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Doxorubicin is a highly effective chemotherapeutic agent widely used to treat a
variety of cancers. However, the clinical application of doxorubicin is limited due
to its adverse effects on several tissues. One of the most serious side effects of
doxorubicin is cardiotoxicity, which results in life-threatening heart damage,
leading to reduced cancer treatment success and survival rate. Doxorubicin-
induced cardiotoxicity results from cellular toxicity, including increased oxidative
stress, apoptosis, and activated proteolytic systems. Exercise training has emerged
as a non-pharmacological intervention to prevent cardiotoxicity during and after
chemotherapy. Exercise training stimulates numerous physiological adaptations in
the heart that promote cardioprotective effects against doxorubicin-induced
cardiotoxicity. Understanding the mechanisms responsible for exercise-
induced cardioprotection is important to develop therapeutic approaches for
cancer patients and survivors. In this report, we review the cardiotoxic effects of
doxorubicin and discuss the current understanding of exercise-induced
cardioprotection in hearts from doxorubicin-treated animals.
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Introduction

The number of cancer survivors living in the United States continues to increase
annually due to the early detection of cancer and advances in treatment (Jiang et al.,
2022). As of 2019, it was estimated that there are 16.9 million cancer survivors in the
United States (Jiang et al., 2022). This represents approximately 5% of the population. The
number is projected to reach 22.1 million by 2031 (Jiang et al., 2022). As the number of
cancer survivals increases, their quality of life has become a critical issue. However,
prolonged and combined cancer treatments, including cancer surgery, radiation therapy,
and chemotherapy, are known to cause pain, chronic fatigue, muscle weakness, and physical
dysfunction, impairing quality of life in cancer survivors (Galvao et al., 2009; Narayanan and
Koshy, 2009). Approximately, 1 in 4 cancer survivors reported a decreased quality of life due
to the side effects of cancer treatments (Weaver et al., 2012). Specifically, chemotherapy with
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anthracyclines (ANTs) has been shown to induce irreversible side
effects (Tacar et al., 2013; Min et al., 2015). ANTs are a group of
antineoplastic antibiotics that are highly effective chemotherapeutic
agents used to treat a wide variety of cancers (Mukai et al., 2021).
Unfortunately, the clinical use of ANTs is limited due to the
development of cytotoxicity in the heart, resulting in
cardiomyopathy and heart failure in cancer patients and
survivors during cancer treatments or in even several years after
cancer treatment (Kamphuis et al., 2020; Abdel-Qadir et al., 2021).
Specifically, doxorubicin is among the ANTs used to manage and
treat various types of malignancies and tumors (Min et al., 2015;
Douedi and Carson, 2019; Lee et al., 2020; Wu et al., 2022). The
primary therapeutic approach for preventing DOX-induced
cardiotoxicity is to intervene with standard therapies for heart
failure (Dragojevic-Simic et al., 2004; Yu et al., 2020). It has been
well established that exercise training provides cardioprotective
effects against DOX-induced adverse effects on the heart as a
non-pharmacological cardioprotective strategy in cancer patients
and survivors. This review provides an updated overview of
cardiotoxicity associated with treatments of DOX and presents
the current understanding of the exercise-induced protection
against the cardiotoxicity.

Anthracycline therapy

ANTs are cytostatic antibiotics that are extracted from
Streptomyces bacterium (Fujiwara et al., 1985; Octavia et al.,
2012). ANTs include daunorubicin (DAU), doxorubicin (DOX),
epirubicin (EPI), idarubicin (IDA), and valrubicin (VAL) (Figure 1)

(Dimarco et al., 1963; Capelôa et al., 2020). DAU was the first ANT
used to treat acute pediatric leukemia in 1964 (Dimarco et al., 1963).
DOX was later isolated from a mutant of Streptomyces peucetius in
1969 (Arcamone et al., 1969). The structural formula of DAU and
DOX is very similar, except for the substitution of a hydroxyl group
at the carbon 14 position in DOX (Escherich et al., 2013). DAU is
utilized against acute lymphoblastic and myeloblastic leukemias,
whereas DOX is more effective in lymphomas, sarcomas, and a
broad spectrum of solid tumors, such as breast, lung, bladder, and
bone cancers (Minotti et al., 2004; Arcamone, 2009; Tacar et al.,
2013). Later on, several newer ANTs have been developed to treat
multiple types of cancers (Bonfante et al., 1980; McGowan et al.,
2017). Although ANTs have been successful in treating a variety of
cancers, they have been associated with both acute and chronic
cardiotoxicity, depending on the cumulative dose of each agent
(Table 1) (Venkatesh and Kasi, 2019; Rocca et al., 2020). For
example, early adverse effects of DOX have been reported to
reduce the left ventricular ejection fraction within months post-
treatment with a cumulative dose ≥350 mg/g2 (Buzdar et al., 1985).
Studies with 630 breast and lung cancer patients have revealed that
32 of those 630 patients (5.1%) had DOX-induced congestive heart
failure (Swain et al., 2003). Most patients with congestive heart
failure were treated with a cumulative dose of ≥500 mg/m2. The
estimated cumulative percentages of patients with DOX-induced
congestive heart failure were 5%, 16% and 48% at a cumulative doses
of 400 mg/g2, 500 mg/m2, and 700 mg/m2, respectively (Swain et al.,
2003). Therefore, the dosage adjustments of ANTs are required to
prevent the effects of cardiotoxicity and maximize the therapeutic
effects.

Mechanisms of ANT-induced
cytotoxicity

It has been recognized that ANTs act through a combination of
multiple mechanisms, including 1) intercalation into DNA, 2)
poisons of topoisomerase II, and 3) production of reactive
oxygen species.

DNA intercalation

The activity of ANTs results in strong inhibitory effects on
nucleic acid synthesis (Gewirtz, 1999; Shandilya et al., 2020).
Nuclear DNA has been recognized as the primary target of
ANTs (Karadurmus et al., 2021). ANTs consist of flat aromatic
moieties that intercalate between DNA base pairs (Figure 2)
(Frederick et al., 1990). The intercalation inhibits DNA and RNA
synthesis, subsequently blocking the transcription and replication in
highly replicating cells (Gewirtz, 1999). The specificity, binding
affinity, and the binding mode of each ANT depend on
differences in the sequence of the DNA base (Shandilya et al.,
2020). The intercalation of ANTs can distort DNA and interfere
with the nuclear functions in cancer cells (Wang et al., 1987; Chaires,
1990). ANTs also intercalate mitochondrial DNA (Lebrecht and
Walker) to induce single or double-strand mtDNA breaks and
quantitative defects in mtDNA copy number (Tewey et al., 1984;
Lawrence et al., 1993; Lebrecht and Walker, 2007). Both the

FIGURE 1
Chemical structures of main anthracyclines.
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mutation and deletion of mtDNA-lesion compromise the synthesis
of mtDNA-encoded respiratory chain subunits in the mitochondrial
inner membrane, contributing to the marked mitochondrial toxicity
(Lebrecht and Walker, 2007; Ashley and Poulton, 2009).
Consequently, ANT-induced mitochondrial toxicity causes
increased production of mitochondrial reactive oxygen species
(Priya et al., 2017), which is one of the mechanisms of ANT-
induced cardiotoxicity (Lebrecht and Walker, 2007).

Topoisomerase II poisoning

Along with DNA intercalation, topoisomerase II is also
considered as one of the primary targets of ANT-induced
cytotoxic activity in cancer cells. Topoisomerase II is a nuclear
enzyme that manages DNA tangles and supercoils by cutting both
strands of the DNA helix during replication and transcription
(Deweese and Osheroff, 2009). ANTs intercalated into DNA
form a stable ANT-DNA-topoisomerase II ternary complex,
thereby poisoning the enzyme activity. This ternary complex
impends the relegation of breaks in the double-stranded DNA
(Shandilya et al., 2020). As a result, ANTs induce irreversible
DNA damage, leading to genomic instability and ultimately
apoptotic cell death in rapidly dividing cancer cells (Li and Liu,
2001; Minotti et al., 2004; Minev, 2011). This ANT-induced
topoisomerase II poisoning is also the molecular basis of

cardiotoxicity. Since topoisomerase II β is present in
cardiomyocytes (Capranico et al., 1992; Vejpongsa and Yeh,
2014), the inhibition of its isoform has been shown to induce
long-term side effects of ANTs in cardiac muscle, resulting in
cardiomyopathy (Cornarotti et al., 1996; Austin and Marsh, 1998).

Production of reactive oxygen species

One of themechanisms responsible for ANT-induced cytotoxicity
is the generation of excessive reactive oxygen species (Priya et al.,
2017). ROS, including superoxide radical (O2

•−), hydrogen peroxide
(H2O2), and hydroxyl radical (HO•), are byproducts of the normal
metabolisms and play roles in homeostasis in normal cells (Rocca
et al., 2020). However, excessively high and persistent levels of ROS
result in an imbalance between the production of free radicals and
antioxidant defense systems, triggering oxidative stress and cellular
damage (Devasagayam et al., 2004). It has been demonstrated that
mitochondria are one of the major sites for ANT-induced oxidative
stress and cellular damage (Min et al., 2015). One electron is
transferred from NADPH to the flavoprotein in the mitochondrial
electron transport chain. The quinone ring of ANTs acts as an electron
acceptor to form semiquinone, which produces superoxide anion
(Berthiaume andWallace, 2007). This reaction is catalyzed by NADH
reductase at complex I in the inner mitochondrial membrane
(Berthiaume and Wallace, 2007; Murabito et al., 2020). The
superoxide dismutase neutralizes superoxide anion into hydrogen
peroxide (Stěrba et al., 2013). The production of superoxide anion and
hydrogen peroxide stimulates enzyme-mediated reduction-oxidation
cycles, producing reactive and destructive hydroxyl radicals, which
cause nucleic acid damage, protein alkylation, and lipid peroxidation,
followed by apoptosis (Figure 3) (Simůnek et al., 2009; Angsutararux
et al., 2015). In addition to mitochondrial ROS, other enzymes
including NADPH oxidase (NOX) and nitric oxide synthase
(NOS) also contribute to DOX-induced cardiotoxicity (Gilleron
et al., 2009; Lin et al., 2019). NOX has been identified as one of
the most important sources of ANT-induced ROS (Gilleron et al.,
2009; Priya et al., 2017; Lin et al., 2019). NOX is a transmembrane
enzyme that is located in intracellular organelles and consists of serval
isoforms (Panday et al., 2015). Specifically, NOX2 has been shown to
contribute to ANT-induced cardiotoxicity (Wojnowski et al., 2005;
Zhao et al., 2010). Growing evidence shows that NOX2 deficiency
attenuates superoxide production, preventing cardiomyocytes cell
death, myocardial fibrosis, and leukocyte infiltration following

TABLE 1 Anthracyclines, therapeutic use and maximum recommended cumulative dose.

Anthracycline Clinical activity Maximum cumulative
dose

Daunorubicin Treatment of acute myeloid leukemia, acute lymphoblastic leukemia, chronic myelogenous leukemia, and Kaposi’s
sarcoma

550 mg/m2

Doxorubicin Treatment of breast cancer, bladder cancer, stomach cancer, lung cancer, acute lymphocytic leukemia, and Kaposi’s
sarcoma

550 mg/m2

Epirubicin Treatment of breast cancer, stomach cancer, lung cancer, urinary tract carcinoma, and ovarian carcinoma 900 mg/m2

Idarubicin Treatment of acute myeloid leukemia, acute lymphoblastic leukemia, and chronic myelogenous leukemia 150 mg/m2

Valrubicin Treatment of bladder cancer 800 mg/m2

FIGURE 2
The schematic chemical structure and functional domain of
anthracycline.
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DOX administration (Zhao et al., 2010; McLaughlin et al., 2017). NOS
is also one of the contributing enzymes to oxidative stress and damage
to cardiac muscle following DOX treatment. NOS catalyzes the
conversion of L-arginine to nitric oxide (Mukai et al.) (Knowles
and Moncada, 1994). Three NOS isoforms have been identified in
mammals, including neuronal NOS (nNOS), cytokine-inducible NOS
(iNOS) and endothelial NOS (eNOS) (Knowles and Moncada, 1994).
DOX administration increases the levels of NO through the activation
of eNOS and iNOS (Vásquez-Vivar et al., 1997). eNOS has been
shown to catalyze NADPH-dependent superoxide formation
following DOX treatment by directly binding the reductase
domain of eNOS (Vásquez-Vivar et al., 1997). Eventually, the
overproduction of ROS and NO generates reactive nitrogen species
(RNS), which lead to cardiotoxicity following ANT treatment (Fogli
et al., 2004; Štěrba et al., 2013).

DOX-induced cardiomyopathy

DOX-induced cardiotoxicity can lead to the development of
cardiomyopathy and, ultimately, congestive heart failure
(Jeyaseelan et al., 1997; Singal et al., 2000). Echocardiographic

analysis shows that ventricular ejection fraction, fractional
shortening, and diastolic function can be reduced in the hearts
treated with DOX (Lee et al., 1987; Willis et al., 2019). The
dysfunction of cardiac contractility with DOX exposure results
from a decrease in cardiac mass, which causes cardiac muscle
atrophy and cardiac wall thinning (Min et al., 2015; Willis et al.,
2019; Ye et al., 2021). The DOX-induced cardiac atrophy can be
identified with an atrophic shift of myosin heavy chain isoform
from alpha isoform to beta isoform and increased atrial
natriuretic peptide (Willis et al., 2019). Additionally, DOX
administration also causes cardiac morphological changes,
such as dilated ventricles and increased myocardial fibrosis
(Gyulkhasyan et al., 2019; Levick et al., 2019). DOX has also
been shown to induce cardiac muscle damage through
intracellular proteolytic systems (Min et al., 2015; Montalvo
et al., 2020). Mammalian cells regulate the balance between
protein synthesis and protein degradation, depending on the
cellular demand (Rothman, 2010; Dasuri et al., 2013). Proteolytic
systems stimulate protein degradation in response to cellular
stresses. Although the process of protein breakdown is required
for cell survival, the excessive activation of proteolytic systems in
response to pathological stress can accelerate protein

FIGURE 3
Main pathways of ANT-induced oxidative stress. The formation of reactive oxygen species begins with one-electron reduction of the quinone
moiety through NADH reductase at complex I of the electron transport chain. In this reaction, the quinone ring of ANTs such as doxorubicin accepts the
electron to form semiquinone, producing superoxide anion. Superoxide dismutase neutralizes the superoxide anion into hydrogen peroxide. Hydroxyl
radical is produced fromhydrogen peroxide through enzyme-mediated reduction-oxidation cycles. ROS interact withmitochondrial DNA, proteins,
lipids, and other biomolecules, leading to cellular oxidative damage and eventually apoptosis. O2

•−, superoxide radical; H2O2, hydrogen peroxide; HO
•
,

hydroxyl radical; SOD, superoxide dismutase; NAD, nicotinamide adenine dinucleotide.
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degradation, leading to muscular atrophy and dysfunction (Hu
et al., 2008; Powers et al., 2012). Abundant evidence indicates
that DOX-induced ROS production contributes to the activation
of proteolytic systems. DOX-induced ROS production
contributes to activation of four main proteolytic systems: 1)
Ubiquitin proteasome system, 2) calpain, 3) caspase-3, and 4)
autophagy.

DOX-induced activation of ubiquitin-
proteasome system

The Ubiquitin proteasome system (UPS) is an ATP-dependent
proteolytic system composed of numerous ubiquitin ligase enzymes
and a large proteolytic complex called the proteasome (Grune et al.,
2003; Liu et al., 2016; Hyatt et al., 2019). The UPS plays a role in the
protein breakdown that occurs during muscle damage (Murton
et al., 2008; Powers et al., 2011). The UPS requires
polyubiquitination of proteins through ubiquitin ligase enzymes,
including E1 (ubiquitin-activating enzyme), E2, and E3 (Ichimura
et al., 2000; Bodine et al., 2001). The polyubiquitinated proteins that
are damaged or deemed unnecessary are degraded by the
proteasome. Specifically, two muscle-specific E3 ligases, Muscle
Atrophy F-box (MAFbx)/atrogin-1 and Muscle-Ring Finger-1
(MuRF-1), contribute to the UPS-mediated protein degradation
in cardiac muscle. Numerous studies have indicated that DOX
treatment stimulates UPS in cardiac muscle, leading to cardiac
muscle damage (Powers et al., 2011; Derouiche et al., 2014; Min
et al., 2015; Montalvo et al., 2020). Specifically, DOX treatment
activates UPS through mitochondrial ROS production in cardiac
muscle (Montalvo et al., 2020). Indeed, DOX administration
significantly increases both mitochondrial H2O2 production and
MAFbx, whereas mitochondria-targeted antioxidant protects
mitochondria against DOX-induced oxidative stress and
attenuates the expression of atrogin-1/MAFbx in cardiac muscle
(Montalvo et al., 2020). Another study also showed that exercise
preconditioning improves mitochondrial biogenesis and prevents
gene expression of MuRF-1 in DOX-administrated cardiac muscle
(Kavazis et al., 2014). A recent study demonstrated that a DOX dose-
dependent (1–25 mg/kg) increases MuRF-1 mRNA and protein
levels in myocardial tissues, accompanied by decreases in cardiac
mass and cardiomyocyte cross-sectional area (Willis et al., 2019).
However, mice lacking MuRF-1 were protected against DOX-
induced cardiac atrophy and contractile dysfunction (Willis et al.,
2019). These findings suggest that DOX administration induces
pathological protein degradation through the activation of UPS in
cardiac muscle.

DOX-mediated calpain activity

Calpain is an intracellular calcium-dependent cysteine protease
(Khorchid and Ikura, 2002; Vickers, 2017). Calpain exists as an
inactive proenzyme in the cytosol. When intracellular calcium levels
increase, the proenzyme form of calpain is converted to its active
form, which cleaves cytoplasmic and nuclear substrates, leading to
apoptosis (Momeni, 2011). Calpain activation has been implicated
in myocardial injuries, including ischemia/reperfusion myocardial

injury, pressure overload-induced cardiomyopathy, and heart
failure (Li et al., 2009; Wang et al., 2018b; Wang et al., 2020). It
has been demonstrated that DOX treatment causes calcium
overload, which increases calpain activity (Szenczi et al., 2005;
Emanuelov et al., 2010). Campos et al. established that the
expression of active calpain increased in cardiomyocytes isolated
from DOX-treated rats that showed dystrophin disruption in
cardiac muscle (Campos et al., 2011). However, a calcium-
blocking agent prevented calpain activation and preserved cardiac
function. Another study also investigated the calpain-induced
cardiomyopathy in rats injected with DOX (Min et al., 2015).
Echocardiography analysis showed that DOX administration
resulted in impaired cardiac function with decreased fractional
shortening and thinning of the septal and left ventricular
posterior wall. In contrast, rats treated with a calpain inhibitor
prior to DOX injection attenuated cardiac dysfunction. In vitro
experiments have also shown that DOX induces calpain activation in
cardiomyocytes (Lim et al., 2004). Calpain activation in
cardiomyocytes treated with DOX resulted in myofilament
protein degradation and necrosis, while calpain inhibitors
preserved the myofilament protein degradation (Lim et al., 2004).
These studies indicate that calpain activation is one of the
contributors that cause DOX-induced cardiomyopathy.

DOX-induced activation of caspase-3

Caspases are a family of cysteine protease enzymes that
contribute to programmed cell death (Shi, 2004). In healthy
cells, the caspases exist as dormant pro-enzymes. The caspases
undergo cleavage events in response to a death-inducing signal to
release a large subunit and a small subunit that heterodimerize
into the active enzyme (Roy, 2000). It has been well known that
caspase-3 is a crucial mediator of apoptosis by efficiently cleaving
many key cellular proteins (Porter and Jänicke, 1999). In fact,
caspase-3 is highly activated during the progression of multiple
forms of heart diseases (Philipp et al., 2004; Putinski et al., 2013;
Hashmi and Al-Salam, 2015; Min et al., 2015). Caspase-3
activation is capable of promoting the degradation of cardiac
myofibrillar proteins, such as α-actin, α-actinin, and cTnT
(Communal et al., 2002). Numerous studies have established
that DOX treatment induces apoptosis through the activation of
caspase-3 in cardiac muscle (Michihiko et al., 2006; Pointon et al.,
2010; Min et al., 2015; Sun et al., 2016) and the inhibition of
caspase-3 activity attenuates DOX-induced cardiotoxicity (Wang
et al., 2001; Zhang et al., 2009a; Ma et al., 2013). Although the
regulation of caspase-3 activity is complex and involves several
interconnected signaling pathways, both extrinsic and intrinsic
pathways have been postulated to activate caspase-3 in cardiac
muscle treated with DOX. DOX treatment can induce the
extrinsic apoptotic pathway via the upregulation of death
receptors (Nakamura et al., 2000). Death ligands, including
FasL and TNFα, bind to their receptors, leading to caspase-8
activation. Activated caspase-8 increases caspase-3 activity,
resulting in cardiomyocyte apoptosis (Zhao and Zhang, 2017;
Pan et al., 2021). It is also feasible that DOX contributes to
caspase-3 activation through the intrinsic apoptotic pathways by
stimulating ROS production in cardiac muscle. Indeed, increased
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cellular levels of ROS have been reported to activate caspase-3 in
a variety of cell types, including cardiomyocytes (Powers et al.,
2011; Yeh et al., 2019). DOX can activate the core apoptosis
regulators, such as Bax and Bak in the cytosol. The activated Bax/
Bak are translocated from the cytosol to the outer membrane of
mitochondria, increasing mitochondrial membrane
permeability. Cytochrome c in the inner membrane of
mitochondria is released into the cytoplasm (An et al., 2009).
Subsequently, cytochrome c activates caspase-9, resulting in the
activation of caspase-3 in DOX-treated cardiomyocytes (Wei
et al., 2022). These findings many explain how DOX treatment
can induce cardiomyocyte apoptosis, which causes
cardiotoxicity.

DOX-mediated autophagic signaling

Autophagy is a homeostatic process by which cytoplasmic
components are degraded and recycled under normal and stress
conditions through lysosomal pathways (Hansen et al., 2018).
Autophagy has emerged as a major regulator of cardiac
homeostasis and function. The level of autophagy in cardiac
muscle is low under normal conditions, whereas it is upregulated
in response to pathological stress (Nishida et al., 2009). Under
physiological conditions, autophagy is essential for optimal
cellular function and survival as it removes damaged or
unwanted proteins and organelles. Under pathological
conditions, autophagy may be stimulated to induce toxic
effects (Smuder et al., 2013; Cui et al., 2021). Excessive
autophagy activation can cause damage to organelles such as
the mitochondria and endoplasmic reticulum, releasing
compounds into the cytoplasm (e.g., cytochrome c and
calcium) that can induce cell death (Nishida et al., 2008;
Zhang et al., 2009b; Nishida et al., 2009). The activation of
autophagy begins with the formation of a phagophore through
a system of autophagy proteins (Atg proteins) (Smuder et al.,
2013). The phagophore, also known as a double-membrane
structure, sequesters bulk cytoplasmic components, such as
abnormal intracellular proteins, excess or damaged organelles,
and invading microorganisms. The phagophore expands to a
sealed, double-membrane vesicle called the autophagosome
(Hollenstein and Kraft, 2020). Beclin-1 plays an important
role in the initial steps of autophagosome formation by
mediating the localization of other Atg proteins to the
phagophore (Gustafsson and Gottlieb, 2008). Elongation of the
autophagosome requires the interaction of several Atg proteins
(Mizushima et al., 1999; Smuder et al., 2013). Specifically, Atg4 is
responsible for the cleavage of microtubule-associated protein
1A/1B-light chain 3 (LC3) to LC3-I (Yang et al., 2015). Cleaved
LC3-I is conjugated by Atg7, Atg3, and Atg12-Atg5-Atg16L
complex, leading to LC3-II synthesis, which is recruited to the
autophagosomal membrane for the elongation (Ichimura et al.,
2000). P62 is an autophagosome cargo protein that is used as a
reporter of autophagy activity (Liu et al., 2016). After the
formation of the autophagosome, cytoplasmic components are
delivered to the lysosomes (Mizushima et al., 2002). The outer
membrane of the autophagosome fuses with the lysosome to form
an autolysosome (Mizushima et al., 2002). Hydrolases in

lysosomes degrade the autophagosome-delivered components
(Mizushima et al., 2002). Much evidence shows that the
activation of autophagic signaling is associated with various
forms of heart disease, including heart failure, ischemia-
reperfusion injury, and metabolic cardiomyopathies
(Shimomura et al., 2001; Kostin et al., 2003; Kanamori et al.,
2015). This suggests that autophagy emerges as a new therapeutic
target for heart disease. DOX treatment also induces autophagic
signaling in cardiac muscle. Indeed, DOX-induced
autophagosome and autolysosome accumulation were
confirmed in vivo by using GFP-LC3 and mRFP-GFP-
LC3 transgenic mice (Abdullah et al., 2019). In this study,
both acute DOX treatment (20 mg/kg) and chronic DOX
treatment (5 mg/kg every week for 4 weeks) exhibited time-
dependent accumulation of LC3B II levels in cardiac muscle.
Conversely, it has been reported that inhibition of autophagy via
3-methyladenine (3-MA) is sufficient to protect against DOX-
induced autophagy, mitochondrial dysfunction, and cardiac
contractile dysfunction (Lu et al., 2009; Xu et al., 2012). A
proposed mechanism responsible for DOX-induced autophagy
is that DOX administration results in damage to the
mitochondria and induction of Beclin-1 expression, leading to
accelerated autophagy and cardiomyopathy (Lu et al., 2009).
Other groups also demonstrated that anti-apoptotic protein
Bcl-2 can form a complex with Beclin-1 to inhibit autophagic
apoptosis and autophagosome formation in cardiomyocyte
(Wang et al., 2018a; Yu et al., 2022). However, DOX
treatment increases the expression of Beclin-1 and decreases
Bcl-2 protein expression, increasing the Beclin-1/Bcl-2 ratio,
which indicates the activation of autophagic signaling and
apoptosis (Smuder et al., 2013). These findings implicate that
autophagy antagonists may represent a therapeutic approach for
the preservation and/or maintenance of cardiac muscle function
during and/or doxorubicin treatment.

Exercise protects against DOX-induced
cardiotoxicity

Since DOX treatment causes cardiac toxicity and
dysfunction, pharmacological cardioprotective strategies,
including chemoprotective agents (Dexrazoxane, Mesna, and
Amifostine) (Dragojevic-Simic et al., 2004; Aluise et al., 2011;
Yu et al., 2020) and neurohormonal therapy (β-blockers,
angiotensin receptor blockers, angiotensin-converting enzyme
inhibitors) have been broadly explored (Ibrahim et al., 2009;
Chang et al., 2015; Beheshti et al., 2016). Alternatively, exercise
has been investigated as a non-pharmacological cardioprotective
strategy in cancer patients. Several studies have demonstrated
that exercise training or physical activity prevents or mitigates
cardiac dysfunction from DOX-induced cardiotoxicity. The
cardioprotective effects of exercise may improve the
chemotherapy completion rate by managing dose-limiting
toxicity. Many studies have consistently shown that exercise
may result in the preservation of left ventricular contractile
function through various mechanisms, including increased
cardiac expression of antioxidant enzymes, mitochondrial
function, and reduced proapoptotic signaling (Kim and
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Hwang, 2015; Morton et al., 2019). The following section will
summarize the potential mechanisms of exercise-induced
cardioprotection against cardiotoxicity following DOX
administration.

Effect of exercise on antioxidant capacity in
DOX-treated cardiac muscle

Antioxidant enzymes
Antioxidants are defined as substances that attenuate, delay,

or prevent oxidation of another substance. Cellular antioxidants
are compartmentalized in organelles and the cytoplasm to
mitigate ROS and maintain redox balance (Powers and
Jackson, 2008). ROS is known to decrease the activity of
antioxidant enzymes, which are essential to maintain
mitochondrial function by removing or neutralizing ROS
produced from DOX. It has been established that exercise
enhances antioxidant activities in cardiac and skeletal muscle
by upregulating various cellular antioxidant systems (Ji et al.,
1998; Muthusamy et al., 2012; Wang et al., 2016). Kim et al.
reported that 2 weeks of aerobic exercise was sufficient to increase
antioxidant enzyme activity, including superoxide dismutase
(SOD) and catalase in the cardiac muscle of rats following
DOX administration (Kim and Hwang, 2015). Similarly,
2 weeks of low-intensity treadmill exercise significantly
increased glutathione peroxidase (GPx), attenuating left
ventricular dysfunction in rats during DOX treatments. In
contrast, sedentary rats treated with DOX displayed an
increase in caspase-3 activity and consequently exhibited left
ventricular dysfunction (Chicco et al., 2006). Exercise
preconditioning also exhibited cardioprotective effects on
antioxidant production in cardiac muscle. Animals subjected to
2 weeks of preconditioning prevented DOX accumulation in the
mitochondria of cardiac muscle and attenuated mitochondrial
ROS production, leading to the preservation of cardiac muscle
contractility (Morton et al., 2019). Additionally, moderate
treadmill exercise prior to DOX treatment increased the
expression of the antioxidant enzymes GPx1, catalase, and
manganese superoxide dismutase (Fasipe et al., 2021) in
cardiomyocytes (Scott et al., 2011). Upregulation of the
mentioned enzymes allows for the regulation of elevated ROS
by neutralizing or removing the reactive forms and therefore, the
preservation of mitochondrial function in DOX-treated cardiac
muscle.

Non-enzymatic antioxidants
In addition to antioxidant enzymes, non-enzymatic

antioxidants such as glutathione (GSH) have a critical role in
the cardiac antioxidant defense system (Ascensao et al., 2007).
The non-enzymatic antioxidants also interrupt and inactivate
toxic free radical chain reactions. Ascensão et al. showed that
DOX administration increases the amount of oxidized GSH
(GSSG) in the cardiac tissue of mice, suggesting elevated
oxidative byproduct release from cardiac tissue treated with
DOX (Ascensão et al., 2005a). However, endurance swimming
exercise reduced products of oxidative protein damage by 18.1%
compared to the non-exercise group. This observation indicated

that exercise induces cardiac redox adaptations that attenuate
DOX-induced damage. Additionally, endurance-trained mice
showed diminished levels of GSSH compared with non-trained
mice. This indicates that exercise increases cardiac tissue GSH
intake capacity and protects the myocardium from DOX-induced
oxidative stress. Consistent with these findings, Demirel et al.
found that exercise increased MnSOD and GSH concentrations,
both of which remove oxidant precursors, providing antioxidant
protection in cardiomyocytes (Demirel et al., 2001). In regard to
mechanisms of exercise-induced non-enzymatic antioxidants,
Wang et al. showed that acute exercise increased the
expression of redox effector factor-1 (Ref1) and nuclear factor
erythroid 2-related factor 2 (Nrf2) genes and proteins in skeletal
muscle. The increased expression of these proteins was associated
with mitochondrial H2O2 production and GSH and MnSOD
activity (Wang et al., 2016). The authors suggest that the
exercise-induced release of H2O2 stimulates the activation of
the Ref1 signaling pathway. It is established that exercise-induced
oxidative stress activates Nrf2, a redox-sensitive transcription
factor that reduces the production of ROS by modulating the
antioxidant defense systems (Muthusamy et al., 2012).
Additionally, exercise increases the levels of ROS-generating
NADPH oxidase-4 (Nox4) (Fasipe et al., 2021). An increase in
Nox4 stimulates activation of Nrf2 which then increases the
nuclear transcription of antioxidant genes, ultimately
decreasing cardiomyocyte susceptibility to chemotoxic agents.
These finding indicate that exercise produces adaptations in
cardiac tissues that maintain the redox balance in
cardiomyocytes. Specifically, exercise induces adaptations to
the glutathione system and Ref1 signaling pathway, indicating
the non-enzymatic antioxidants may serve as protective
mechanisms against DOX toxicity.

Heat shock proteins
The effect of exercise-induced heat shock proteins (HSPs) on

cardioprotection against DOX-induced cardiotoxicity has also
been investigated. HSPs are a large family of molecular
chaperones that play roles in cell survival and development by
regulating protein maturation, refolding and degradation (Miller
and Fort, 2018). HSPs acts as endogenous antioxidants against
DOX-induced oxidative stress in the cardiac muscle. Exercise
training has proven to increase the expression of HSPs, such as
HSP-60, HSP-70, and HSP-72, in cardiac muscle, ameliorating
the progression of DOX-induced cardiomyopathy (Ascensão
et al., 2005a; Ascensão et al., 2005b; Chicco et al., 2005).
Cardioprotection by HSPs may result from improved nuclear-
encoded protein import into the mitochondrial matrix and
protein folding ultimately reducing cellular proteolysis in
cardiomyocytes (Ascensão et al., 2012). However, low-
intensity exercise had no significant effect on HSPs or SOD
isoforms (Chicco et al., 2006). Venkatakrishnan et al. revealed
that high expression of HSP27 and its phosphorylation exhibited
cardioprotective effects. This study found that phosphorylation
at serine 15 and 85 of HSP 27 through p38 MAPK was a key
mechanism in reduction of apoptosis in cardiac H9C2 cells
treated DOX (Venkatakrishnan et al., 2006). Another study
investigated the mechanisms of how HSPs prevent DOX-
induced oxidative stress and cardiotoxicity (Fan et al., 2008).
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This study demonstrated that cardiac-specific overexpression of
HSP20 attenuated acute DOX-triggered apoptosis in
cardiomyocyte. This study found that HSP20 interacted with
phosphorated Akt (serine 473), suggesting that the
cardioprotective effect of HSP20 depends on the activity of Akt.

Together, these studies demonstrate that exercise training is an
effective cardioprotective approach to prevent DOX-induced
cardiotoxicity through the upregulation of antioxidant enzymes.

Effect of exercise on mitochondrial function
in DOX-treated cardiac muscle

DOX accumulation in mitochondria
Negatively charged cardiolipin is located on the inner

membrane of the mitochondria and is essential for the
activation of enzymes in the electron transport chain (ETC)
(Renu et al., 2018). Doxorubicin has a cationic charge giving it
a strong affinity for cardiolipin and therefore binds in an
irreversible reaction (Renu et al., 2018; Smuder, 2019). The
resulting cardiolipin-DOX complex allows for DOX
accumulation in the mitochondria of cardiomyocytes and
reduces cardiolipin availability to activate enzymes essential to
complex II and IV in the ETC. Additionally, the reduced
availability of cardiolipin removes a crucial binding site for
cytochrome c. Consequently, oxidative phosphorylation is
reduced, and the mitochondrial membrane is compromised,
further enabling cardiotoxicity (Schirone et al., 2022). These
reactions make mitochondria one of the major targets of DOX
and therefore its dysfunction is the hallmark of DOX-induced
cardiotoxicity (Wu et al., 2022). Although the mechanisms are
not clear, it is possible that the protective effect of exercise is
through the preservation of ETC function.

DOX removal from mitochondria
To preserve mitochondrial function and increase oxidative

capacity, the accumulation of DOX needs to be expelled from the
mitochondria. Exercise has demonstrated mitochondrial
protection against DOX-induced myotoxicity. Morton et al.
reported that 2 weeks of endurance exercise significantly
reduced the accumulation of DOX in cardiac mitochondria
and conserved mitochondrial respiratory function (Morton
et al., 2019). This study investigated the effect of exercise on
the expression of ATP-binding cassette (ABC) transporters
(Leonessa and Clarke, 2003). These transport proteins are the
regulators of chemotherapeutic drugs in cells by ATP-dependent
transmembrane efflux. The authors showed that endurance
exercise significantly upregulated mitochondria-specific ABC
transporters located in the inner and outer mitochondrial
membranes in cardiac muscle following DOX treatment. This
study suggested that exercise-induced increase in the expression
of ABC transport proteins may be responsible for the protective
effects of exercise on the heart against DOX-induced
cardiotoxicity. It is possible that ABC transporters located in
the mitochondria can export the DOX accumulated in the inner
membrane (Cole, 2014; Renu et al., 2018). Specifically, the
transporters ABCB6, ABCB7, ABCB8, and ABCB10 are found
in the inner and outer membranes of the mitochondria (Morton

et al., 2019). Morton et al. showed that 2 weeks of endurance
exercise preconditioning upregulated the expression and activity
of all four ABC transporters. In addition to their ability to export
chemotherapeutics, ABC transporters have their own unique
abilities. For example, ABCB8 is known to increase
mitochondrial iron export therefore reducing ROS that forms
when DOX interacts with iron (Morton et al., 2019; Wallace et al.,
2020). Interestingly, it has been identified that the ABC
transporter, multidrug resistance protein 1 (MRP1), releases
the antioxidant GSH (Cole, 2014; Renu et al., 2018). As
mentioned, GSH neutralizes free radicals such as ROS and
therefore, plays a critical role in maintaining oxidative
capacity through the antioxidant defense system (Octavia
et al., 2012). Although the mechanisms have not been
elucidated, it is established that ABC transport proteins are
not limited to the direct export of DOX. In fact, in addition to
DOX removal, ABC transport proteins preserve mitochondrial
function and reduce ROS to preserve mitochondrial function.
Together, these studies suggest that one of the mechanisms by
which exercise provides its protective effect may be by reducing
the overall DOX present in the mitochondria.

Mitochondrial permeability transition
A characteristic of DOX-induced toxicity is a reduction in the

mitochondrial calcium loading capacity. DOX toxicity increases
calcium and phosphate overload and oxidative stress, leading to
mitochondrial swelling and damage to the outer mitochondrial
membrane increasing the susceptibility to permeability
transition pore opening (mPTP). (Zoratti et al., 2005;
Ascensão et al., 2011). When stimulated, the mPTP is
responsible for the release of calcium and pro-apoptotic
proteins, worsening cytotoxicity. However, exercise has been
shown to defend against myocardial injury through its effect
on mPTP. Ascensão et al. investigated acute endurance exercise
as an intervention and showed the attenuation of calcium-
induced mPTP opening in DOX-treated cardiac muscle
(Ascensão et al., 2011) and chronic endurance exercise
improved mitochondrial calcium tolerance (Ascensão et al.,
2005b). These observations demonstrate the amelioration of
mitochondrial dysfunction during and after DOX treatment.
Together, these reports indicate that exercise training protects
the heart from DOX-induced cardiotoxicity by protecting cardiac
mitochondria-drive mPTP opening and consequently interfering
with the magnitude of apoptotic pathways.

Effect of exercise on DOX-induced
proteolytic systems

FOXO signaling pathway
Exercise has been shown to regulate the activation of proteolytic

systems. This protective effect of exercise on the attenuation of
proteolytic systems is associated with the reduced Forkhead-Box O
(FOXO) signaling pathway (Kavazis et al., 2014). The increased
FOXO nuclear translocation causes the amplification of FOXO
target genes, such atrogin-1 and MuRF-1, leading to cardiac
muscle atrophy (Bodine et al., 2001; Gomes et al., 2001). DOX
treatment has been shown to activate FOXO signaling through
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phosphorylation. Xia et al. demonstrated that DOX increases the
phosphorylation of FOXO1 at Ser-249 through cyclin-dependent
kinase 2 (CDK2) (Xia et al., 2020). The activated FOXO1 stimulates
the transcription of proapoptotic target gene Bcl-2-interacting
mediator of cell death (Bim) in cardiac muscle following DOX
treatment. However, a FOXO1 inhibitor or FOXO1-specific siRNAs
protected cardiomyocytes against DOX-induced apoptosis. As
acute endurance exercise attenuated the activation of
FOXO1 and FOXO3 in cardiac muscle following DOX
administration, decreasing the activity of muscle-specific
E3 ligases and ultimately apoptotic activity (Kavazis et al., 2014)
could be one of the potential mechanisms involved in exercise-
induced regulation of proteolytic systems, contributing to
mitigating the toxicity caused by DOX treatment. It is also
possible that the reduced expression of FOXO target proteins
may be due to the exercise-induced upregulation of PGC-1 alpha
(PGC-1α) (Sandri et al., 2006; Kavazis et al., 2014). Sandri et al.
showed that overexpression of PGC-1α resulted in a reduction in
atrogin-1 and MuRF-1, reducing the capacity of FOXO3 (Sandri
et al., 2006). Further, downregulation of PGC-1 α has been
associated with skeletal muscle atrophy (Sandri et al., 2006).
Therefore, the upregulation of PGC-1 α expression may be
partially responsible for the protective effect of exercise by
reducing FOXO activity and inhibiting the target gene MuRF-1
(Kavazis et al., 2014).

Autophagic signaling
Exercise intervention also regulates autophagic signaling in

hearts from DOX treated animals. Using transmission electron
microscopy analysis, Wang F. et al. showed that 2 weeks of acute

treadmill exercise ameliorates an increase in the number of
autophagosomes and abnormal mitochondria in the heart
following DOX treatment (Wang et al., 2021). Another study also
revealed that exercise preconditioning inhibits DOX-induced
cardiac autophagy/lysosomal system (Smuder et al., 2013). Acute
preconditioning attenuated the expression of Beclin-1 and increased
anti-apoptotic protein Bcl-2, thereby inhibiting autophagosome
initiation. Additionally, acute preconditioning inhibited the
conjugation of Atg12 to Atg5 production, which is required for
the elongation of the autophagosome. Eventually, the acute
preconditioning suppressed lysosomal proteases, including
cathepsin B, D, and L in hearts from DOX treated animals
(Smuder et al., 2013).

DOX-induced apoptosis
Exercise training also prevents DOX-induced apoptosis in the

heart. Alihemmati et al. exercised male Wistar rats with
alternating intervals of high and low training for 1 h a day,
5 days a week, for 6 weeks using a rodent treadmill. The
interval training cycle lasted 7 min with high intensity exercise
(85–90% VO2max) for 4 min and the low intensity exercise
(65–75% VO2max) for 3 min. After the 6 weeks of interval
exercise training, the rats received 20 mg/kg of DOX
(Alihemmati et al., 2019). This study showed that the 6 weeks
of interval training reduces Bax protein expression and increases
Bcl-2 protein expression, leading to a decreased Bax/Bcl-2 ratio
in hearts from DOX treated animals, thereby reducing apoptosis.
The authors also confirmed the effect of interval training on
cardiomyocyte apoptosis through TUNEL staining. The 6 weeks
of interval training reduced TUNEL-positive apoptotic cells in
hearts from DOX treated animals. The authors also examined the
activity of microRNAs that modulate the damage pathways in
cardiomyocytes in response to heart disease. The interval training
attenuated the overexpression of microRNA-499 in hearts from
DOX treated animals, which is a potential biomarker for
apoptotic effects in cardiomyocytes. Exercise has been shown
to inhibit both intrinsic and extrinsic apoptotic pathways in
DOX-treated animals. In this regard, Magalhães et al. reported
that exercise preconditioning prevents the expression of caspase-
9 and caspase-3 proteins in animals treated with DOX, indicating
that exercise attenuates the DOX-induced intrinsic apoptotic
pathway (Magalhães et al., 2017). Another study revealed that
treating animals with DOX significantly increased the activity of
both caspase-8 and caspase-9 in cardiac muscle, whereas
12 weeks of endurance treadmill training prevented the
increases in cardiac muscle following DOX treatment,
resulting in decreased caspase-3 activity (Marques-Aleixo
et al., 2018). Collectively, these studies suggest that exercise
training can prevent cardiac muscle degradation by alleviating
the DOX-induced proteolytic systems (Figure 4).

Conclusion

Cancer therapy has significantly improved, and as a result, the
lifespan of cancer survivors has increased. Therefore, it is important
to develop countermeasures to prevent chemotherapy-induced
cardiotoxicity that impairs the quality of life for survivors.

FIGURE 4
Potential mechanisms of exercise-induced cardioprotective
effects against DOX cardiotoxicity. Exercise enhances cellular
antioxidant defensive systems, including antioxidant enzyme, non-
enzymatic antioxidant, and HSPs in hearts treated with DOX.
Exercise also prevents DOX accumulation in mitochondria, improving
mitochondrial function. Activated antioxidant systems and enhanced
mitochondrial function mitigate DOX-induced oxidative stress and
damage in cardiac muscle. The protective mechanisms of exercise
can protect cardiac muscle by attenuating DOX-induced proteolytic
systems.

Frontiers in Physiology frontiersin.org09

Gaytan et al. 10.3389/fphys.2023.1133423

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1133423


Various mechanisms are involved in DOX-induced cardiotoxicity.
Given the abundance of reports indicating that exercise can result in
a protective phenotype of the heart against the cardiotoxicity,
exercise therapy as a non-pharmacological intervention can be an
effective clinical approach to prevent or reverse the side effects of
chemotherapy.

Investigations into the mechanisms responsible for exercise-
induced cardioprotection against the cardiotoxicity from
chemotherapy are still in the early stages. Thus, further research
is required to provide comprehensive evidence considering various
exercise type, intensity, and duration to develop exercise training
protocols for cancer patients and survivors.
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