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Objectives: The aim of this study is to investigate the value of multi-phase
contrast-enhanced magnetic resonance imaging (CE-MRI) based on the delta
radiomics model for identifying glypican-3 (GPC3)-positive hepatocellular
carcinoma (HCC).

Methods: One hundred and twenty-six patients with pathologically confirmed
HCC (training cohort: n = 88 and validation cohort: n = 38) were retrospectively
recruited. Basic information was obtained from medical records. Preoperative
multi-phase CE-MRI images were reviewed, and the 3D volumes of interest (VOIs)
of the whole tumor were delineated on non-contrast T1-weighted imaging (T1),
arterial phase (AP), portal venous phase (PVP), delayed phase (DP), and
hepatobiliary phase (HBP). One hundred and seven original radiomics features
were extracted from each phase, and delta-radiomics features were calculated.
After a two-step feature selection strategy, radiomics models were built using two
classification algorithms. A nomogram was constructed by combining the best
radiomics model and clinical risk factors.

Results: Serum alpha-fetoprotein (AFP) (p = 0.013) was significantly related to GPC3-
positive HCC. The optimal radiomics model is composed of eight delta-radiomics
features with the AUC of 0.805 and 0.857 in the training and validation cohorts,
respectively. The nomogram integrated the radiomics score, and AFP performed
excellently (training cohort: AUC = 0.844 and validation cohort: AUC = 0.862). The
calibration curve showed good agreement between the nomogram-predicted
probabilities and GPC3 actual expression in both training and validation cohorts.
Decision curve analysis further demonstrates the clinical practicality of the nomogram.

Conclusion: Multi-phase CE-MRI based on the delta-radiomics model can non-
invasively predict GPC3-positive HCC and can be a useful method for
individualized diagnosis and treatment.
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Introduction

Hepatocellular carcinoma (HCC) accounts for 75%–85% of
primary liver cancers, which is the sixth most common
malignant tumor in humans and the third leading cause of
cancer death worldwide (Sung et al., 2021). Despite advances in
diagnosis and treatment, the prognosis of HCC patients is still
unsatisfied. Hepatectomy and transplantation are considered
as the most recommended surgical approaches for HCC
treatment (Yang et al., 2019). Unfortunately, the 5-year
recurrence rates after surgical resection still reach up to 70%
(Llovet et al., 2021).

Glypican-3 (GPC3) is a member of the heparan sulfate
proteoglycan family and is overexpressed in most HCC but not
in healthy or nonmalignant livers (Capurro et al., 2003). It can help
distinguish alpha-fetoprotein (AFP)-negative HCC from benign
nodules, suggesting that GPC3 is a more reliable biomarker than
AFP in diagnosing HCC (Llovet et al., 2006; Wang et al., 2006).
Furthermore, previous studies have shown that GPC3-positive
HCC patients have a worse prognosis (Shirakawa et al., 2009;
Yorita et al., 2011; Ning et al., 2012; Fu et al., 2013). It is one of the
most popular targets in the treatment of HCC in recent years, and
there are several clinical traits that reported that GPC3 shows great
potential to be an immunotherapeutic target for HCC (Ho and
Kim, 2011; Zhu et al., 2013; Du et al., 2021). Accordingly,
GPC3 plays a vital role in the diagnosis, treatment, and
prognosis of HCC. Identifying the expression of GPC3 as soon
as possible is of great importance to the clinical management
of HCC.

Currently, accurate detection of GPC3 expression is mainly
achieved through postoperative immunohistochemical examination.
Although needle biopsy can test GPC3 expression before surgery, it
is an invasive method that cannot reflect the heterogeneity of the
entire tumor and is susceptible to sampling variation (Zhou et al.,
2018). Recently, several studies have found that GPC3 can be
released from the cell surface into peripheral blood, indicating the
potential of using serum GPC3 levels in HCC diagnosis (Capurro
et al., 2003). However, the results vary among studies and need to
be further verified (Zhou et al., 2018; Guo et al., 2020). Thus, a
preoperative and non-invasive method is needed for predicting the
expression of GPC3.

Radiomics, an emerging imaging technology that employs
cutting-edge computational tools to extract high-throughput
quantitative imaging features and builds predictive models via
statistical ways or machine learning to improve diagnosis
and prognosis prediction, is attracting increasing attention
in cancer research studies (Lambin et al., 2017). Recently,
plenty of research studies utilizing the radiomics method
demonstrated favorable performance in preoperatively
predicting KI67, CK19, microvascular invasion (MVI), and
other pathological factors in HCC (Li et al., 2019; Wang
et al., 2020; Chong et al., 2021; Zhu et al., 2021).
Furthermore, delta radiomics, which integrates time
components and radiomics features, provides additional
information about the evolution of feature values (Fave
et al., 2017; Mokrane et al., 2020). To the best of author’s
knowledge, only one study (Gu et al., 2020) has preoperatively
predicted GPC3 expression by radiomics features extracted

from delayed-phase magnetic resonance imaging (MRI)
images. The values of other phases and delta information
have not been explored yet.

The present study aims to investigate the performance of the
radiomics model based on multi-phase contrast-enhanced
magnetic resonance imaging (CE-MRI) and evaluate the effect
of delta-radiomics features in predicting GPC3 positive HCC
preoperatively.

Materials and methods

Patients

This retrospective study was approved by the institutional
review board, and the requirement for informed consent was
waived. From January 2017 to December 2021, 582 pathologically
confirmed HCC patients who underwent curative resection were
consecutively enrolled. The inclusion criterion is as follows: patients
with stage Ia, Ib, and IIa hepatocellular carcinoma according to the
China liver cancer (CNLC) staging system (Zhou et al., 2020) who
underwent surgical resection as first-line treatment. The exclusion
criteria are listed as follows: 1) patients who had no preoperative
gadobenate dimeglumine (GD-BOPTA)-enhanced 3.0T MRI
examination; 2) MRI was performed more than a month before
surgery; 3) patients with macrovascular invasion upon preoperative
MRI examination; 4) patients with indistinguishable tumor
boundaries due to obvious artifacts on MRI images; 5) HCC
patients who had previous treatment such as chemotherapy,
radiotherapy, transarterial chemoembolization (TACE), and
radiofrequency ablation; and 6) immunochemical staining for
GPC3 was unavailable. The status of GPC3 expression was
recorded according to the pathological report and was
categorized into GPC3-positive or GPC3-negative HCC patients.
Finally, 126 HCC patients who met the criteria were included and
randomly split into the training cohort (n = 88) and validation
cohort (n = 38) at a ratio of 7:3 based on the stratified method
(Figure 1).

Laboratory test and MRI protocol

According to the hospital information system, we collected
patients’ basic information, preoperative blood test, and
biochemical results, including age, gender, hepatitis B and C
immunology, cirrhosis, AFP level, platelet count (PLT),
prothrombin time (PT), international normalized ratio (INR),
total bilirubin (TBIL), serum albumin (ALB), and alanine
aminotransferase/aspartate aminotransferase (ALT/AST).

All patients experienced preoperative liver CE-MRI using the same
3.0T MRI scanner. Image acquisition sequences including transverse
T2-weighted imaging (T2WI) with fat suppression, diffusion-weighted
imaging (DWI), in-phase and opposed-phase T1-weighted imaging
(T1WI), pre-contrast three-dimensional volumetric-interpolated
breath-hold T1WI, and T1WI after contrast medium injection
(arterial phase, AP, 20–30 s; portal venous phase: PVP, 60–70 s;
delayed phase, DP, 2–3 min; hepatobiliary phase, HBP, 90 min). The
detailed parameters are explained in the Supplementary Method.
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Histopathological analysis

Histopathological evaluation was available after hepatectomy for
HCC across all patients. At the participating hospital, all surgical
specimens were routinely fixed in a 10% formaldehyde solution.
Two pathologists who were blind to MRI information jointly
evaluated the surgical specimens using a standard seven-point
sampling method (Liao et al., 2021). A mouse anti-human
glypican-3 monoclonal antibody (#MAB-0617 Maixin-Bio,
Fujian, China) was used for immunohistochemical labeling of
GPC3. GPC3 staining was considered positive when the brown
reaction product was present in at least 1 (tumoral) hepatocyte
(Libbrecht et al., 2006).

Radiological assessment

All MR images were reviewed independently by two abdominal
radiologists (X.J.C with 3 years of abdominal MRI experience and
C.Y with 10 years of abdominal MRI experience) who were aware of

the diagnosis of HCC but blinded to the status of GPC3 expression
and other clinical data. Divergences between two readers were
discussed until a final consensus was achieved. Radiological
features in accordance with the Liver Imaging Reporting and
Data System (version 2018) (Chernyak et al., 2018) were assessed
as follows: (a) tumor margins; (b) tumor capsule; (c) arterial phase
hyperenhancement; (d) non-peripheral washout; (e) peritumoral
arterial enhancement; (f) tumor hypointensity on HBP; (g)
peritumoral hypointensity on HBP; (h) mosaic architecture; (i)
intratumoral fat; (j) intratumoral hemorrhage; and (k)
intratumoral necrosis.

Clinical–radiological model

All clinical factors and qualitative radiological features in the
training cohort were analyzed first using univariate logistic
regression analyses. Those factors with a p value less than 0.05 in
univariate analyses were entered into multivariate logistic regression
analyses to find the independent predictors, and then the

FIGURE 1
Flow chart of the enrolled patients in our study. HCC, hepatocellular carcinoma; GPC3, glypican-3; GD-BOPTA, gadobenate dimeglumine; MRI,
magnetic resonance imaging.
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clinical–radiological model was built. The predictive capacity of the
clinical–radiological model was further evaluated in the validation
cohort.

Radiomics analysis

The main flow chart of radiomics analysis is shown in Figure 2.
The N4 bias-field correction algorithm was applied to correct the
inhomogeneity of MR images. The volumes of interest (VOIs),
defined as the whole tumor without peritumoral vessels or bile
ducts, were manually delineated by a radiologist (X.J.C) on T1WI,
AP, PVP, DP, and HBP images using 3D Slicer software (https://
www.slicer.org/). The details of VOIs segmentation are shown in the
Supplementary Method. If multiple lesions were found, only the
largest one was delineated. After an interval of 2 months, repeated
segmentation was performed on 30 randomly selected patients by
another radiologist (H.T.D). The two radiologists who perform the
segmentation were all blind to the GPC3 status and other clinical
information. The segmentation reproducibility was assessed using
the Dice similarity coefficient (DSC), and the reproducibility of
radiomics features was assessed by the intra-class correlation
coefficient (ICC).

Image preprocessing and feature extraction were performed using
the home-made python project based on the open-source package
PyrRadiomics (version 3.0.1, https://www.radiomics.io/pyradiomics.
html). Image normalization and spatial resampling were performed
before radiomics-feature extraction in order to normalize the image
intensity values and standardize the voxel spacing. We extracted
107 original radiomics features (19 first order features, 13 shape
features, and 75 texture features). Detailed descriptions of radiomics
features can be found online (https://pyradiomics.readthedocs.io/en/

latest/features.html). Additionally, we calculated delta features, which
are defined as feature value changes between different phases
(Mokrane et al., 2020). Three types of delta features were
calculated as follows: 1) standardized subtraction (delta1); 2) direct
subtraction (delta2); and 3) relative subtraction (delta3). In each
patient, a total of 2,782 features were extracted from 26 phases
(sequences), including non-contrast T1WI (T1), AP, PVP, DP, and
HBP; delta1AP-T1, delta1PVP-T1, delta1DP-T1, delta1HBP-T1, delta1PVP-
AP, delta1DP-PVP, and delta1HBP-DP; delta2AP-T1, delta2PVP-T1,

delta2DP-T1, delta2HBP-T1, delta2PVP-AP, delta2DP-PVP, and

delta2HBP-DP; delta3AP-T1, delta3PVP-T1, delta3DP-T1, delta3HBP-T1,

delta3PVP-AP, delta3DP-PVP, and delta3HBP-DP.
The ratio of GPC3-negative patients to GPC3-positive patients is

1:3.065 in this study, which reveals a data imbalance. Thus, we used
Synthetic Minority Over-sampling TEchnique (SMOTE) method
(‘BorderlineSMOTE’ packages from scikit-learn) to balance the
GPC3-negative group in the training cohort. Subsequently,
features in the training cohort were normalized by the z-score,
and features in the validation cohort were normalized using the
mean and standard deviation values derived from the training
cohort. We utilized a two-step feature selection procedure to
reduce feature dimension and select robust features. First, the
minimal-redundancy-maximal-relevance (mRMR) algorithm
(‘pymrmr’ packages in the Python project) was recruited to rank
feature importance. Briefly, input features were ranked by
maximizing mutual information (MI) to class labels and
minimizing MI with other features (Peng et al., 2005). The top-
20 features ranked by mRMR were used for further selection by
recursive feature elimination (RFE) algorithm with 10-fold cross-
validation (‘RFECV’ packages from scikit-learn).

We built preliminary models based on five phases, namely,
delta1, delta2, and delta3 features, respectively, using logistic

FIGURE 2
Flow chart of radiomics analysis. T1, non-contrast T1-weighted imaging; AP, arterial phase; PVP, portal venous phase; DP, delayed phase; HBP,
hepatobiliary phase; st a, standardized a [a means radiomics features from a single phase (e.g., radiomics features from AP)]; st b, standardized b [bmeans
radiomics features from another single phase (e.g., radiomics features from T1)]; SMOTE, synthetic minority over-sampling technique; mRMR, minimal-
redundancy-maximal-relevance; RFE, recursive feature elimination; LR, logistic regression; SVM, support vector machine; CV, cross-validation.
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TABLE 1 Clinical characteristics and radiological features in the training and validation cohorts.

Variable Training cohort (n = 88) Validation cohort (n = 38) pinter

GPC3− (n = 22) GPC3+ (n = 66) pintra GPC3− (n = 9) GPC3+ (n = 29) pintra

Age (years), mean ± SD 62.5 ± 13.92 57.44 ± 12.38 0.139 62.56 ± 6.84 58.59 ± 11.11 0.210 0.705

Gender 1.000 0.237 0.038

Female 3 (13.64) 11 (16.67) 1 (11.11) 0 (0)

Male 19 (86.36) 55 (83.33) 8 (88.89) 29 (100)

Hepatic virus infection 1.000 0.650 0.777

Absent 4 (18.18) 11 (16.67) 1 (11.11) 7 (24.14)

Present (HBV/HCV) 18 (81.82) 55 (83.33) 8 (88.89) 22 (75.86)

Cirrhosis 0.604 1.000 0.720

Absent 9 (40.91) 21 (31.82) 2 (22.22) 9 (31.03)

Present 13 (59.09) 45 (68.18) 7 (77.78) 20 (68.97)

AFP 0.007 1.000 0.35

≤20 ng/mL 15 (68.18) 22 (33.33) 4 (44.44) 11 (37.93)

20–400 ng/mL 5 (22.73) 17 (25.76) 3 (33.33) 11 (37.93)

>400 ng/mL 2 (9.09) 27 (40.91) 2 (22.22) 7 (24.14)

PLT 0.380 0.396 0.728

≤125 × 109/L 3 (13.64) 16 (24.24) 1 (11.11) 9 (31.03)

>125 × 109/L 19 (86.36) 50 (75.76) 8 (88.89) 20 (68.97)

PT 0.589 0.115 0.376

≤13 s 17 (77.27) 45 (68.18) 3 (33.33) 20 (68.97)

>13 s 5 (22.73) 21 (31.82) 6 (66.67) 9 (31.03)

INR 0.139 0.396 0.622

≤1.0 7 (31.82) 11 (16.67) 1 (11.11) 9 (31.03)

>1.0 15 (68.18) 55 (83.33) 8 (88.89) 20 (68.97)

TBIL 1.000 0.456 0.326

≤20.5 μmol/L 17 (77.27) 50 (75.76) 7 (77.78) 18 (62.07)

>20.5 μmol/L 5 (22.73) 16 (24.24) 2 (22.22) 11 (37.93)

ALB 0.806 0.703 0.728

≤40 g/L 12 (54.55) 32 (48.48) 5 (55.56) 12 (41.38)

>40 g/L 10 (45.45) 34 (51.52) 4 (44.44) 17 (58.62)

ALT/AST, median (Q1 and Q3) 0.98 (0.76, 1.22) 1 (0.75, 1.29) 0.633 1.34 (1.18, 1.4) 1.09 (0.75, 1.21) 0.186 0.468

Maximum tumor length (cm), median
(Q1 and Q3)

60.08 (43.23, 78.6) 50 (28.91, 73.9) 0.381 72.47 (58.31, 93.51) 36.77 (30.59, 51.92) 0.003 0.515

Tumor margins 0.281 0.650 0.443

Smooth 9 (40.91) 17 (25.76) 1 (11.11) 7 (24.14)

Non-smooth 13 (59.09) 49 (74.24) 8 (88.89) 22 (75.86)

Tumor capsule 0.903 0.481 0.843

Complete 5 (22.73) 19 (28.79) 1 (11.11) 9 (31.03)

Absent 5 (22.73) 14 (21.21) 2 (22.22) 8 (27.59)

Incomplete 12 (54.55) 33 (50) 6 (66.67) 12 (41.38)

APHE 0.894 1.000 0.064

Absent 6 (27.27) 21 (31.82) 1 (11.11) 4 (13.79)

Present 16 (72.73) 45 (68.18) 8 (88.89) 25 (86.21)

Non-peripheral washout 0.386 0.650 0.023

Absent 12 (54.55) 27 (40.91) 1 (11.11) 7 (24.14)

Present 10 (45.45) 39 (59.09) 8 (88.89) 22 (75.86)

Peritumoral arterial enhancement 1.000 0.148 0.658

Absent 9 (40.91) 25 (37.88) 2 (22.22) 15 (51.72)

Present 13 (59.09) 41 (62.12) 7 (77.78) 14 (48.28)

(Continued on following page)
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regression (LR) and support vector machine (SVM). Indicators such
as area under the receiver operating characteristic (ROC) curve
(AUC), accuracy, sensitivity, and specificity were used for model
evaluation. Subsequently, features in the preliminary model with the
AUC higher than 0.75 in both the training cohort and validation
cohort were combined to construct the fusion model. The fusion
model with the best discriminative power was selected as the final
model, and the prediction probability of the final model was used as
radiomics signature.

Nomogram construction and evaluation

A nomogram was built by integrating the clinical–radiological
risk factors and the radiomics signature in the training cohort into
multivariable logistic regression and was assessed in the validation
cohort. Calibration curves were utilized to analyze the agreement
between the predicted and observed GPC3 status. Decision curve
analysis was conducted to determine the clinical utility of the
nomogram.

Statistical analyses

Continuous variables with normal distribution were compared
by using the Student’s t-test and those with non-normal distribution
were compared by using the Mann–Whitney U-test. Categorical
variables were compared using the chi-squared test or Fisher’s exact

test. The DeLong test was used to compare the AUC between
different models. Hosmer–Lemeshow test (HL test) was used to
evaluate the goodness of fit of the nomogram. All statistical analyses
were performed using R software (version 4.1.0; http://www.r-
project.org). Two-sided p < 0.05 was considered to indicate
statistical significance.

Results

Basic characteristics and clinical model
performance

Comparisons of clinical and radiological characteristics between
the training cohort and the validation cohort are summarized in
Table 1. No statistical difference was observed between the two
groups (p = 0.243–1.0), except for gender (p = 0.038) and non-
peripheral washout (p = 0.023).

The results of univariate analysis (see Supplementary Table S1)
showed that only AFP is significantly related to GPC3 expression
(OR = 6.923 [95% CI: 1.814–45.64] and p = 0.013). None of the
radiological features were significantly related to GPC3 (p =
0.111–0.901). Thus, AFP was used as the clinical model and had
an AUC (95% CI) of 0.659 (0.573–0.745), accuracy of 0.534,
sensitivity of 0.409, and specificity of 0.909 in the training cohort
(Figure 3A). In validation cohort, the AUC (95% CI), accuracy,
sensitivity, and specificity of the clinical model were 0.598
(0.388–0.807), 0.737, 0.862, and 0.333, respectively (Figure 3B).

TABLE 1 (Continued) Clinical characteristics and radiological features in the training and validation cohorts.

Variable Training cohort (n = 88) Validation cohort (n = 38) pinter

GPC3− (n = 22) GPC3+ (n = 66) pintra GPC3− (n = 9) GPC3+ (n = 29) pintra

Tumor hypointensity on HBP 0.440 0.554 0.067

Absent 1 (4.55) 1 (1.52) 0 (0) 4 (13.79)

Present 21 (95.45) 65 (98.48) 9 (100) 25 (86.21)

Peritumoral hypointensity on HBP 1.000 1.000 0.945

Absent 15 (68.18) 43 (65.15) 6 (66.67) 20 (68.97)

Present 7 (31.82) 23 (34.85) 3 (33.33) 9 (31.03)

Mosaic architecture 0.589 0.273 0.376

Absent 5 (22.73) 21 (31.82) 2 (22.22) 13 (44.83)

Present 17 (77.27) 45 (68.18) 7 (77.78) 16 (55.17)

Intratumoral fat 0.766 0.075 0.470

Absent 17 (77.27) 53 (80.3) 6 (66.67) 27 (93.1)

Present 5 (22.73) 13 (19.7) 3 (33.33) 2 (6.9)

Intratumoral hemorrhage 0.173 0.699 0.560

Absent 9 (40.91) 40 (60.61) 5 (55.56) 19 (65.52)

Present 13 (59.09) 26 (39.39) 4 (44.44) 10 (34.48)

Intratumoral necrosis 1.000 0.052 0.728

Absent 13 (59.09) 38 (57.58) 3 (33.33) 21 (72.41)

Present 9 (40.91) 28 (42.42) 6 (66.67) 8 (27.59)

Unless indicated otherwise, data are number of patients with percentages in parentheses. pintra represents the p value between GPC3+ and GPC3− groups; pinter represents the p value between

the training cohort and the validation cohort. HBV, hepatitis B virus; HCV, hepatitis C virus; AFP, serum alpha-fetoprotein; PLT, platelet count; PT, prothrombin time; INR, international

normalized ratio; TBIL, serum total bilirubin; ALB, serum albumin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; APHE, arterial phase hyperenhancement; HBP,

hepatobiliary phase.
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Construction and evaluation of radiomics
models

First, preliminary models were constructed and evaluated. The
performance of each preliminary model in the training cohort and
the validation cohort is shown in Supplementary Table S2. Among
five single-phase radiomics models, only the one derived from DP
has an AUC higher than 0.75 in both the training and the validation
cohort. In delta1, no model met the criteria. In delta2 and delta3,
models based on delta2AP-t1, delta2PVP-t1, delta2HBP-t1, delta2PVP-
AP, delta3PVP-t1, and delta3HBP-t1 showed satisfactory results (AUC
higher than 0.75 in both training and validation cohorts) and were
used in constructing the fusion models according to permutation
and combination.

The performance of all fusion models is presented in Table 2.
The logistic regression model based on delta2AP-T1, delta2HBP-T1,
and delta2PVP-AP (fusion9) showed the best overall performance,
achieving AUCs of 0.862 (95% CI: 0.795–0.912) and 0.851 (95%
CI: 0.717–0.959) for the training cohort (“SMOTE” training
cohort) and the validation cohort, respectively, which was
named as the optimal model in the following section. The
selected features and their corresponding coefficients are
shown in Table 3. Radiomics score was calculated from the
predicted probability of the optimal model. The AUCs of
radiomics score were 0.805 in the training cohort and 0.851 in
the validation cohort (Figures 3A, B).

The mean DSC of VOIs segmentation and the mean ICC of
radiomics features in different phases are shown in Supplementary
Tables S4–S6. The mean DSC of VOIs on five phases was higher
than 0.9, and the mean ICC of radiomics features from different
delta phases was higher than 0.8. All of the ICC of radiomics features
in the optimal model were higher than 0.8.

Performance of the nomogram

By combining the AFP and radiomics signature of the optimal
model through logistic regression, a comprehensive model was built
and visualized as a nomogram (Figure 4A). The nomogram yielded an
AUC of 0.844 (95% CI: 0.748–0.941) in the training cohort and 0.862
(95% CI: 0.745–0.979) in the validation cohort, respectively, (Figures
3A, B), which were significantly higher than the clinical model (p <
0.001 in both cohorts). The accuracy, sensitivity, and specificity of the
nomogram in the training cohort and the validation cohort were 0.773,
0.742, and 0.864 and 0.789, 0.793 and, 0.778, respectively. The threshold
of the nomogram in the training cohort was 0.78, which was calculated
by the Youden index. The box diagram (Figures 2B, C) displayed the
distribution of the predicted probability of the nomogram in theGPC3+
group and the GPC3− group and showed statistical difference in both
groups (p < 0.001 in both cohorts). Calibration curves (Figure 4D)
showed good agreement between nomogram-predicted probability and
actual GPC3 status in both the training cohort (HL test, p = 0.846) and
validation cohort (HL test, p = 0.632). Decision curve analysis
(Figure 4E) demonstrated that the nomogram obtained more clinical
net benefits than the strategies of “treat all” and “treat none.”

Discussion

In this retrospective study, we aim to develop and validate a
radiomics-based nomogram to preoperatively predict the status of
GPC3 expression in HCC patients. The clinical model, single-phase
radiomics models, and delta-radiomics models were built, and delta-
radiomics model had higher AUCs than single-phase radiomics
models (especially the delta2 radiomics model). The final
comprehensive model consisting of delta2AP-T1 and delta2HBP-T1

FIGURE 3
Receiver operating characteristic (ROC) curves of the clinical model, fusion radiomics score, and nomogram. (A) Training cohort and (B) validation
cohort.
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TABLE 2 Performance of all fusion models.

Models Fusion
phase

Classifier Training cohort Validation cohort

AUC
(95%CI)

Accuracy Sensitivity Specificity AUC
(95%CI)

Accuracy Sensitivity Specificity

Fusion 1 delta2AP-
T1 and

delta2PVP-
T1

LR 0.839 [0.767,
0.903]

0.750 0.576 0.939 0.751 [0.558,
0.917]

0.763 0.759 0.778

SVM 0.813 [0.734,
0.888]

0.758 0.606 0.924 0.789 [0.625,
0.929]

0.711 0.655 0.889

Fusion 2 delta2AP-
T1 and

delta2HBP-
T1

LR 0.846 [0.770,
0.911]

0.811 0.742 0.894 0.812 [0.639,
0.943]

0.737 0.759 0.667

SVM 0.804 [0.721,
0.874]

0.758 0.697 0.833 0.774 [0.604,
0.922]

0.711 0.690 0.778

Fusion 3 delta2AP-
T1 and

delta2PVP-
AP

LR 0.789 [0.707,
0.861]

0.758 0.591 0.939 0.766 [0.622,
0.904]

0.684 0.621 0.889

SVM 0.760 [0.675,
0.840]

0.727 0.636 0.833 0.762 [0.588,
0.912]

0.632 0.621 0.667

Fusion 4 delta2PVP-
T1 and

delta2HBP-
T1

LR 0.823 [0.749,
0.889]

0.765 0.667 0.879 0.701 [0.488,
0.897]

0.658 0.621 0.778

SVM 0.811 [0.739,
0.880]

0.735 0.727 0.758 0.609 [0.368,
0.828]

0.579 0.586 0.556

Fusion 5 delta2PVP-
T1 and

delta2PVP-
AP

LR 0.754 [0.673,
0.830]

0.720 0.576 0.879 0.766 [0.596,
0.916]

0.711 0.724 0.667

SVM 0.752 [0.672,
0.830]

0.712 0.773 0.667 0.818 [0.658,
0.958]

0.816 0.862 0.667

Fusion 6 delta2HBP-
T1 and

delta2PVP-
AP

LR 0.854 [0.789,
0.913]

0.788 0.818 0.773 0.778 [0.593,
0.936]

0.763 0.828 0.556

SVM 0.858 [0.790,
0.919]

0.811 0.803 0.833 0.808 [0.627,
0.952]

0.763 0.793 0.667

Fusion 7 delta2AP-
T1 and

delta2PVP-
T1 and

delta2HBP-
T1

LR 0.882 [0.816,
0.931]

0.833 0.742 0.939 0.808 [0.627,
0.954]

0.763 0.724 0.889

SVM 0.906 [0.846,
0.960]

0.864 0.833 0.909 0.808 [0.581,
0.975]

0.816 0.793 0.889

Fusion 8 delta2AP-
T1 and

delta2PVP-
T1 and

delta2PVP-
AP

LR 0.804 [0.731,
0.875]

0.742 0.682 0.818 0.625 [0.441,
0.800]

0.605 0.655 0.444

SVM 0.778 [0.693,
0.866]

0.765 0.803 0.742 0.743 [0.562,
0.904]

0.711 0.759 0.556

Fusion 9 delta2AP-
T1 and

delta2HBP-
T1 and

delta2PVP-
AP

LR* 0.862 [0.795,
0.912]

0.795 0.758 0.848 0.851 [0.717,
0.959]

0.842 0.828 0.889

SVM 0.866 [0.796,
0.922]

0.818 0.864 0.788 0.659 [0.470,
0.844]

0.711 0.828 0.333

Fusion 10 delta2PVP-
T1 and

delta2HBP-
T1 and

delta2PVP-
AP

LR 0.805 [0.731,
0.873]

0.735 0.848 0.636 0.732 [0.535,
0.903]

0.711 0.828 0.333

SVM 0.830 [0.761,
0.895]

0.780 0.727 0.848 0.774 [0.559,
0.938]

0.763 0.793 0.667

Fusion 11 delta2AP-
T1 and

delta2PVP-
T1 and

delta2HBP-
T1 and

LR 0.850 [0.785,
0.910]

0.780 0.712 0.864 0.720 [0.521,
0.890]

0.658 0.655 0.667

SVM 0.857 [0.791,
0.918]

0.818 0.788 0.864 0.816 [0.630,
0.954]

0.658 0.621 0.778

(Continued on following page)
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and delta2PVP-AP radiomics signature and AFP achieved the best
overall performance and had more clinical benefits.

Previous studies (Gu et al., 2020; Zhao et al., 2021) have reported
that the serum AFP level was significantly associated with
GPC3 expression. Our study also has the same result. The
potential mechanism may be that the level of GPC3 induction is
controlled by alpha-fetoprotein regulator 2 (Afr2) (Morford et al.,
2007). During the construction of the clinical model, only the AFP
level was significantly related to the GPC3 expression status. Despite
the unsatisfactory sensitivity and accuracy, a high specificity of
0.909 was reported in the training cohort of the clinical model
based on AFP to predict GPC3 expression. The final comprehensive
model, integrated AFP, displayed good performance as well.

Due to the imbalanced proportion of GPC3 expression in our data,
we employed the “BorderlineSMOTE” strategy (Wang et al., 2015) to
solve the problem. The BorderlineSMOTE algorithm is an improved
and scientific oversampling algorithm based on SMOTE, which uses
only a few samples on the boundary to synthesize new samples, thereby
improving the internal distribution of samples. Moreover, we used two
classical and common machine learning algorithms, namely, logistic
regression and support vectormachine to train the radiomicsmodels. In
terms of SVM, we used the linear kernel because only it can output the
predicted probability of each sample. Our results showed that LR and
SVM performed similarly in model development.

In our study, we extracted radiomics features from three-
dimensional VOIs. The entire tumor inherently grows spatially
and forms heterogeneously; the VOIs certainly incorporate more
texture features and geometrical information rather than the two-
dimensional regions of interest (Xu et al., 2019). We not only
extracted radiomics features from five different phase images but
also calculated delta-radiomics features. Delta radiomics may
provide more information about the blood supply and
metabolism of tumors. As for delta radiomics, our results
showed that in the validation cohort, direct subtraction delta
features (AUC ranges: 0.548–0.808) and relative subtraction
delta features (AUC ranges: 0.464–0.862) had better
performance than standardized delta features (AUC ranges:
0.473–0.724). The best combination of delta features is delta2AP-
T1 and delta2HBP-T1 and delta2PVP-AP, and most of them were
textured features. Among them, IDMN (inverse difference
moment normalized) is a measure of the local homogeneity of
an image, and IMC2 quantify the complexity of the texture. These
two features from delta2AP-T1 may reflect the texture changes from
T1WI to the arterial phase and may correspond to the arterial
enhancement. Many previous studies have supported that that
hepatobiliary phase hypointensity on liver-specific contrast agent-
enhanced MRI increases the diagnostic sensitivity for detecting
HCC (Cortis et al., 2016; Li et al., 2021). Features from delta2HBP-

TABLE 2 (Continued) Performance of all fusion models.

Models Fusion
phase

Classifier Training cohort Validation cohort

AUC
(95%CI)

Accuracy Sensitivity Specificity AUC
(95%CI)

Accuracy Sensitivity Specificity

delta2PVP-
AP

Fusion 12 delta3PVP-
T1 and

delta3HBP-
T1)

LR 0.866 [0.800,
0.922]

0.818 0.788 0.864 0.835 [0.697,
0.954]

0.789 0.828 0.667

SVM 0.860 [0.789,
0.927]

0.811 0.758 0.879 0.743 [0.567,
0.906]

0.763 0.793 0.667

*Models with the best comprehensive performance were used for the construction of the nomogram.

T1, non-contrast T1-weighted imaging; AP, arterial phase; PVP, portal venous phase; HBP, hepatobiliary phase; LR, logistic regression; SVM, support vector machine; AUC, area under the

receiver operating characteristic curve.

TABLE 3 Selected features and their corresponding coefficients.

Radiomics feature Coefficient

delta2AP-T1 original_glcm_SumEntropy −1.741

delta2AP-T1 original_glcm_Idmn 0.894

delta2AP-T1 original_glcm_Imc2 1.264

delta2AP-T1 original_gldm_DependenceNonUniformityNormalized 1.295

delta2HBP-T1 original_ngtdm_Busyness 0.652

delta2HBP-T1 original_firstorder_Variance 0.805

delta2PVP-AP original_ngtdm_Coarseness 1.297

delta2PVP-AP original_glszm_SmallAreaLowGrayLevelEmphasis −0.943

Intercept = 0.198.

T1, non-contrast T1-weighted imaging; AP, arterial phase; PVP, portal venous phase; HBP, hepatobiliary phase.
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T1 may imply that tumor tissue cannot uptake GD-BOPTA and
thus exhibits hypointensity on the hepatobiliary phase, which
contrasts to peritumoral hepatic parenchyma.

Gu et al. (2020) used radiomics features based on MRI delayed
phase images to predict GPC3 expression in hepatocellular
carcinoma, and the AUCs of the final radiomics model are

FIGURE 4
Visualization and evaluation of the comprehensive model. (A) Nomogram based on clinical risk factor AFP combined with radiomics score; (B) and
(C) represent box plots showing the distribution of patients’ GPC3-positive probability in the training and validation cohorts; **** for p < 0.0001 and ***
for p < 0.01 by the Mann–Whitney U test; (D) calibration curves; (E) decision curves.
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0.879 and 0.871 in the training and validation cohorts, respectively.
In our study, radiomics models from DP had an AUC of 0.772 and
0.755 in the training and validation cohorts, respectively. The
difference between the two studies may be due to the bias of
diversified sample populations, parameters of scan machines, and
different MRI contrast agent, etc. We further analyzed the predictive
effect of the optimal delta-radiomics model in our study and found
that the model achieved an AUC of 0.957 [0.907–1] in the subgroup
population with hepatocellular carcinoma smaller than 5 cm, which
was higher than the radiomics model in Gu’s study.

Recently, adoptive cell therapy is emerging in advanced HCC,
and many clinical trials investigate CAR T cells targeting GPC3
(Rochigneux et al., 2021). An effective preoperative estimation of
GPC3 presence can assist clinicians to choose and customize
appropriate therapeutic strategies for patients. Chen et al. (2021)
used the IDEAL IQ MRI R2* map to evaluate glypican-3 expression
and achieved an AUC of 0.881, sensitivity of 0.859, and specificity
0.842. However, the IDEAL IQ sequence is not a routine sequence in
liver MRI examination, and the usage of R2* needs further
validation. Our proposed radiomics-based nomogram is an
effective and economical tool to preoperatively predict
GPC3 expression and is expected to help clinicians make
appropriate treatment decision.

Our study has several limitations. First, our study is a single-
center retrospective study. The sample size is relatively small, and
external validation in other centers is needed. Second, we only focus
on muti-phase CE-MRI radiomics features, and multimodal MRI
radiomics features such as T2WI and DWI could be explored in the
future. Third, our study used Gd-BOPTA CE-MRI, and the
hepatobiliary phase was acquired at about 90 min after contrast
medium injection. Further validation based on gadoxetate disodium
CE-MRI is needed. Fourth, manual segmentation with semi-
automatic segmentation tools still takes a lot of time. Registration
and deep learning-based auto-segmentation can be used in future
studies.

In conclusion, the multi-phase CE-MRI based on delta-
radiomics model can non-invasively predict GPC3-positive HCC.
Integrated with the serum AFP level, the comprehensive nomogram
achieved a satisfactory prediction of GPC3 expression status, which
will be beneficial for clinical treatment decision making.
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Glossary

AFP Alpha-fetoprotein

ALB Albumin

ALT Alanine aminotransferase

AP Arterial phase

AST Aspartate aminotransferase

AUC Area under the curve

CE-MRI Contrast-enhanced magnetic resonance imaging

DP Delayed phase

DWI Diffusion-weighted imaging

GD-BOPTA Dadobenate dimeglumine

GPC3 Glypican-3

HBP Hepatobiliary phase

HCC Hepatocellular carcinoma

ICC Intra-class correlation coefficient

INR International normalized ratio

LR Logistic regression

mRMR Minimal-redundancy-maximal-relevance

MRI Magnetic resonance imaging

MVI Microvascular invasion

OR Odds ratio

PLT Platelet count

PT Prothrombin time

PVP Portal venous phase

RFE Recursive feature elimination

ROC Receiver operating characteristic

SMOTE Synthetic minority over-sampling technique

SVM Support vector machine

T1WI T1-weighted imaging

T2WI T2-weighted imaging

TACE Transarterial chemoembolization

TBIL Total bilirubin

VOIs Volumes of interest
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