle is in a dynamic balance. The shivering thermogenesis of
skeletal muscle (e.g., skeletal muscular contraction) is responsible for
heat generation in humans (Betz and Enerback, 2018), thus it is
related to locomotion (Pani et al., 2022). In addition, both BAT and
skeletal muscle are important sites of NST in mammals and rodents
(Bal et al., 2016; Bal et al., 2017). It is assumed that the presence of
active BATmightminimize the importance of muscle based onNST.
Skeletal muscle was proved to be important during cold adaptation
through research using birds, which lacked BAT (Bal et al., 2016).

Furthermore, it is reported that physical exercise may promote fat
browning via myokines, leading to thermogenesis of BAT
(Rodriguez et al., 2020).

In specific, mitochondrial uncoupling is a process during which
substrate oxidation can be uncoupled from ATP production, resulting
in heat loss directly. This process is considered a promising target for
improving energy expenditure of the whole body (Conley et al., 2007).
This is primarily because of the high oxidative capacity of muscle (van
den Berg et al., 2011). The mitochondrial protein UCP1 provides the
primary molecular driving force for BAT thermogenic power (Virtanen
et al., 2009), as amarker of brown adipocytes (Betz and Enerback, 2018).
In rodents, thermogenic activity of brown adipocytes is based on the
activation of β3 adrenergic receptors (β3ARs) by norepinephrine
produced by axons projecting from the hypothalamus. Produced
heat spreads quickly throughout the body from the well-vascularized
BAT. It is worth noting that controversy does exist, with regard to
whether β3AR receptors are the main effectors of BAT stimulation in
humans. Riis-Vestergaard et al. (2020) demonstrated β1AR to be the
prime receptor responsible for adrenergic regulation of human BAT
activity. Heat production is a consequence of fatty acid oxidation that is
uncoupled from ATP production by UCP1 on the inner mitochondrial
membrane. Energy is lost directly in the form of heat without ATP
generation. Thus, fat is consumed by uncoupling fatty acid oxidation
from ATP production, generating heat (Cannon and Nedergaard,
2004). Muscle fibers express UCP2 and UCP3, which are similar to
UCP1. It is speculated that these proteins can also contribute to NST as
uncoupling proteins, but high-level expression of UCP2 and
UCP3 cannot compensate for the loss of UCP1 in brown adipocytes
in Ucp1−/− mice (Golozoubova et al., 2001; Betz and Enerback, 2018).
Fasting can increase levels of UCP2 and UCP3 in skeletal muscle of
humans and mice, while acute cold exposure might decrease the
UCP3 expression in human muscle (Millet et al., 1997; Schrauwen
et al., 2002). It seems that UCP2 and UCP3 can facilitate lipid
metabolism and metabolic adaptation instead of uncoupling activity.
Interestingly, skeletal muscle can also promote cold-induced
thermogenesis through mechanisms unrelated to uncoupling
proteins and independent of shivering through calcium cycling by
SERCA (Bal et al., 2012). These findings suggest that both NST in
skeletal muscle and BAT play an essential role in thermogenesis and
energy expenditure, with each complementing the other.

A study proposed that overexpression of UCP1 in mice might
increase skeletal muscle mitochondrial uncoupling, energy
expenditure of the whole body, and prevent glucose intolerance
and high-fat diet induced obesity (Choi et al., 2007). Similarly,
overexpression of UCP3 can prevent insulin resistance and high-fat
diet induced obesity, which is likely due to non-regulated and non-
physiological mitochondrial uncoupling (MacLellan et al., 2005;
Choi et al., 2007). It has been have shown that BAT status and
increased BAT activity in humans may improve metabolic diseases
related to obesity, especially visceral adiposity (Wibmer et al., 2021).
Moreover, exposing healthy adults to cold to stimulate BAT activity
has been found to improve glucose metabolism and insulin
sensitivity (Orava et al., 2011). These findings suggest that BAT
has great potential as a therapeutic target for obesity and diabetes
treatment. In conclusion, both BAT and skeletal muscle play
important roles in energy homeostasis, and utilizing their
thermogenesis mechanism can be a promising strategy for
treating metabolic disease.
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3 How does brown fat thermogenesis
affect muscle?

3.1 BAT, metabolism, and skeletal muscle

The role of muscle in energy regulation and glucose
metabolism is significant. In muscle dysfunction diseases,

glucose uptake is impaired, leading to metabolic dysfunction
and a vicious cycle of aggravation (Eknoyan, 1999; Tournissac
et al., 2021). It is possible that there is a crosstalk between BAT
and skeletal muscle (Figure 1; Table 1). Additionally, stimulation
of BAT activity may be beneficial for treating muscle weakness
and improving glucose metabolism, which will be discussed in
Section 4.

FIGURE 1
Promotion of brown fat tissue (BAT) thermogenesis as a new way to treat sarcopenia. Stimulation of BAT activity might be beneficial for sarcopenia
patients by antagonizing metabolic deficits. BAT can also secrete batokines to regulate the occurrence and development of sarcopenia. Moreover,
muscle-derived myokines induced by exercise can stimulate browning of white adipose tissue and delay the muscle dysfunction.

TABLE 1 The mechanistic crosstalk between BAT and muscle.

Hormones Sources Effects on muscle/BAT Positive or
negative

Insulin BAT Promoting glucose uptake, muscle mass↑ Positive

Adiponectin BAT Combining with T-cadherin to promote muscle regeneration; increase the use of fatty acid and glucose
resources; protects against the degradation of muscle protein.

Positive

Leptin BAT Increase myonectin and myogenin transcript levels; stimulate myocyte proliferation; reduce the mRNA
levels of cytokines correlated with muscle wasting.

Positive

FGF21 BAT/skeletal
muscle

Increase energy expenditure, muscle strength↓; promoting WAT browing Negative/positive

GDF15 BAT Decrease oxidative stress; cause muscle atrophy Negative

Myostatin BAT/skeletal
muscle

Impair exercise capacity; ↓thermogenic capacity of BAT; browning of WAT. Negative

IL-15 skeletal muscle Increase BAT activity and induce browning of WAT; promote the proliferation and differentiation of brown
adipocyte precursor cells.

Positive

BDNF skeletal muscle Increase Ucp1 mRNA level and UCP1 protein expression; enhance thermogenesis. Positive
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3.2 Hormones regulate BAT thermogenesis
and their roles in muscle function

3.2.1 Positive regulators of skeletalmuscle function
In clinical studies, insulin has been used to treat muscle

dysfunction and improve glucose uptake (Jiménez-Osorio et al.,
2016). It binds to the insulin receptor (IR) and phosphorylated
insulin receptor substrate (IRS), activating the downstream
phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)
signaling pathway, which promotes glucose uptake in skeletal
muscle cells (Jiménez-Osorio et al., 2016). Bouchi et al. (2017)
found that patients who received insulin treatment showed
higher skeletal muscle index and muscle mass in their lower
extremities. A longitudinal study showed that insulin therapy
preserved muscle mass but not muscle function as assessed by
hand grip strength, suggesting insulin antagonism in patients
with T2DM (Ferrari et al., 2020). Thus, insulin treatment may
attenuate the progression of sarcopenia in patients with T2DM
(Bouchi et al., 2017). BAT is known to regulate insulin signaling. In a
mouse model of high-fat diet (HFD)-induced obesity, transplanted
BAT significantly attenuated adipose tissue inflammation, reversed
body weight and insulin resistance, and improved overall glucose
tolerance. In contrast, extirpation of the inter-scapular BAT
aggravated obesity, adipose tissue inflammation, and insulin
resistance (Shankar et al., 2019). Moreover, insulin may regulate
BAT activity. Deficiency of the insulin receptor in BAT results in a
decreased thermogenic capacity for BAT and impaired glucose
tolerance (Guerra et al., 2001). In diabetic mice, insulin treatment
increased UCP1 expression in BAT. Maintenance of normal
UCP1 requires both insulin and the sympathetic nervous system,
indicating that insulin regulation of BAT thermogenic function
involves sympathetic activation (Géloën and Trayhurn, 1990).

In summary, there is a link between insulin signaling and BAT
activity. As such, insulin treatment may improve skeletal muscle
index and potentially alleviate sarcopenia through the effects of BAT
activity. However, this hypothesis requires further investigation to
confirm its validity. It is important to note that while insulin has
been shown to increase muscle mass in patients with T2DM, it can
also increases weight gain, which must be taken into consideration
(Sinha et al., 1996; Sallé et al., 2004).

Batokines are factors secreted from metabolically active BAT,
and they might provide support for BAT oxidation and coordinate
BAT activity with systemic metabolism (Villarroya et al., 2017;
Scheele and Wolfrum, 2020).

Adiponectin is an adipokine mainly secreted from white
adipose tissue (Choi et al., 2020). But BAT can also secret
adiponectin, with a high degree of specificity and a multiple
biological functions (Song et al., 2020). Adiponectin has garnered
attention for its beneficial effects on muscles. For instance,
C2C12 myoblast cells treated with globular adiponectin or a
mimetic of globular adiponectin (GTDF) had significantly higher
differentiation and fusion indices than vehicle-treated cells
(Singh et al., 2017) via downregulation of key genes related to
muscle wasting (atrogin-1 and MuRF1) (Singh et al., 2017), and
GTDF could also protect rats against muscle wasting due to
catabolic stimuli (China et al., 2017). Moreover, adiponectin can
increase glucose uptake in muscle cells through mediation of
GLUT4 (Yoon et al., 2006). Adiponectin can enhance the

oxidation of fatty acids and glucose uptake by stimulating
AMPK, contributing to the regulation of glucose and lipid
metabolism and regulating the energy homeostasis of
organisms (Kadowaki and Yamauchi, 2005; Yoon et al., 2006;
Sente et al., 2016; Song et al., 2020). Thus, the therapeutic target
for impaired muscle function might be adiponectin. It was shown
that myoblast survival and apoptosis are inhibited by
adiponectin-driven autophagy, which promotes muscle
differentiation (Gamberi et al., 2016). Similarly, the evidence
suggested that the levels of autophagy-related genes (e.g.,
LC3 and beclin-I) were decreased in skeletal muscle of
adiponectin knockout mice, along with the decreased
myopathic phenotype (Gamberi et al., 2016). In addition, it
has been shown that the activation of adiponectin signaling
may be protective against muscle wasting by combining with
T-cadherin to promote muscle regeneration (Komici et al., 2021).
Adiponectin’s insulin-sensitizing effect on muscleincreases the
use of fatty acid and glucose resources while simultaneously
promoting myogenesis. Furthermore, adiponectin protects
against muscle protein degradation by upregulating the IRS-1
signaling pathway (Priego et al., 2021).

Leptin, an adipokine mainly produced by white adipose tissue
and BAT, as well as the periosteum and placenta (Obradovic
et al., 2021). Skeletal muscle expresses leptin receptors, which can
be upregulated due to disuse atrophy (Hamrick et al., 2010).
Leptin can have beneficial influences on muscle. For instance, in
leptin-deficient ob/ob mice, intraperitoneal administration of
leptin corrected decreased skeletal muscle atrophy and mass
(Sáinz et al., 2009). Leptin administration can also increase
myonectin and myogenin transcript levels, stimulate myocyte
proliferation, and reduce the mRNA levels of cytokines
associatedwith muscle wasting in ob/ob mice, including
MuRF1 and MAFbx (Rodríguez et al., 2015). Moreover, it has
been reported that leptin can increase muscle mass by reducing
the expression of atrophy-associated factors, including MuRF1,
myostatin, and MAFbx, in muscles, indicating that leptin is
significantly related to sarcopenia severity and risk (Li et al.,
2019). It has also been reported that leptin may play an important
role in activating molecular pathways associated with muscle
repair and regeneration. Moreover, leptin can also change the
expression profile significantly in muscle-derived stem cells
(Hamrick et al., 2010). Muscle regeneration may be mediated
by leptin indirectly through inhibiting miR-489, and muscle
satellite cells can be maintained in a quiescent state.
Therefore, leptin is beneficial for improving muscle
regeneration and repair (Priego et al., 2021). Leptin is also
reported to have a thermogenic effect. Leptin stimulates
glucose uptake by BAT, raises BAT temperature (Haque et al.,
1999), and positively regulates UCP1 expression in rodent BAT
(Sarmiento et al., 1997).

BAT is also a source for lipokines, which are a class of lipids that
act as signaling molecules and influences systemic metabolism (Cao
et al., 2008; Liu et al., 2013b; Lynes et al., 2017; Stanford et al., 2018).
12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME) is an
oxylipin, which is released from BAT following cold or exercise,
has been reported to increase fatty acid uptake and oxidation in
skeletal muscle (Stanford et al., 2018; Macêdo et al., 2022). Stanford
et al. (2018) found that an acute bout of exercise increases plasma
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12,13-diHOME levels in both humans and mice. Moreover, exercise
induces the release of 12,13-diHOME from BAT, acting as an
endocrine signal that stimulates fatty acid release for working
skeletal muscle, and a possible role in metabolic regulation
during exercise (Lynes et al., 2017). Both thermogenesis of
muscle and BAT generate heat after exercise. Moreover,
treatment of diet-induced obese mice with 12,13-diHOME
protects against cold challenge and high-fat diet-induced obesity
(Lynes et al., 2017; Shen et al., 2021). These findings suggest that
12,13-diHOME, which is induced by BAT, is involved in metabolic
changes triggered by exercise.

3.2.2 Negative regulators of skeletal muscle
function

FGF21 is a cold-induced endocrine hormone of BAT (Lee et al.,
2014) that is involved in several metabolic conditions, such as weight
loss, decreased body fat, and browning of white adipose tissue, which
lead to increased energy expenditure (Fisher et al., 2012). Serum
FGF21 levels are significantly increased in individuals with T2DM
and obesity, which can be deleterious for sarcopenic individuals with
physical frailty (Zhang et al., 2008; Chen et al., 2011; Xiao et al., 2012).
These contradictory observations suggest that FGF21 may be
compensatory factor during disease. The role of FGF21 in muscle is
similar to serum. For example, the effect of FGF21 on glucose uptake by
myotubes is similar to the effect of insulin (Rosales-Soto et al., 2020),
with upregulated FGF21 expression in skeletal muscle protecting
against diet-induced obesity and insulin resistance (Kim et al., 2013;
Pereira et al., 2017). Others found that greater FGF21 is associated with
reduced handgrip strength (Conte et al., 2019), indicating that increased
FGF21 acts as an adaptive regulator that counteracts muscle stress
imposed by mitochondrial dysfunction. In addition, it is found that
FGF21 is also an Akt-regulated myokine which can be secreted by
skeletal muscle (Raschke and Eckel, 2013). As a stimulator of
Akt1 signalling, resistance training exercise might improve metabolic
disorders related to obesity via FGF21 production, promoting WAT
browing because of endocrine effects. Thus, FGF21 is potential to be
bidirectional cross-talk between BAT and skeletal muscle (Rodriguez
et al., 2020).

In addition to FGF21, thermogenic BAT is also an important
physiological source for GDF15 (Flicker et al., 2019). GDF15 has
shown potential as a blood biomarker for human mitochondrial
disorders (Fujita et al., 2020). A variety of mouse muscle models
have demonstrated increased GDF15 expression in muscle, as
well as increased circulating GDF15 levels during mitochondrial
stress (Khan et al., 2017; Morrow et al., 2017; Ost et al., 2020;
Poulsen et al., 2020). Overexpression of GDF15 in muscle reduces
local muscle mass, indicating that GDF15 can lead to muscle
atrophy (Conte et al., 2019; Johann et al., 2021), which is more
closely related to muscle function and strength than muscle mass
(Kim et al., 2020). Tang demonstrated mTORC1 activation
increased the expression of GDF15 by phosphorylation of
STAT3, inducing oxidative stress and catabolic changes.
Blocking mTORC1 in aging mice downregulates the
expression of GDF15 and STAT3’s phosphorylation in skeletal
muscle, decreasing oxidative stress and muscle fiber damage and
loss. These results suggest that increased GDF15 signaling may
contribute to age-related muscle atrophy induced by chronically
increased mTORC1 activity (Tang et al., 2019).

3.3 Exerkines and their roles in BAT function

3.3.1 Negative regulators of BAT
Myostatin is a protein secreted by skeletal and cardiac

muscles (McPherron et al., 1997) that inhibits skeletal muscle
growth (McPherron et al., 1997). Myostatin can induce oxidative
stress and produce ROS in skeletal muscle cells, leading to muscle
wasting during sarcopenia (Sriram et al., 2011). In addition,
myostatin is negatively associated with the thermogenic
capacity of BAT and the browning of WAT (Braga et al.,
2013; Shan et al., 2013). Kong noted that BAT controls
skeletal muscle function by secreting myostatin (Kong et al.,
2018). A loss of interferon regulatory factor 4 (IRF4) in BAT,
which was previously recognized as a regulator of adipogenesis by
the same group (Eguchi et al., 2008), resulted in increased
myogenic gene expression in BAT and myostatin secretion,
contributing to reduced mitochondrial function and impaired
exercise capacity (Kong et al., 2018). Mice overexpressing IRF4 in
BAT showed reduced serum myostatin and improved running
ability compared to wild-type mice (Kong et al., 2018).
Furthermore, thermo-neutral temperature increases myostatin
levels in murine BAT, leading to reduced exercise capacity (Kong
et al., 2018). These findings suggest that myostatin plays a dual
role as a negative regulator of BAT and a regulator of skeletal
muscle function as a batokine produced by BAT.

3.3.2 Positive regulators of BAT
IL-15 has been shown to play a critical role in the regulation of

BAT metabolism and thermogenesis (Almendro et al., 2008). It has
been found to increase BAT activity and induce browning of white
adipose tissue (WAT) by activating the expression of brown fat-
specific genes such as UCP1, PGC-1α, and PRDM16. IL-15 also
promotes the proliferation and differentiation of brown adipocyte
precursor cells, resulting in more mature brown adipocytes in BAT
(Duan et al., 2017). These effects of IL-15 on BAT have been shown
to enhance energy expenditure and improve metabolic health,
making it a potential therapeutic target for obesity and related
metabolic disorders.

Cold-induced BDNF has been found to play a significant role in
the regulation of BAT. Specifically, in BAT, BDNF increases
Ucp1 mRNA level and UCP1 protein expression (Wang et al.,
2007), and enhances thermogenesis (An et al., 2015). Studies
have shown that cold exposure induces the expression of BDNF
in BAT, which in turn activates the sympathetic nervous system and
stimulates BAT thermogenesis. This effect is mediated by the TrkB
receptor, which is expressed in BAT and binds to BDNF to promote
thermogenic activity. Furthermore, BDNF has been found to
enhance the browning of white adipose tissue, which makes it
more metabolically active and similar to BAT. Therefore, cold-
induced BDNF has potential therapeutic benefits for treating
metabolic disorders by promoting BAT activity and increasing
energy expenditure (An et al., 2015; Zhu et al., 2019).

In summary, these results imply that batokines produced by BAT,
including adiponectin and leptin, play a positive role in skeletal muscle
function. On the other hand, FGF21 and GDF15 can lead to muscle
atrophy directly or indirectly through metabolism process in BAT.
Moreover, myostatin, IL-15 and BNDF can also be secreted by skeletal
muscle to positively or negatively regulate BAT.
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4 Targeting BAT may be a treatment
method for muscle weakness

4.1 Pharmacological tools that stimulate
thermogenesis

β3-ARs are present in adipose tissue and β3-AR agonists are
linked to increased BAT activity and the formation of brown
adipocytes in subcutaneous WAT (Finlin et al., 2018). Although
no clinical trials have tested β3-AR agonists in sarcopenia, studies
have shown that they can improve metabolic disorders such as
T2DM and obesity in both animals and humans. Only a few studies
have reported the effects of β3-AR agonists on muscle. For example,
Kern used the 3-AR agonist, mirabegron (50 mg/day, for 12 weeks),
to treat obesity in insulin-resistant humans and found an increase in
type I fibers within skeletal muscle and numerous positive effects on
skeletal muscle gene expression (Finlin et al., 2020). In line with
clinical results, amibegron, a β3-AR agonist induces fibro-
adipogenic progenitor–BAT differentiation, improving muscle
quality and shoulder function in mice with rotator cuff tears
(Wang et al., 2020; Wang et al., 2021). While it is possible that
β3-AR agonists directly improve muscle function, it is unclear
whether they are useful in treating sarcopenia. Future clinical
trials should investigate the potential benefits of such drugs At
various stages of sarcopenia.

Several alternative treatments have been proposed to boost BAT
activity, including GLP-1R and DPP4i (Beiroa et al., 2014; Takeda
et al., 2018). Ogawa found that older diabetic patients treated with
DPP4 inhibitors had a reduced risk for affixed skeletal muscle loss
(Bouchi et al., 2018). Additionally, treatment with GLP-1 RA
(Liraglutide, 3.0 mg per day for 24 weeks) is well tolerated, aids
in fat mass loss, reduces android fat mass, and raises skeletal muscle
index in T2DM patients (Perna et al., 2016).

Further, transient receptor potential (TRP) channels, such as
transient receptor potential melastatin 8 (TRPM8), a calcium-gated
channel, can be activated by heat and cold and indirectly stimulate
BAT thermogenesis. In the murine peripheral nervous system, the
TRPM8 channel severs as the primary molecular transducer for cold
sensation (Bautista et al., 2007). Menthol administration activates
TRPM8, resulting in elevated UCP-1 levels, enhanced temperature
in humans and mice, and protection against obesity. Through
TRPM8-mediated PGC1 upregulation in skeletal muscles, dietary
menthol improves exercise endurance and energy metabolism,
thereby enhancing muscle function (Li et al., 2018).

As a whole, these results suggest that indirect stimulation of BAT
thermogenesis may be an effective strategy for muscle function
enhancement. Future preclinical and clinical trials are necessary to
investigate both direct and indirect methods of stimulating BAT
thermogenesis in sarcopenic animals and humans.

4.2 Other pathways to regulate muscle
atrophy through BAT

The adenosine A2B receptor is the most highly expressed
Gs-coupled G protein-coupled receptor (GPCR) to both skeletal
muscle and BAT (Gnad et al., 2020). A study showed that the
extracellular nucleoside adenosine playings a vital role in BAT

function, and that the A2B receptor could activate energy
expenditure and induce the release of the “batokine” FGF21
(Gnad et al., 2014). Additionally, A2B receptor activation has
been shown to reduce diet-induced obesity. Moreover, the A2B
stimulation counteracted the effects of aging on both BAT and
skeletal muscle (Gnad et al., 2020).

5 Conclusion

Increasing BAT activity may restore thermoregulation, improve
metabolic parameters, and possibly antagonize key facets of muscle
dysfunction. On the other hand, BAT is an endocrine organ secreteing
batokines, including adiponectin, leptin, FGF21, and GDF-15, to regulate
the skeletal muscle. Myostatin is the most likely link between sarcopenia
and BAT. Therefore, BAT may protect against metabolic deficits that are
risk factors for skeletal muscle disease by regulation of homeostatic
hormones directly and indirectly. Future research should focus on the
role of BAT in muscle diseases such as sarcopenia with targeted
promotion of BAT thermogenesis—a possible new means.
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