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Chronic kidney disease (CKD) has been recognized as a significant global health
problem due to being an important contributor to morbidity and mortality.
Inflammation is the critical event that leads to CKD development orchestrated
by a complex interaction between renal parenchyma and immune cells.
Particularly, the crosstalk between tubular epithelial cells (TECs) and
macrophages is an example of the critical cell communication in the kidney
that drives kidney fibrosis, a pathological feature in CKD.Metabolism dysregulation
of TECs and macrophages can be a bridge that connects inflammation and
fibrogenesis. Currently, some evidence has reported how cellular lipid
disturbances can affect kidney disease and cause tubulointerstitial fibrosis
highlighting the importance of investigating potential molecules that can
restore metabolic parameters. Vitamin D (VitD) is a hormone naturally
produced by mammalian cells in a coordinated manner by the skin, liver, and
kidneys. VitD deficiency or insufficiency is prevalent in patients with CKD, and
serum levels of VitD are inversely correlated with the degree of kidney
inflammation and renal function. Proximal TECs and macrophages produce the
active form of VitD, and both express the VitD receptor (VDR) that evidence the
importance of this nutrient in regulating their functions. However, whether VitD
signaling drives physiological and metabolism improvement of TECs and
macrophages during kidney injury is an open issue to be debated. In this
review, we brought to light VitD as an important metabolic modulator of lipid
metabolism in TECs andmacrophages. New scientific approaches targeting VitD e
VDR signaling at the cellular metabolic level can provide a better comprehension
of its role in renal physiology and CKD progression.
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1 Introduction

Chronic kidney disease (CKD) is a long-term and gradual loss of
kidney function. Inflammation and cellular metabolic imbalance are
the main processes involved in kidney fibrosis, an inevitable
pathological hallmark of all CKDs, characterized by the excessive
accumulation of extracellular matrix components in the kidney.
Tubulointerstitial fibrosis (TIF) refers to fibrosis outside of the
glomerulus involving tubules and interstitium as a result of a
sustained inflammatory response triggered by a particular kidney
injury. Tubular epithelial cells (TECs) are considered the epicenter
of renal damage during TIF development (Qi and Yang, 2018; Fu
et al., 2022). TECs are important producers of pro-fibrotic and
inflammatory mediators and can interact with immune cells in the
interstitium potentiating the inflammatory response (Eardley et al.,
2008; Feng et al., 2018; Conway et al., 2020).

Macrophages are immunological agents, and their presence in
kidneys is considered a mixed blessing: while they are required for
immune surveillance, they also play a pivotal role in both CKD
occurrence and progression. Data from human and experimental
observations show that macrophages are related to the severity of
fibrosis (Yu et al., 2010), and it is possibly aggravated due to the
direct communication with TECs (Komada et al., 2018; Jiang et al.,
2022; Yang et al., 2023). TECs and macrophages undergo metabolic
reconfiguration influencing inflammation and fibrosis development
(Kang et al., 2015b; Bhatia et al., 2019). Lipid metabolism,
specifically fatty acid oxidation (FAO, also referred to as β-
oxidation), is the main pathway disturbed in TIF affecting
primary TECs since they use the FAO as their primary energy
source. In this line, macrophages rely on metabolic reprogramming
to achieve an effector response (Van den Bossche et al., 2017;
Dowling et al., 2021; Wculek et al., 2022) and the lipid
metabolism status can determine the macrophage polarization
toward a pro- or anti-inflammatory phenotype (Batista-Gonzalez
et al., 2019). Cell metabolism has been addressed in recent studies to
understand how nutrients can regulate function of certain cell
subsets and, thus, change the course of diseases (Stine et al.,
2022). The comprehension of how cell metabolism can
orchestrate renal fibrosis offers potential strategies to disrupt
CKD development and progression.

Vitamin D (VitD) is the “sunshine” vitamin due to it being
synthesized in the skin under sunlight exposure. Its biosynthesis
involves coordinating processes among the skin, liver, and kidneys
(Bikle, 2014; Bikle and Christakos, 2020; Bouillon et al., 2022). CKD
patients have a compromised VitD production that affects not only
the kidney physiology, but also the systemic metabolism. Moreover,
there is a diversity of studies that associate VitD deficiency and the
development of pathological inflammation and renal fibrosis
(LaClair et al., 2005; Del Valle et al., 2007; Cuppari and Garcia-
Lopes, 2009; Nigwekar et al., 2012; Wang et al., 2012; Zhang et al.,
2022; Dhillon-Jhattu et al., 2023). Factors associated with the
internalization of precursors for active VitD synthesis, such as
endocytic receptors, are reduced in the injured kidneys, which
could explain its low levels in CKD patients (Toi et al., 2019;
Wen et al., 2022). Nutritional aspects and low sunlight exposure
can also aggravate this clinical scenario, increasing the risk of
mortality in patients with end-stage renal disease, the most
aggressive phase of CKD (Yoon et al., 2019).

Altogether, we aimed to gather recent data regarding VitD
function in TECs and macrophages, highlighting their metabolic
features to provide a more solid basis for future research in the field.
We believe that unraveling the mechanistic roles of VitD and its
receptor in the kidney can lead to the development of effective
therapeutical strategies to treat CKD.

2 Vitamin D metabolism

VitD is a sterol hormone that can be naturally produced in a
multi-step, coordinated series of reactions among the skin, liver,
and kidneys (Bikle, 2014; Bikle and Christakos, 2020; Bouillon
et al., 2022). 7-dehydrocholesterol (7-DHC) is the precursor
present in the skin compartment that, when irradiated by
ultraviolet B (UVB) light (290–315 nm), is further converted
into pre-vitamin D3, which temperature adjustments lead to
the isomerization of pre-vitamin D3 into vitamin D3
(cholecalciferol) (Figure 1). Subsequently, vitamin D3 is
transported to the liver through VitD Binding Protein
(VDBP), where the next bioactivation takes place. In the liver,
cytochrome P450 family members, such as CYP27A1 and
CYP2R1, promote a hydroxylation reaction in carbon 25 of
vitamin D3, yielding 25-hydroxyvitamin D3 (Calcitriol). The
third and final step to produce the bioactive form of vitamin
D is coordinated by kidney cells in which the 1ɑ-hydroxylase
(CYP27B1) adds another hydroxyl group to carbon 1 of 25-
hydroxyvitamin D3, leading to the synthesis of 1,25-dihydroxy
vitamin D3 (1,25D3) (Wacker and Holick, 2013). The latter is
responsible for the biological functions exerted through its biding
to cognate VitD receptor (VDR) in the cytosolic compartment of
a given cell. After being activated, the 1,25D3/VDR complex
works as a transcription factor that operates along with another
cytosolic receptor named Retinoid X Receptor α (RXR α)
(Barsony and Prufer, 2002).

Since 1,25D3 belongs to the fat-soluble and cholesterol-derived
secosteroid family, it can diffuse through the cell bilayer membrane
in minor concentrations. However, the primary process of
1,25D3 entering the cell is regulated by receptor-mediated
endocytosis with the support of membrane proteins like caveolin,
megalin, and cubilin (Trimarchi et al., 2021) (Figure 1). When
present in the cytosol in its active form, 1,25D3 binds to VDR and
translocate to the nucleus, where both VDR heterodimers and RXR
α bind to the promoter region of VitD Responsive Elements
(VDREs) on the DNA. The absence of VDR increases
inflammation and aggravates inflammatory, metabolic, and
autoimmune diseases, such as obesity, diabetes, vitiligo,
inflammatory bowel diseases, and sepsis (Froicu et al., 2003;
Wong et al., 2009; Mackawy and Badawi, 2014; Doss et al., 2015;
Rao et al., 2019). Moreover, the beneficial role of VitD and VDR in
renal inflammation and fibrosis have been reported in different
studies described in the following topics.

2.1 Vitamin D in the kidney

In kidneys, VDR is expressed in the macula dense of the
juxtaglomerular apparatus, glomerular parietal cells, podocytes,
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and proximal tubular epithelial cells (PTECs), evidencing a role for
VitD in kidney homeostasis (Wang et al., 2012).

Patients diagnosed with CKD have a progressive reduction of
VitD levels (LaClair et al., 2005; Nigwekar et al., 2012) and VitD
deficiency is prevalent in 76.1% of stage 5 CKD patients
submitted to the hemodialysis (Del Valle et al., 2007; Cuppari
and Garcia-Lopes, 2009; Zhang et al., 2022; Dhillon-Jhattu et al.,
2023). Studies demonstrated in experimental models and in CKD
patients a lower megalin expression in the kidneys (Toi et al.,
2019; Wen et al., 2022) and the absence of megalin in mice causes
the inability of PTECs to capture the 25(OH)D3-VDBP complex,
which in turn, are excreted in the urine, leading to a drastic
reduction of plasma level of 25(OH)D3 and 1,25D3 (Nykjaer
et al., 1999; Negri, 2006). Thus, megalin is a critical molecule in
the indirect production of active VitD synthesis in the kidney,
and its low expression in PTECs could explain the low levels of
VitD in CKD patients.

The VitD deficiency contributes to fibrosis and increases
intrarenal inflammation (Goncalves et al., 2014; de Braganca
et al., 2018; Zhang et al., 2021b). These two pathological aspects

have been linked to changes in lipid cell metabolism in renal
fibrogenesis. Thus, VitD deficiency may cause a metabolic
disturbance that leads to “fibroinflammation” in the kidneys.

2.1.1 General aspects of lipid metabolism of tubular
cell

Metabolism is the combination of biochemical processes at
the cellular level to provide energy and substrates to the body and
maintain tissue homeostasis. The metabolic state can influence a
diversity of chronic inflammatory diseases. In CKD, changes in
TEC’s lipid metabolism emerged as underlying mechanisms
contributing to inflammation and renal fibrogenesis (Kang
et al., 2015b; Han et al., 2016; Han et al., 2017). The
molecular mechanisms that lead to metabolic disturbances in
kidney cells and the investigation of putative molecules in
restoring kidney function have become a spotlight of research
in nephrology.

The energy source of kidney cells is specific. Podocytes,
mesangial, and endothelial cells rely on the glycolysis (Forbes,
2016), while TECs, use FAO preferentially as the main metabolic

FIGURE 1
Metabolic route of 1,25 dihydroxyvitamin D3 synthesis. Firstly, 7-dehydrocholesterol (7-DHC) is converted to pre-vitamin D3 (Cholecalciferol)
through the action of UVB light in the skin. Subsequently, this compound migrates to the bloodstream where it binds to VDBP, and the complex is
transported to the liver. Then, the liver cell promotes the conversion of pre-vitamin D3 into 25-hydroxyvitamin D3 (25-OHD3) mediated by CYP27A1 and
CYP2R1. Finally, 25-OHD3 migrates to the kidney where it can be passively diffused to the cells or be endocytosed viamegalin, cubilin and caveolin
membrane receptors. Once 25-OHD3 reaches the cytosol, it is converted by CYP27B1 into 1,25 dihydroxyvitamin D3 (1,25D3), the bioactive form of VitD.
Subsequently, the 1,25D3 binds to VDR, migrate to the nucleus, and heterodimerizes with other nuclear hormones receptors, leading to the transcription
of genes related to lipidmetabolism. 7-DHC, 7-dehydrocholesterol; UVB, ultraviolet B (radiation); VDBP, vitamin D binding protein; VitD, vitaminD. Figure
created with BioRender.com.
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pathway to obtain energy. FAO is considered one arm of oxidative
phosphorylation (OXPHOS) since it fuels the tricarboxylic acid
(TCA) cycle, which in turns, provides reducing equivalents to
electron transport chain (ETC) to produce ATP. TECs represent
about 90% of kidneymass (Chen et al., 2019) and require a high ATP
demand to maintain their physiological function due to their intense
and constant activity of transporting/reabsorption of solutes in the
kidney (Kang et al., 2015b; Bhargava and Schnellmann, 2017; Han
et al., 2017).

The disrupted FAO in the kidney (Kang et al., 2015b; Han et al.,
2016; Han et al., 2017) causes lipotoxicity, inflammation, and
epithelial-mesenchymal transition (EMT) (Kang et al., 2015b).
EMT is a process in that TECs lose their epithelial phenotype and
acquire mesenchymal characteristics associated with renal fibrosis
during CKD. Transforming growth factor-β (TGF-β) is considered
the critical regulator of EMT and fibrosis. TGF-β-induced tubular
injury drastically reduces the key rate-limiting enzymes of FAO,
carnitine palmitoyltransferases (CPT)-1a and -2a expression in
TECs, and impairs adequate ATP production (Kang et al., 2015b).
In contrast, CPT1a overexpression in TECs reduced the number of
inflammatory macrophages and increased anti-inflammatory
macrophages in the kidneys (see Section 3) (Miguel et al., 2021).
VitD has the potential to reduce the production of inflammatory
mediators, such as iNOS, COX2, IL-6, TNF, and MCP-1 through the
NF-κB and impairs EMT of TECs submitted to noxious stimuli, such
as 4-hydroxy-2-hexenal or LPS (Kim et al., 2013; Du et al., 2019).
Considering that inflammation is a process highly associated with
changes in cell metabolism, it brings to light the potential of VitD to
regulate “metabolic inflammation” during CKD development
(Marcotorchino et al., 2014; Kang et al., 2015a; Chang and Kim,
2016; Santos et al., 2017; Santos et al., 2018; Blajszczak and Nonn,
2019).

Beyond CPTs, other molecules indirectly influence FAO. sirtuin 1
(SIRT1), a member of nicotinamide adenine dinucleotide (NAD+)-
dependent histone deacetylase, induces mitochondrial biogenesis by
leading to deacetylation and activation of peroxisome proliferator-
activated γ coactivator-1α (PGC-1α) (Rodgers et al., 2005; Gerhart-
Hines et al., 2007), considered a key regulator of mitochondrial
biogenesis, mitochondrial dynamics and mitophagy (Scarpulla, 2011).
Moreover, PGC-1α and PGC-1α-peroxisome proliferator-activated
receptor a (PPARα), in association, induces the transcriptional activity
of FAO genes, including CPT1a. The overexpression of PGC-1α in TECs
improves inflammatory and pro-fibrotic signaling in the mouse model
fibrosis (Han et al., 2017) and reinforces the importance of restoring
mitochondrial lipid metabolism in kidney fibrosis development.

2.1.2 Vitamin D and renal fibrosis: Insights on lipid
metabolism of tubular cells

Previous studies correlated VitD and metabolic diseases, such as
obesity and type 2 diabetes mellitus (T2DM) (Candido and Bressan,
2014). In terms of obesity, where mitochondrial and lipid
metabolism is mainly affected, experimental studies
contribute to understand the mechanisms of VitD on the
regulation of lipid disturbances. The VitD supplementation
impairs the weight gain in the obesity mouse model induced
by a high-fat diet (Marcotorchino et al., 2014). These effects are
suggested to be linked with an increase of FAO through the
upregulation of FAO-related genes, such as PGC-1α/β, PPARα

and CPT1 isoforms (CPT1a and CPT1b) (Marcotorchino et al.,
2014).

As discussed in the previous topic, recent findings suggested the
effects of VitD on sirtuins (Thakran et al., 2013; Liu et al., 2020). The
diversity of biological activities of sirtuins can be associated with their
cellular distribution. The sirtuins can be found in the cytoplasm,
mitochondria, and nucleus, and the same sirtuin can alter its cellular
localization (Hong et al., 2020). While the nuclear SIRT1 plays roles in
several transcriptional, posttranscriptional and posttranslational aspects
of lipid metabolism, the SIRT3 controls many processes in
mitochondria, such as antioxidant effects, autophagy, mitochondrial
unfolded protein response, and several aspects of energy metabolism,
including glycolysis, FAO, TCA cycle, OXPHOS, and ETC (Zhao et al.,
2022). SIRT3 activation is beneficial in the context of kidney injury since
its absence in unilateral ureter obstruction (UUO, classical animal
model of renal fibrosis) caused exacerbated injury and fibrosis
(Locatelli et al., 2020). The beneficial mechanism of SIRT3 is related
to its controlling of mitochondrial enzyme acetylation (Zhang et al.,
2021a). Acetylated proteins lose their catalytic function impairing
normal mitochondrial metabolism. This is the case of some
mitochondrial enzymes, such as pyruvate dehydrogenase E1α
(PDHE1α), ATP synthase subunit O (ATP5O), and CPT1a disrupt
OXPHOS because they decrease the ATP production, increase lipid
bodies accumulation, and also increase glycolysis in kidney tubular cells
during fibrotic process after acetylation (Zhang et al., 2021a). Recently,
the induction of SIRT3 expression via VitD actions can reduce the
inflammatory profile by impairing NLRP3 inflammasome activation in
skin lesions (Dong et al., 2021). NLRP3 is a classical inflammasome
reported to be activated by lipids in the cytoplasm and it has been
associated with the renal fibrosis pathway (Jiang et al., 2012; Zanoni
et al., 2017; Sokolova et al., 2020). Based on these studies, SIRT3 is
reduced in renal fibrosis and may impair the CPT1a activity due to
becoming acetylated (Zhang et al., 2021a). VitD may induce
SIRT3 expression in TECs that could restore CPT1a activity,
improving FAO and reducing lipid accumulation. The last event
could prevent NLRP3 inflammasome activation.

Regarding the role of SIRT1 in the pathogenesis of CKD, its
activation has a protective role in the disease progression by
inactivating different profibrotic pathways, such as SMAD
signaling. It contributes to mitochondrial biogenesis, which
protects from fibrosis (Simic et al., 2013; Chuang et al., 2014;
Huang et al., 2014; Liang et al., 2014; Wang et al., 2019; Hong
et al., 2020). Studies in hepatocytes have also shown that VitD
deficiencies lead to a reduction of SIRT1 expression (Yuan et al.,
2022). Mechanistically, a chromatin immunoprecipitation assay
demonstrated that the VDR binds to the promoter region of the
SIRT1 gene, leading to its transcription. The absence of SIRT1 is also
correlated with dysregulated glucose metabolism in hepatocytes as
observed in glucose overproduction, glucose intolerance, and
hepatic insulin resistance (Yuan et al., 2022). Furthermore, it was
demonstrated that SIRT1 is required in autophagy and lipophagy,
controlling the lipid droplet catabolism and FAO (Sathyanarayan
et al., 2017). In streptozotocin-induced diabetic nephropathy
(DN—a leading cause of CKD), the impairment of autophagy
has been associated with the worst renal injury scenario,
evidencing that autophagy is renoprotective in DN (Ding and
Choi, 2015). Paricalcitol or VDR overexpression in mouse PTECs
ameliorated the albumin excretion and tubular damage and reduced
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inflammatory parameters in DN mice by improving the autophagic
process (Li et al., 2022). In one study, in vitro exposure of PTECs to
high glucose conditions showed reduced both, Ca+2 concentration
and activation of PRKAA1/AMPK. However, paricalcitol treatment
was able to increase Ca+2 concentration and AMPK activation
through CAMKK2/CaMKKβ, restoring autophagy (Li et al.,
2022). It suggests that AMPK is a SIRT1 activator by providing
NAD+, the major cofactor in the activity of the sirtuin (Canto et al.,
2009).

Altogether, it is plausible to suggest that SIRT1 and SIRT3 may
play an important role in VitD effects in TECs, and the relationship
among VitD-AMPK-sirtuins is an interesting issue for further
investigations in tubular damage (Figure 2).

3 Vitamin D and macrophages in the
kidney

Human and experimental CKD data have shown that TIF
directly affects macrophage infiltration into the kidneys and
interacts with renal cells (Eardley et al., 2008; Feng et al., 2018;
Conway et al., 2020). TECs and macrophages interact directly and
indirectly to potentiate inflammation in the kidneys. TECs are
important C-C motif chemokine ligand 2 (CCL2) producers, a
macrophage chemoattractant (Lv et al., 2018; Jia et al., 2022).
Moreover, TEC-macrophages communicate by extracellular
vesicles resulting in a negative feedback loop to promote renal
inflammation and apoptosis in the mouse model of the fibrosis

FIGURE 2
Proposal mechanism of VitD on healthy and injured tubular cell metabolism. FAO (or β-oxidation) is the main energy source of TECs. In the
cytoplasm, FAs are transformed into Acyl-CoA by the enzyme Acyl-CoA synthetase. Then, the mitochondrial enzyme CPT1a converts acyl-CoA in
acylcarnitine, which can be transported into mitochondrial matrix via carnitine/acylcarnitine translocase. Subsequently, acylcarnitine is subjected to the
CPT2 activity to be reconverted into acyl-CoA and the FAO is initiated: acyl-CoA is converted into acetyl-CoA, which in turn, fuels the TCA cycle that
provides reducing equivalents to ETC to produce ATP. VitDmay be an important regulator of the FAO in TECs. After internalization via passive diffusion or
receptor-mediated endocytosis, 25-hydroxyvitamin D3 is converted into its bioactive form, 1,25D3. The recognition of the active form by VDR causes
transcriptional changes and leads to SIRT1 expression, which in turn, promotes the inhibition of profibrotic pathways, such as SMAD, and contributes to
the deacetylation of PGC1 α and, thus, sustaining the FAO. In addition, VitD can also activate SIRT1 via AMPK activation, which increases NAD+ production.
In the injured tubules the levels of endocytic receptors are reduced, impairing the optimal internalization of 25-OHD3 (calcitriol), and compromising the
VitD activity. The reduced levels of VitD decrease the SIRT1 and SIRT3 expression as well as diminish the function of both PCG1 α and CPT1a. These
alterations disrupt the FAO and contribute to profibrotic responses. 1,25D3, 1,25 dihydroxyvitamin D3; 25-OHD3, 25-hydroxyvitamin D3; AMPK,
adenosine monophosphate-activated protein kinase; CPT, carnitine palmitoyltransferase; FA, fatty acids; FAO, fatty acid oxidation; PGC-1α, peroxisome
proliferator-activated receptor-gamma coactivator-1α; TCA, tricarboxylic acid cycle; TECs, tubular epithelial cells; VDR, vitamin D receptor; VDBP,
vitamin D binding protein. ETC, electron transport chain. Figure created with BioRender.com.
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(Jiang et al., 2022). VitD-deficient animals increase the infiltration of
inflammatory macrophages in the kidney, which reinforces that
VitD is a good target to regulate inflammation and a unique
molecule that can modulate different types of cell response. This
topic will describe general aspects of macrophages and how
metabolism can influence their effector response. Further, we
describe the relationship between VitD/VDR and lipid
metabolism, pointing out how VitD can be important in
modulating metabolism and inflammation during renal
fibrogenesis.

3.1 General aspects of macrophages:
Polarization and metabolism

Macrophages are ubiquitous and sentinel cells that promote
pathogen clearance and tissue homeostasis by recovering integrity
during and after an inflammatory process (Wculek et al., 2022).
Under physiological state, tissue-resident macrophages exert
clearance functions and tissue maintenance, while in
inflammatory conditions, bone marrow-derived monocytes

migrate to the tissue, differentiate and polarize into M1 and after
pathogen clearance reprograms into M2 macrophages to repair the
inflammation-driven damage. Despite being classically subdivided
into these two categories, it represents an oversimplification, due to
the heterogeneity and complexity of macrophages in disease
progression presented by different studies in the last years
[revised by (Tang et al., 2019)].

The classically termed M1 macrophages, henceforward termed
pro-inflammatory macrophages, are characterized by upregulation
of antigen presentation markers, such as MHC-II and CD86.
Furthermore, these cells have a vast repertoire of Pattern
Recognition Receptors (PRRs) that activate several intracellular
signaling pathways. Toll-like receptor 4 (TLR-4), a member of
PRRs, for instance, drives the pro-inflammatory profile of
macrophages because it leads to the activation of MyD88, which
in turn, enables the activation of inflammatory factors like NF-κB,
AP-1, and STATs (Kawai and Akira, 2010). As result, these
M1 macrophages are able to produce pro-inflammatory
mediators, such as IL-1, IL-6, IL-12 and TNF-α, increase the
ROS production through NADPH oxidase, and enhance the
iNOS expression (Panday et al., 2015; Van den Bossche et al., 2017).

FIGURE 3
Putative mechanisms of 1,25D3 function in macrophages. Once 1,25D3 binds to VDR, it heterodimerizes with RXRα and translocate to the nucleus,
impairing PPARγ-mediated functions. This may impact LB formation and, therefore, reduce the production of eicosanoids, such as LTB4 and PGE2. The
latter may also be reduced through direct inhibition of COX-2 through 1,25D3. PPARγ blockade also may reduce CD36 exposure on the cell surface,
leading to decreased lipid uptake. In macrophages, this process may limit FAO by inhibiting CPT2 and consequent long-chain fatty acid transport
into the mitochondria. Moreover, since the fibrotic milieu is enriched with TGF-β, its signaling triggers Smad-3 and lipid accumulation in macrophages
suggesting that this cytokine may have roles beyond fibrosis induction. 1,25 dihydroxyvitamin D3; COX-2, cicloxygenase-2; LOX, lipoxygenase; CPT,
carnitine palmitoyltransferase; FAO, fatty acid oxidation; LB, lipid bodies; LTB4, leukotriene B4; PGE2, Prostaglandin E2; TECs, tubular epithelial cells; VDR,
vitamin D receptor. Figure created with BioRender.com.
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Recently, it has been observed that macrophages rely on
metabolic reprogramming to achieve an effector response (Van
den Bossche et al., 2017; Dowling et al., 2021; Wculek et al.,
2022). Pro-inflammatory macrophages profoundly change
mitochondrial metabolism since the pyruvate is mostly redirected
to lactate production (aerobic glycolysis or Warburg effect). Under
the stimuli of LPS, rounded and circular mitochondria are observed
in M1 macrophages, resulting from a process named mitochondrial
fission (Kapetanovic et al., 2020). This rounded shape changes
mitochondrial cristae structure and spatial organization that
disrupts ETC, causing reduction in oxygen consumption (and
consequently OXPHOS) and increased ROS formation (Yu et al.,
2006; Buck et al., 2016).

In contrast with pro-inflammatory macrophages,
M2 macrophages, henceforth named pro-resolving or anti-
inflammatory macrophages, promote suppression of
inflammation and tissue repair (Zhang et al., 2017). Pro-resolving
macrophages are activated by IL-4 or IL-13 and participate in
inflammation resolution by releasing anti-inflammatory
cytokines, such as IL-10 and transforming growth factor β
(TGF-β) (Viola et al., 2019). Moreover, they prioritize
OXPHOS to drive their resolving functions. Upon IL-4 stimuli,
for instance, macrophages upregulate arginase-1 expression that
converts arginine into ornithine. Subsequently, ornithine enters
the polyamines pathway through the action of ornithine
decarboxylase, which leads to a putrescine formation and
contribution of remodeling function by collagen matrix
production and cell proliferation (Puleston et al., 2019).
Simultaneously, changes in mitochondria also occur due to the
upregulation of PPARγ, PGC1-α, and PGC-1β, which culminates
in lipid accumulation and mitochondria biogenesis.
Consequently, this mitochondrial lipid accumulation become a
priority source for ATP production (Nomura et al., 2016).
Importantly, PGC-1β activity also restrains the inflammatory
profile of macrophages by inhibiting IL-6 and IL-12p40
production (Vats et al., 2006).

3.2 VitD and lipid metabolism of
macrophages: Insights on kidney fibrosis
development

1,25D3 has been suggested as an essential regulator of lipid
metabolism in macrophages in atherosclerosis and Mycobacterium
tuberculosis infection. In both conditions, macrophages display a
foamy aspect which indicates lipid accumulation, forming
intracellular organelles termed lipid bodies (LBs). LB formation
can be promoted by PPARγ translocation to the nuclear
compartment and the function of these bona fide organelles is
context dependent. In M. tuberculosis, the infection may be a
source of neutral lipids to the bacteria, but also can regulate
macrophage immune function (Knight et al., 2018). In
atherosclerosis, oxidized LDLs (oxLDLs) are suitable activators of
PPARγ and are uptaken by the scavenger receptor CD36 that
induces profibrotic genes that contribute to thrombus formation
(Nagy et al., 1998; Feng et al., 2000). 1,25D3/VDR complex leads to
VDR-RXR complex activation, inhibits PPARγ-mediated function
in the cell, and decreases LB synthesis in these macrophages.

1,25D3 may also limit the biogenesis of eicosanoids like
prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) in LBs since
they produce these mediators. This directly impacts the
inflammatory response because the PGE2 synthesis can modulate
the antimicrobial activity of humanmacrophages by downregulating
cathelicidin, reducing their capacity to eliminate intracellular
pathogens. The mechanism that coordinates this function is E
Prostanoid 2-mediated (EP2), a PGE2 receptor (Wan et al.,
2018). In this context, it may suggest that 1,25D3 decreases
PGE2 production, while enhancing antimicrobial peptide
production. In contexts where CKD may take place due to
obesity or hyperlipidemia, free fatty acids are uptaken by
CD36 in the kidney by macrophages and this may cause
lipotoxicity and triggering of inflammatory processes (Gai et al.,
2019). Regarding LTB4 synthesis, it is still an open gap in
macrophage lipid metabolism in CKD.1,25D3 may be suggested
as a compound that can attenuate lipid accumulation and therefore
prevent lipotoxicity since it can reduce LB formation and CD36-
mediated lipid uptake (Figure 3).

VDR also controls M2 phenotype as studies showed that the
deletion of this nuclear receptor in F4/80+ macrophages could
decrease Arginase-1 and RELM-α expression and produce IL-13
after local injury (Zhang et al., 2014). In CKD, macrophages display
a pro-resolving profile that relies mainly on OXPHOS, and enzymes
like COX-2 are activated at high levels in infiltrating macrophages in
the kidney tissue. 1,25D3 can reduce COX-2 expression in
macrophages by reducing its expression and limiting eicosanoids’
availability to be converted (Wang et al., 2014). Furthermore,
1,25D3 can also counteract lipid accumulation through the
downregulation of CD36 and upregulation of PPARγ and CPT1,
which mediates the transport of long-chain fatty acids into the
mitochondria and leads to FAO (Marino et al., 2022). Therefore,
1,25D3 may alleviate fibrosis by preventing lipid accumulation in
anti-inflammatory macrophages that are pivotal cells in the fibrosis
maintenance (Zhu et al., 2021). A fibrotic kidney may also benefit
from 1,25D3 action due to its activity on PPARγ, which has a PGC-
1ɑ as a coactivator. It has been shown that the coordinated action of
these transcription factors can induce mitochondrial FAO enzymes
in 3T3-L1 cell lines (Vega et al., 2000). Since 1,25D3 inhibits PPARγ
translocation to the nucleus, it may also hamper the co-activation of
PGC-1ɑ in pro-resolving macrophages in the kidney. However, it
requires further evaluations.

Furthermore, endogenous PGE2 can enhance IL-33
production after LPS stimulation through the EP2 receptor
(Samuchiwal et al., 2017). This cytokine belongs to the IL-1
family and is present in the context of tissue injury. Moreover,
it may suggest that 1,25D3 binding to VDR could downregulate IL-
33 synthesis by preventing lipid accumulation and PGE2-mediated
action.

Another cytokine produced by anti-inflammatory
macrophages is TGF-β which promotes fibroblast proliferation
and proline production. This amino acid is essential for collagen
biosynthesis (Liu and Chen, 2022). TGF-β is critical to the
chronic stage of kidney diseases and activates Smad
transcription factor family (Tang et al., 2021). One study
showed that VDR could inhibit TGF-β -Smad signaling
through direct contact with Smad3, which alleviated the
fibrosis in the kidneys (Ito et al., 2013). It has been shown that
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macrophage-secreted TGF-β also induces LB accumulation in the
cytosol of macrophages (D’Avila et al., 2011). Therefore, it can be
suggested a dual protection during CKD mediated by 1,25D3: 1)
reduction of the macrophagic fibrotic capability and 2)
reductions of lipid accumulation by various mechanisms,
including TGF-β-induced LB formation (Figure 3). However, it
remains an open experiment to be tested in the context of CKD.

During CKD such as systemic erythematosus lupus nephritis,
a bioinformatic study showed that several metabolic pathways
are upregulated, including OXPHOS, sphingolipid, and glycerol
metabolism (Cheuk et al., 2021). Similar pathways were observed
in ischemia-reperfusion injury (IRI), in which biosynthesis of
unsaturated fatty acids and glycerol metabolism were
upregulated. The authors observed that TGF-β signaling was
upregulated, which is expected in fibrotic kidney conditions.
This may correlate with lipid metabolism-enriched pathways
(Cheuk et al., 2021). Increased lipid metabolism in CKD can be
observed, which participates in disease progression. 1,25D3 may
be contributing to alleviating CKD through inhibition of lipid
metabolism in these cells by blocking PPARγ translocation to the
nucleus, CD36 exposure on the cell surface, and TGF-β-mediated
LB synthesis. Experiments can be provided to test this in future
studies by integrating the impact of 1,25D3 on the lipid interface
in CKD macrophages.

4 Final remarks and future perspectives

Disturbances in the metabolic pathways cause
fibroinflammation and progressive loss of kidney function. The
development of safe and effective therapeutic strategies depends
on a better understanding of how these effects are initiated and
maintained. The reduction of VitD levels and its receptor expression
may be determinant on the outcome of CKD and other
inflammatory diseases. Thus, further studies regarding the
beneficial role of VitD and VDR will support this hypothesis. In
addition, the bidirectional relationship between renal and immune
cells, especially TECs and macrophages, may rely on their

metabolism, which the modulation by using VitD and other
metabolism-based therapeutic strategies can provide clinician’s
better management of CDK patients.
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