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Endoluminal reconstruction using flow diverters represents a novel paradigm for
the minimally invasive treatment of intracranial aneurysms. The configuration
assumed by these very dense braided stents once deployed within the parent
vessel is not easily predictable and medical volumetric images alone may be
insufficient to plan the treatment satisfactorily. Therefore, here we propose a
fast and accurate machine learning and reduced order modelling framework,
based on finite element simulations, to assist practitioners in the planning and
interventional stages. It consists of a first classification step to determine a
priori whether a simulation will be successful (good conformity between stent
and vessel) or not from a clinical perspective, followed by a regression step
that provides an approximated solution of the deployed stent configuration.
The latter is achieved using a non-intrusive reduced order modelling scheme
that combines the proper orthogonal decomposition algorithm and Gaussian
process regression. The workflow was validated on an idealized intracranial
artery with a saccular aneurysm and the effect of six geometrical and surgical
parameters on the outcome of stent deployment was studied. We trained six
machine learningmodels on a dataset of varying size and obtained classifierswith
up to 95% accuracy in predicting the deployment outcome. The support vector
machine model outperformed the others when considering a small dataset of
50 training cases, with an accuracy of 93% and a specificity of 97%. On the other
hand, real-time predictions of the stent deployed configuration were achieved
with an average validation error between predicted and high-fidelity results never
greater than the spatial resolution of 3D rotational angiography, the imaging
technique with the best spatial resolution (0.15 mm). Such accurate predictions
can be reached even with a small database of 47 simulations: by increasing the
training simulations to 147, the average prediction error is reduced to 0.07 mm.
These results are promising as they demonstrate the ability of these techniques
to achieve simulations within a few milliseconds while retaining the mechanical
realism and predictability of the stent deployed configuration.
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1 Introduction

Intracranial aneurysms (IAs) are local dilations of the arteries in
the brain caused by a degenerative weakening of the arterial wall.
Saccular, or blister-like, are the most common IAs. Their prevalence
among the general population is estimated to be around 2%–3%
(Rinkel et al., 1998). With an incidence of 10/100,000 person-years,
IAs rupture leads to subarachnoid haemorrhage, a life-threatening
type of stroke with high morbidity and mortality (Wiebers, 2003;
Vlak et al., 2011). Therefore, when IAs with a diameter larger
than 5/7 mm are detected, they are often recommended for
early treatment to exclude the aneurysm sac from the cerebral
circulation (Rahman et al., 2010). Nowadays, endovascular options
have become the preferred intervention thanks to the lower rate
of complications with respect to invasive techniques (e.g., clipping)
(Liu and Huang, 2015).

Endoluminal reconstruction through flow diverters represents
a novel paradigm for the mini-invasive treatment of IAs, as an
alternative to endosaccular occlusion through coiling (Durso et al.,
2011; Pierot, 2011). Flow diverters are self-expanding devices
consisting of a low-porosity braided stent. Thanks to this structure,
they are highly flexible and resistant to kinking.Accordingly, they are
well suited for tortuous vessels andwide-neck IAs.These stents come
in different sizes, in terms of radius and length. Nowadays, surgeons
choose the size based only on clinical experience and measurements
taken onmedical volumetric images (e.g., 3D rotational angiography
or computed tomography angiography), acquired shortly before
surgery.

However, the configuration assumed by these devices once
deployed within the parent vessel is not easily predictable and
routine 3D medical images alone may be insufficient to plan
the treatment satisfactorily. The related difficulties can lengthen
the interventional times. Moreover, higher doses of angiographic
contrast agents and anaesthetic drugs are needed. All these factors
increase the risk of postoperative complications for the patient.
Therefore, there is a compelling need to develop computational
models capable of simulating, in real time, the deployment of flow
diverters within patient-specific vessels to assist practitioners in the
planning and interventional stages (Karmonik et al., 2005).

The mechanical behaviour of braided stents is typically
simulated using a finite element (FE) model where beam elements
are used to discretise thewires (Auricchio et al., 2011; Shiozaki et al.,
2020; Zaccaria et al., 2020; McKenna and Vaughan, 2021); however,
only a few studies modelled numerically flow diverters (Ma et al.,
2012; Fu and Xia, 2017). Due to the large amount of degrees of
freedom (DOFs) and the necessity to solve the contact between the
device and the vessel wall, the computational time required by these
traditional techniques is very high. To overcome this limitation
and make computational models suitable for clinical use in real
time, fast virtual stenting (FVS) methods have been reported in the
literature (Larrabide et al., 2012; Spranger et al., 2015; Zhong et al.,
2016). They predict the stent deployed configuration by simplifying
its mechanical behaviour and/or the contact against the vessel wall
(e.g., by using simplex deformable meshes, mass-spring models or
active contour models).

Reduced order modelling is also gaining interest in computer-
aided surgery thanks to its capability of reducing the computational
complexity and cost of numerical problems while preserving

their inner physics (Niroomandi et al., 2012a; Niroomandi et al.,
2012b; Mena et al., 2015; Santo et al., 2020). One of the most
powerful and widespread techniques to build reduced-order
models (ROMs) is the reduced-basis (RB) method. The RB
method is adapted to non-linear problems which need to be
solved a large number of times for different parameter values
(Hesthaven et al., 2016; Quarteroni et al., 2016). In biomechanics,
the parametrization can concern boundary and initial conditions
(Chang et al., 2017; Bridio et al., 2022; Girfoglio et al., 2022), loads
(Biancolini and Valentini, 2018) and the geometrical domain
under investigation (Ballarin et al., 2016; Biancolini et al., 2020;
Kardampiki et al., 2022). The latter is sometimes handled with a
statistical shape model, which enables the comparison of different
anatomies in terms of the same characteristics (Lauzeral et al., 2019;
Cosentino et al., 2020; Buoso et al., 2021).

The real-time simulation of such parametrized problems is
achieved by exploiting the intrinsic similarities between their
solutions. The most important features of the original, full-order
model (FOM), i.e., the RBs, can be extracted through proper
orthogonal decomposition (POD) from a set of high-fidelity (HF)
solutions. The construction of such a dataset and the extraction
of the RBs is referred to as offline stage. Thereafter, approximated
solutions for unseen parameter values are determined as linear
combination of the RBs (online stage). The powerful advantage of
these methods is that, if the online stage is completely decoupled
from the offline one, the computations performed in the online
stage are independent of the dimension of the FOM. RBs-based
methods differ in the implementation of the online stage: Intrusive
methods rely on a projection onto the RBs space to generate
the ROM (Ballarin et al., 2015; Ballarin et al., 2016); non-intrusive
methods employ a regression model trained to learn the mapping
from parameters to the solution expressed in the RBs space
on the HF dataset (Guo and Hesthaven, 2018; Hesthaven and
Ubbiali, 2018; Guo and Hesthaven, 2019; Fresca and Manzoni,
2022). Non-intrusive methods outperform intrusive methods in
terms of efficiency, as they do not require solving a system of
non-linear equations in the online phase, but only evaluating the
regressionmodel. However, they require a very large training dataset
to ensure accurate solutions. Recently, physics-informed neural
networks (PINNs) emerged as a promising alternative (Liu et al.,
2020; Buoso et al., 2021; Chen et al., 2021).

In this study, we present the first implementation of a machine
learning (ML)-based ROM scheme for the prediction of the stent
deployed configuration. To assess its feasibility, we created a
parametric synthetic geometry that allows control of the vessel
radius, curvature and aneurysm size. Surgical decisions on the
deployment site are also considered when creating the HF dataset.
If given the deployment conditions the stent does not land inside
the aneurysm and is well positioned against the vessel wall, the
deployment is considered successful from a clinical perspective.
Since there is no clinical need to predict the stent configuration
after an unsuccessful deployment, the virtual framework here
proposed consists of two steps (Figure 1): A first classification step
that allows a priori determination of whether a simulation will
be successful or not, followed by a regression step that provides
an approximated solution of the deployed stent configuration.
Moreover, in continuation with our previous work (Bisighini et al.,
2022), we propose a fast strategy to perform FE simulations of
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braided stent deployment to reduce the computational time required
to build the HF dataset for training.

The remainder of the paper is organized as follows. Section 2.1
summarizes the methods used to generate the HF dataset with
particular emphasis on the description of the flow diverter
model (Section 2.1.1), the synthetic aneurysmmodel (Section 2.1.2)
and the scheme followed to perform FE simulations of stent
deployment (Section 2.1.3). Section 2.2 describes the classification
model, Section 2.3 the ML-based ROM. In Sections 3, 4, the results
of testing these models against unseen scenarios are shown and
discussed. Finally, Section 5 presents some concluding remarks.

2 Methods

2.1 High-fidelity simulations

2.1.1 Braided stent modelling
The braided stent is modelled as a tubular net of thin wires

with circular cross-section (Figure 2A). For a stent with radius Rs,
length Ls, composed byNw wires with radiusRw and presentingNcells
repetitive units, the nodal positions are defined by the following set
of equations:

{{{
{{{
{

xn,i = (Rs +Rw) ⋅ cos(orient ⋅ i ⋅ dθ+Θn) ,

yn,i = (Rs +Rw) ⋅ sin(orient ⋅ i ⋅ dθ+Θn) ,

zn,i = n ⋅ tan (ϕ) ,

(1)

with n ∈ [0,Nw/2] and i ∈ [0,Ncells] and where orient is either
1 or -1 respectively for clockwise and counter-clockwise wires,
dθ = 2π/(Nw/2), Θn = n ⋅ 2π/(Nw/2) and ϕ = Ls/Ncells is the pitch
angle.

In this work, the values assigned to these geometrical parameters
refer to a generic flow diverter: Nw = 48, Rs = 2.6 mm, Rw =
0.014 mm, L = 15 mm, Ncells = 70. The stent is made of Phynox, a
cobalt-chromium alloy, which ismodelled as a linear elastic material
with Young modulus E = 225 GPa, Poisson coefficient ν = 0.33 and
density ρ = 9.13 ⋅103 kg/m3.

2.1.2 Artery and aneurysm modelling
The stent is released within a parametric idealised model of

an intracranial artery presenting a saccular aneurysm. The vessel
centerline is defined using a planar quadratic Bézier curve:

B (t) = (1− t)2P0 + 2t (1− t)P1 + t2P2 t ∈ [0,1] , (2)

where P0, P2 are fixed and P1 is the control point which will be
included in the parametrisation.These points lie in a 2Dplane, so the
only DOFs of this spline are the y,z coordinates ofP1.The curveB(t)
starts from P0 in the direction of P1, then bends to reach P2. Bézier
curves allow defining smooth, continuous curves that resemble the
curvature of intracranial arteries (Zyłkowski et al., 2018; Danu et al.,
2019). The Visualization Toolkit (VTK) software is employed to
build the model (Schroeder et al., 2006). The artery is created using
the vtkTubeFilter() function that generates a tube around a line. Its
diameter (Dv) is considered constant along the centerline. Following,
a spherical idealised aneurysm with diameter Da is created using
vtkSphereSource(), the sphere centre Ca is positioned in the middle

of the vessel centerline and the relative y-distance is parametrised.
Through a Boolean union, the sphere is added to the artery model
(Figure 3A). In summary, the vessel geometry is fully parametrised
by 5 parameters: yP1

, zP1
, Dv, Da, yCa

.

2.1.3 FE simulation of braided stent deployment
The simulations are performed using EndoBeams.jl, an in-

house and open-source FE modelling framework for the numerical
simulation of frictional contact interactions between beams and
rigid surfaces (Bisighini et al., 2022). This software has been
validated against some public benchmark tests and the commercial
software Abaqus (Simulia, Dassault Systems, Providence, RI, United
States).

The stent structure is discretised using beam elements and
the resulting mesh is composed of 3,408 nodes and 3,360 beam
elements. To avoid rendering beam-to-beam contacts, a penalty-
based constraint is imposed at each interconnection between the
interlaced wires so that the position of nodes pairs is forced to be
the same (Zaccaria et al., 2020).The contact algorithm implemented
in EndoBeams.jl relies on an implicit representation of the contact
surface, the signed distance field (SDF) (Aguirre and Avril, 2020).
The SDF of the artery model is computed using the Julia package
SignedDistanceField.jl (SignedDistanceField.jl, 2022), which only
requires as input the triangular mesh in the form of a. stl file
(Figure 3B). The vessel wall is assumed rigid, thus the SDF is
constant along the simulation.Thenormal contact pressure is treated
using a viscoelastic model evaluated by means of a regularised
penalty method while the tangential force is determined with a
regularised Coulomb friction law considering slip-stick behaviour
(Wriggers, 2006; Aguirre and Avril, 2020; Shiozaki et al., 2020).

The strategy followed to perform simulations of stent
deployment was inspired by the work proposed in (Perrin et al.,
2015; Spranger et al., 2015; Hemmler et al., 2018). This approach
is compatible with the use of the SDF to manage the vessel-stent
contacts and represents an alternative to the use of a virtual catheter,
as typically done before in the literature (Bock et al., 2012). The
simulations are carried out in three steps: 1) crimping; 2) positioning
and 3) deployment. Since our goal is to obtain the stent configuration
at the end of the deployment simulation, we focus on quasi-static
simulations. Moreover, as commonly done in literature, the stent
is assumed to be positioned along the vessel centerline at the
beginning of the deployment (Auricchio et al., 2011; Bock et al.,
2012; Hemmler et al., 2018; Leng et al., 2018).

First, the braided stent is crimped by blocking its circumferential
DOFs and imposing a radial displacement equal to (Rstent −Rcrimped)
to all its nodes, where Rcrimped is the stent target radius after the
crimping (Figure 2A).

The braided stent nodes lying on the same z-plane can be
grouped in Nr rings and a central point can be introduced for each
of these rings, Ri with i = 1 … N r (Figure 2B). These points define
the initially straight centerline of the crimped stent (C0). The stent
is displaced so that R0 coincides with the chosen deployment site
along the vessel centerline. The final centerline of the stent (CT) is
computed as the projection of C0 along the vessel one (Figure 2C)
so as to maintain constant the total length of the stent centerline. C0,
and so CT , can be subdivided into segments, i.e., vectors connecting
subsequent points along the centerline (segi = ‖Ri −Ri−1‖). The
first point R0 is considered aligned with the z-axis. A rotation is
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FIGURE 1
Virtual workflow for the prediction of the outcome of stent deployment simulations.

associated with each of these segments to realign it to the preceding
one. The angle (θi) and axis (axi) of rotation for each segment can be
computed as follows:

axi =
segi × segi−1
‖segi‖‖segi−1‖

(3)

θi = cos−1(
segi ⋅ segi−1
‖segi‖‖segi−1‖

) (4)

Thus, a rotation matrix Mi can be defined for each segment. By
cumulatively applying these rotations, we can align CT with the
z-axis, obtaining C0:

Mtot,i =
i

∏
k=1

Mi (5)

The advantage of this technique is the possibility of obtaining
intermediate positions (Ct) between CT and C0 by dividing θi
by the number of desired configurations and applying only this
partial rotation to CT (Figure 2D). These intermediate positions are
used to drive a physical simulation where kinematics constraints
are implemented between all the stent nodes lying on the same
ring and their corresponding points Ri on C0; the difference of
the coordinates between Ct and C0 is computed and the resulting
displacements are applied to each point of C0 in a successive way
leading the stent to bend (Figure 2E).

Finally, the stent is allowed to freely deformwithin the vessel and
activate the contact against the wall (Figure 2F). The simulations
are stopped when the kinetic energy falls below a certain threshold
(10–12 mJ), which represents static mechanical equilibrium.

2.1.4 Creation of the high-fidelity dataset
The impact of anatomical characteristics and surgical decisions

on the final stent configuration is studied. Therefore, we consider a
set of geometric features describing both the artery and aneurysm
geometry and the stent deployment site along the vessel centerline;
we refer to this generic set of parameters as simulation parameters,
collected in the vector μ.

For the creation of the HF dataset, we considered the following
simulation parameters:

μB = [yP1
, zP1
, Dv, Da, yCa

, η] . (6)

where yP1
and zP1

are the y and z coordinates of the middle Bézier
curve point, yCa

the y coordinate of the aneurysm centre point and
η the stent position along the vessel centerline. Since the impact of
stent misplacement is one of the objectives of this study, we consider
deployment sites in which one of the ends of the stent falls in the
aneurysm neck area.

A Latin hypercube sampling (LHS) method is used to generate
Ns different values for μB; the corresponding artery models
are created and a stent deployment simulation is performed
within each model as explained in Section 2.1.3. The LHS plan
is created using the Julia package LatinHypercubeSampling.jl
(LatinHypercubeSampling.jl, 2020). The simulation parameters are
evaluated within a range that resembles that observed in the
literature (Krejza et al., 2006; Li et al., 2013): for Dv, we consider a
range of [2,4] mm; for Da, a range of [5,10] mm.

Alternatively, the simulation parameters μB are substituted as
input of the ML models with μcl where, instead of the middle point
of the Bézier curve (P1) and the stent deployment site (η), the y and
z coordinates of Ncl points (Qi) on the positioned stent centerline
(CT) are used:

μcl = [yQ1
, zQ1
, ⋯ , yQNcl

, zQNcl
, Dv, Da, yCa

] . (7)

The μcl vector components are calculated geometrically from the
deployment conditions and no FE simulation is required.

2.2 Binary classification

Within the HF dataset, deployment solutions are considered
“successful” from a clinical perspective if the stent extremities are in
contactwith the arterywall and donot landwithin the aneurysm sac;
otherwise, the simulation outcome is labelled as “failure” (Figure 4).
This classification is done automatically by checking if, at the end
of the simulation, one or more nodes from the stent extremities
are inside the aneurysm. Being it modelled as a sphere, the SDF
of the aneurysm can be computed analytically and, thus, a node
xp is located inside the aneurysm if its distance to the surface is
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FIGURE 2
Stent deployment strategy. The wire thickness is magnified (2×) to better visualize the stent. (A) Free and crimped stent. (B) Crimped stent and initially
straight centerline (C0). (C) Final centerline of the stent (CT). (D) Intermediate centerlines (Ct). (E) Positioned stent. (F) Deployed stent.

positive, i.e.,:

‖Ca − xp‖−Ra − rw ≥ 0. (8)

Once the results are labelled, a supervised machine-learning
algorithm is trained to learn the relationship between the simulation
parameters μ and the corresponding solution output: when the
model is built, it allows the assignment of new, unseen scenarios
to one of the two categories. The classification is done in Matlab
(MathWorks, Natick, MA, United States). For this purpose, the
performance of the following classifiers is compared (Singh et al.,
2016):

• A logistic regression (LR) model is created and fitted using the
fitctree() function;
• A k-Nearest Neighbour (k-NN) model is created and fitted

using the fitcknn() function;
• Anaive Bayes (NB)model is created and fitted using the fitcnb()

function;
• A decision tree (DT) model is created and fitted using the

fitctree() function;
• An artificial neural network (ANN) model with three layers of

size [10, 10, 10] and the hyperbolic function tanh as activation
function is created and fitted using the fitnn() function;

• A support vector machine (SVM) model with a polynomial
kernel of order 2 is created and fitted using the fitsvm()
function.

The architecture andhyperparameters values are chosen for eachML
model using the ClassifierLearnerApp.

2.2.1 Metrics
Five metrics are considered to evaluate the performance of the

trained classifiers. They are computed by counting true positives
(TPs), true negatives (TNs), false positives (FPs) and false negatives
(FNs), which are collected in the confusionmatrix.Their expressions
are.

• Accuracy = TP+TN
TP+FN+TN+FP

: it tells how good is the classifier,
regardless of the label meaning;
• Sensitivity (or recall or TP rate) = TP

TP+FN
: it tells how good the

classifier is at predicting successful deployment conditions;
• Specificity (or TN rate) = TN

TN+FP
: it tells how good the classifier

is at predicting failed deployment conditions;
• Precision = TP

TP+FP
: it tells how close predicted values are to each

other;
• F1-score = 2 precision⋅recall

precision+recall
: it is a more general measure of

accuracy that combines precision and recall in a single metric.
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FIGURE 3
Artery and aneurysm modelling. (A) Parametric idealised model of an intracranial artery presenting a saccular aneurysm: Bézier points P0, P1andP2,
artery diameter Dv, aneurysm diameter Da and centre Ca. (B) SDF section of the idealised artery an aneurysm model: the signed distance from a voxel
to the surface is reported as a colour map where negative values (blue) correspond to points outside the surface and positive values (red) inside. The
maximum internal distance in correspondence of the aneurysm sac coincides with its radius (5 mm in this case).

FIGURE 4
Examples of successful and unsuccessful deployment outcomes depending on the deployment site along the vessel centerline, η. The wire thickness is
magnified (2×) to better visualise the stent. (A) Stent positioned at η = 0.3. (B) Unsuccessful deployment: landing zone inside the aneurysm space. (C)
Stent positioned at η = 0.5. (D) Successful deployment: good conformity between stent and vessel wall.

Another useful tool to asses the classification performance is
the receiver operating characteristic (ROC), a plot showing the
performance of the classifier in terms of TP rate (sensitivity) against
FP rate (1-specificity) as a function of the cut-off threshold. The
metric related to the ROC curve is the area under the curve
(AUC). The closer the ROC curve is to the upper left corner of the
graph (and thus the higher the AUC value), the more accurate the
classifier is.

2.3 Reduced order modelling

In case of successful deployment, a ML-based reduced order
modelling method is employed to compute an approximated
solution for the stent deployed configuration within the considered

vessel. At first, one might consider training a ML algorithm to
learn the relationship between the simulation parameters and
the vector of nodal displacements at the end of the simulation.
However, given the large number of DOFs of the stent model (in
our case, ∼10,000 DOFs), the size of such an output vector is
very large and would result in a very long training time. Reduced
order modelling allows for the reduction of the original problem
dimension by extracting the most important features, the RBs,
from the training dataset through POD (Guo and Hesthaven, 2018;
Han et al., 2020; Bridio et al., 2022; Fresca and Manzoni, 2022). A
supervised ML algorithm is then used to establish the relationship
between simulation parameters and the solution expressed in the
RBs space. Finally, an approximated solution of the stent deployed
configuration can be recovered in real time for any combination of
simulation parameters.
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TABLE 1 Number of train and test samples of the binary classifiers
(Ntrain, class, Ntest, class) and theML-based ROM (Ntrain, regr, Ntest, regr).

Ns Nsuccess Nfailure Ntrain, class Ntest, class Ntrain, regr Ntrain, regr

150 97 53 50 100 47 50

300 196 104 200 100 146 50

600 396 204 500 100 346 50

900 605 295 800 100 555 50

2.3.1 Proper orthogonal decomposition
The theory behind the POD algorithm is here only introduced:

if interested, the reader is suggested to refer to (Chatterjee,
2000). Once the HF dataset is computed, the snapshots matrix
S is built by arranging the HF solutions uh(μ) as columns of a
matrix:

S = [uh (μ1) | uh (μ2) | … | uh (μNs
)] . (9)

Each of these vectors represents one snapshot and contains the
nodal displacements at the end of the quasi-static deployment
simulation:

uh (μ) = [ux,1, uy,1, uz,1, …, ux,Nn
, uy,Nn

, uz,Nn] , (10)

where Nn is the number of nodes in the stent mesh, thus the
dimension of the HF problem is Nh = 3 ⋅Nn.

The POD algorithm relies on performing the singular value
decomposition (SVD) of S:

S
Nh×Ns
= U

Nh×Nh
Σ

Ns×Nh
ZT

Ns×Ns
, (11)

where U = [u1|u2|⋯|uNh
] is the left singular vectors matrix,

Z = [z1|z2|⋯|zNs
] is the right singular vectors matrix and Σ =

diag(σ1,σ2,…,σNs
) contains the singular values of S, sorted from the

largest to the smallest (σ1 ≥ σ2 ≥⋯ ≥ σNs
≥ 0).

The Schmidt-Eckhart-Young theorem states that the columns of
S, Col(S), can be well approximated by the first L left singular vectors
of S, i.e., Col(U), if the singular values decay rapidly. Thus, given a
tolerance ɛPOD, L can be found as the minimum integer such that:

∑L
i=1

σi

∑Ns

i=1
σi
≥ 1− εPOD. (12)

The column vectors [u1|u2|⋯|uL] represent the RBs of the model
and are assembled in the matrix V.

The HF solution uh(μ) can be now projected onto the reduced
space defined by V:

uh (μ) = UUTuh (μ) ≈ VVTuh (μ) = VuL (μ) = urb (μ) , (13)

where UUT = I since U is orthogonal, uL are the L projection
coefficients associated with the column bases of V and urb(μ) is the
solution projected onto the reduced space.

2.3.2 Gaussian process regression
As proposed by Guo in (Guo and Hesthaven, 2018), Gaussian

process regression (GPR) is adopted to approximate the HF
solutions for any simulation parameters combination. A theoretical
introduction to GPR is provided in Appendix 1, here we simply
introduce the implementation aspects and variables necessary for a
complete interpretation of the results.

In this work, a GPR model ̂f is constructed using the Matlab
function fitrgp() with the Matérn 5/2 kernel from a set of training
data where the predictors are the simulation parameters μ and the
outputs are the projection coefficients uL(μ) computed from the HF
solutions as:

μ→ ûL (μ) ≈ ̂f (μ) trained from (μi,V
Tuh (μi)) . (14)

Once the model is trained, the function predictExactWithCov() is
used to predict the projection coefficients for any desired unseen
value of the simulation parameters μ*, i.e., ûL(μ*). This allows
recovering the full-order solution as follows:

up (μ*) = VûL (μ*) ≈ uh (μ*) . (15)

2.3.3 Metrics
For the test cases, the ML-based ROM results are evaluated

against the HF solutions by computing three absolute errors at each
node of the stent mesh:

• The order reduction error, Erb = ‖urb(μ) − uh(μ)‖;
• The prediction error, Ep = ‖up(μ) − uh(μ)‖;
• The GPR error, Egpr = Ep −Erb.

At the nodal level, these errors correspond to the distance
between pairs of nodes. The accuracy of a single solution can be
evaluated as the average error (AE) or maximum error (ME) on
the mesh nodes: e.g., for the order reduction error, we get AErb and
MErb. Global variables can be computed by averaging these values on
the test dataset: e.g., for the order reduction error, we refer to AErb as
the average of AErb over the test solutions and toMErb as the average
of MErb over the test solutions.

3 Results

3.1 Binary classification: Prediction of
deployment success

In this section, the results of the classification models are
presented. To study the influence of the dataset size on the prediction
capability of the ML models, we first created a dataset of Ns = 900
simulations and then, by using the subLHCoptim() function from
the LatinHypercubeSampling.jl package, we defined three optimal
subspaces with Ns = {150,300,600}. Following an approach similar
to (Hesthaven and Ubbiali, 2018), we considered a fixed number
of samples (Ntest = 100) for testing the four different datasets. In
Table 1, the number of samples considered for ML training and
testing is reported.The input data were standardised before training.
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TABLE 2 Analysis of classifiers performance. Evaluationmetrics of the six MLmodels for Ntrain = {50,200,500,800}. The best result for each category is
highlighted.

Ntrain Classification model Accuracy Sensitivity Specificity Precision F1-score

50 Logistic Regression 75.0% 87.5% 73.9% 22.5% 35.8%

K-nearest neighbour 86.0% 81.4% 87.6% 70.9% 75.8%

Decision Tree 89.0% 100%* 86.2% 64.5% 78.4%

Naive Bayes 89.0% 45.4% 70.5% 30.3% 36.3%

ANN 80.0% 61.7% 96.2% 93.5%* 74.3%

SVM* 93.0%* 85.2% 96.9%* 93.5%* 89.2%*

200 Logistic Regression 67.0% 45.4% 73.0% 32.2% 37.7%

K-nearest neighbour 80% 66.6% 86.5% 70.9% 68.7%

Decision Tree 87% 82.1%* 88.8% 74.1% 77.9%

Naive Bayes 87% 76.4% 92.4% 83.8% 80.0%

ANN* 91.0%* 78.9% 98.3%* 96.7%* 86.9%*

SVM 90.0% 80.0% 95.3% 90.3% 84.8%

500 Logistic Regression 74% 77.7% 73.6% 22.5% 35.0%

K-nearest neighbour 83.0% 73.3% 87.1% 70.9% 72.1%

Decision Tree 89.0% 88.4% 88.4% 74.1% 80.7%

Naive Bayes 91.0% 95.8%* 89.4% 74.1% 83.6%

ANN* 95.0%* 90.6% 97.0%* 93.5%* 92.0%*

SVM* 95.0%* 90.6% 97.0%* 93.5%* 92.0%*

800 Logistic Regression 75.0% 87.5% 73.9% 12.1% 19.5%

K-nearest neighbour 86.0% 81.4% 87.6% 70.9% 75.8%

Decision Tree 89.0% 83.3% 91.4% 80.6% 81.9%

Naive Bayes 89.0% 100.0%* 86.2% 64.5% 78.4%

ANN* 94.0%* 87.8% 97.0%* 93.5%* 90.6%*

SVM 93% 85.2% 96.9% 93.5%* 89.2%

The values of the metrics for the four different dataset sizes are
given in Table 2. For Ntrain = 200, the confusion matrices of the
different classification models are reported in Figure 5. The NB,
ANN and SVM models all show an AUC larger than 96% when
using Ntrain = 200. The performance of all classification models
improves when the training dataset is expanded. In general, the LR
model shows theworst performance: regardless of the dataset size, its
metrics stay below 90%. Precision is especially low (highest value =
32.3%): as visible in Figure 5A, the model fails mostly in predicting
false cases (failures). For the smallest dataset, the SVM model shows
the best performance with accuracy, specificity and precision larger
than 90%. When considering Ntrain = 500, all the validation metrics
are larger than 90% for the SVM and ANN models. k-NN, DT and
NB models also show good performance in terms of accuracy and
specificity (between 83% and 96%); however, when compared with
SVM and ANN, they have poorer precision, which is reflected in
a lower F1-score (maximum 83.3%). The ANN and SVM models
achieve the highest value of specificity (97%), precision (93.9%) and
F1-score (92%); instead, the highest sensitivity is reached by the NB
model (95.8%). When considering the largest dataset Ntrain = 800,

only a few improvements are observed, e.g., the specificity of the NB
model increases from 95.8% to 100%. However, the majority of the
metrics stabilise or even decrease in value:most likely, themodels are
undergoing overfitting. The results of the classification are related to
the use of μB as predictors; no improvement is observed using μcl for
classification.

3.2 Reduced order modelling: Prediction of
the stent deployed configuration

In this section, the results of the ML-based ROM are
presented. As proposed for the classification models, we started
with a dataset with Ns = 900 simulations and then defined
three optimal subspaces with Ns = {150,300,600}. Then, we built
four datasets with only the successful deployment simulations,
Nsuccess = {97,196,396,555}, and considered a fixed number of
samples (Ntest = 50) for testing. In Table 1, the number of samples
considered for ML-based ROM training and testing is reported.
The input and output data were standardised before training.
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FIGURE 5
Analysis of classifiers performance. Confusion matrices of the six ML models for Ntrain = 200. (A) Logistic Regression. (B) k-Nearest Neighbour. (C) Naive
Bayes. (D) Decision Tree. (E) Artificial Neural Network. (F) Support Vector Machine.

The spatial resolution of imaging techniques currently used for
IAs detection and treatment was considered for evaluating the
prediction errors (Hacein-Bey and Provenzale, 2011; Maupu et al.,
2022): magnetic resonance angiography (MRA) = 0.6 mm–1 mm,
computed tomography angiography (CTA) = 0.4 mm–0.7 mm,

digital subtraction angiography (DSA) = 0.2 mm, 3D rotational
angiography (3DRA) = 0.15 mm.

As already mentioned in Section 2.3, the choice of the RBs
number L is carried out considering the singular values of the
snapshots matrix. In Figure 6A, the cumulative sum of the singular
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FIGURE 6
Sensitivity analysis on the number of RBs (L) and the training database size (Ntrain). The results are obtained using the Bézier curve parameters (μB) as
GPR predictors. (A) Percentage of variance of the snapshots matrix (S) explained by the first L components of the SVD. (B) Evolution in logarithmic
scale of AErb, AEp and AEgpr.

values normalised with respect to their total sum is reported: this
plot shows the fraction of total variance retained by the first L-
singular values forNtrain = {47,146,346,555}. As reported inTable 3,
regardless of the dataset size, the first 4 RBs cover more than 90%
(ɛPOD = 0.1) and the first 10 RBs more than 99% (ɛPOD = 0.01) of
the total variance in the input data. As shown in Figure 6B, the
prediction does not benefit considerably by considering a number
of RBs greater than 15: in fact, analogously for any value of Ntrain,
the average order reduction error decreases towards 0 as more RBs
are considered, while the average prediction and GPR errors reach
a stable plateau around L = 15. Therefore, henceforth L = 15 is
considered in this analysis.

The results presented so far relate to the use of μB as predictors.
As reported in Table 4 and shown in Figure 7, a strong reduction
of the prediction error is evident when using μcl instead: with Ncl =
3, the average prediction error is 5.65× lower than when using μB
while the maximum prediction error is 2.84× lower. Increasing the
number of considered pointsNcl, a further but slight decrease of the
prediction error is observed: the average and maximum values are
respectively 1.11× and 1.03× lower withNcl = 5 and 1.08× and 1.04×
lower with Ncl = 8. Using μcl, the percentage of test samples where
the average prediction error is greater than the spatial resolution of
3DRA is zero; the same is true for the number of test samples where
the maximum prediction error is greater than the spatial resolution
of CTA.The number of test samples where the maximum prediction
error is greater than the spatial resolution of 3DRA is reduced from
64%with μB to 10%with μcl.The improvement gained by using μcl is
not only reflected in a lower variance of the prediction error within
the test dataset but also within a single test solution: this is noticeable
when sampling themultivariate normal distributions corresponding
to the GPR outputs, as explained in Appendix 1. In Figure 8, we

reported the position of 100 points sampled within the distribution
predicted by the GPR for the displacement of the first node of the
stent mesh. The points are more widely distributed with μB while
they are highly concentrated around the mean node value with μcl,
which means that the uncertainty on the predicted displacement
value when using μcl is lower than when using μB.

Finally, we analysed the influence of the number of train samples
on theML-basedROMperformance. ConsideringNtrain =47 instead
of Ntrain = 146, the average prediction error is 1.92× lower while
the maximum prediction error is 1.84× lower. The average and
maximumprediction error slightly decrease when consideringNtrain
= 346 instead of Ntrain = 146, respectively 1.14× and 1.04×. It can be
observed in Figure 9 that further expanding the training dataset, the
prediction error converges around the value reached when Ntrain =
346 is used.

4 Discussion

In this work, a fast and accurate method for braided stent
deployment analysis has been proposed. It consists of a two-
step workflow where FE simulations are used, first, to train a
ML model that classifies successful and unsuccessful simulations
and, next, to train a ML-based ROM that approximates the
stent deployed configuration within the considered vessel. This
approach was validated by studying the effect of a combination of
geometrical and surgical parameters on the outcome of the stent
deployment simulation: to this end, we employed a parametric
idealised model of an intracranial artery characterised by a saccular
aneurysm. The presented model relies on previous work to develop
an optimised framework for numerical simulations of frictional
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TABLE 3 Analysis of ML-based ROMperformance considering different tolerances (ɛPOD), numbers of RBs (L) and training database sizes (Ntrain). The results are
obtained using the Bézier curve parameters (μB) as GPR predictors.

Ntrain ɛPOD L AErb±SD MErb±SD AEp±SD MEp±SD

[mm] [mm] [mm] [mm]

47 0.1 3 0.730 ± 0.588 1.797 ± 1.797 0.813 ± 0.628 1.842 ± 1.343

0.01 8 0.043 ± 0.025 0.171 ± 0.097 0.289 ± 0.238 0.460 ± 0.324

0.001 25 0.008 ± 0.004 0.036 ± 0.025 0.288 ± 0.239 0.437 ± 0.325

146 0.1 4 0.271 ± 0.168 0.728 ± 0.483 0.331 ± 0.189 0.757 ± 0.429

0.01 9 0.027 ± 0.016 0.111 ± 0.065 0.167 ± 0.119 0.249 ± 0.146

0.001 58 0.003 ± 0.002 0.014 ± 0.008 0.164 ± 0.120 0.232 ± 0.147

346 0.1 4 0.271 ± 0.166 0.723 ± 0.469 0.329 ± 0.182 0.746 ± 0.413

0.01 10 0.020 ± 0.010 0.078 ± 0.042 0.159 ± 0.119 0.217 ± 0.130

0.001 99 0.002 ± 0.001 0.008 ± 0.004 0.157 ± 0.120 0.198 ± 0.131

555 0.1 4 0.270 ± 0.161 0.724 ± 0.463 0.323 ± 0.172 0.744 ± 0.403

0.01 10 0.020 ± 0.010 0.077 ± 0.041 0.148 ± 0.111 0.204 ± 0.121

0.001 124 0.001 ± 0.001 0.006 ± 0.003 0.146 ± 0.112 0.181 ± 0.121

TABLE 4 Analysis of ML-based ROMperformance comparing the Bézier curve parameters (μB) and the centerline points parameters (μcl) as GPR predictors. The
results are obtained with L = 15 and Ntrain = 146.

Predictors AEp±SD NAEp>0.15mm=3DRA MEp±SD NMEp>0.15mm=3DRA NMEp>0.4mm=CA

[mm] [mm]

Bézier 0.164 ± 0.120 26 (52%) 0.233 ± 0.147 32 (64%) 4 (8%)

Ncl = 3 0.029 ± 0.020 0 (0%) 0.082 ± 0.058 5 (10%) 0 (0%)

Ncl = 5 0.026 ± 0.017 0 (0%) 0.080 ± 0.059 5 (10%) 0 (0%)

Ncl = 8 0.024 ± 0.017 0 (0%) 0.077 ± 0.058 6 (12%) 0 (0%)

contact interactions between wire-like structures discretised using
beam elements and rigid surfaces [Aguirre and Avril. (2020);
Bisighini et al. (2022)]. Based on this, here we proposed an efficient
approach to simulate braided stent deployment, which allowed
us to reduce the computational time required to collect the
simulations needed for ML training. As explained in Section 2.1,
stent positioning is performed by connecting a subset of the stent
nodes to a virtual centerline built along its main axis and imposing a
pre-computed displacement field on this centerline.These kinematic
constraints lead the stent to follow the centerline and bend. Thanks
to this technique, the computational time to performaFE simulation
of stent deployment takes, on average, 15 min.Thismakes it possible
to build even large datasets in an acceptable amount of time: e.g., the
largest datasetNs = 900 used in this analysis could be created in 12 h
on 20 nodes of a cluster with 2.6 Ghz Intel Xeon Gold 6,132 CPUs
and 6 Gb of RAM for each node.

We trained six ML models on a dataset of varying size and
obtained classifiers that were 80%–91% accurate in predicting the
deployment outcome even with a relatively small dataset (Ntrain =
50). Only increasing its size to Ntrain = 500 and using SVM and
NN models, we were able to perform binary classification with all
the validation metrics between 89% and 97%. The surgical needs
addressed by this model require us to favour the presence of FNs

over that of FPs, i.e., we prefer to mislabel a successful simulation
as a failure rather than the opposite. To minimize the presence of
FPs then, high-specificity models are preferred. Therefore, for Ntrain
= 50, we would select the SVM model and for Ntrain = 200, the
ANN model. As shown in Figure 10, FNs misclassification may be
explained by the fact that, in these cases, the stent is in a “boundary”
situation in which one of its extremities lands immediately after the
aneurysm neck. Introducing deformable walls, these cases would
most probably fall into the “failure” condition. A similar situation
is observed also for some FPs cases, i.e., one of the extremities of the
stent lands within the aneurysm immediately before the aneurysm
neck, but no such clear explanation was found for all the FPs.

For the regression, the POD algorithm was employed to
extract the RBs while a GPR model to establish a mapping
between the simulation parameter values and the projection
coefficients. The results showed that GPR is strongly influenced
by the input parameters: maintaining the same output data and
changing the predictors from μB to μcl, the average prediction
error could be decreased by more than 5×. This reduction can be
explained by the less non-linear relationship present between these
alternative predictors and the output variables. We carried out a
sensitivity analysis on the number of RBs to be considered for
the dimensionality reduction of the problem and on the training
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FIGURE 7
Sensitivity analysis on the parameters used as GPR predictors: Bézier curve parameters (μB) vs. centerline points parameters (μcl). The results are
obtained with L = 15 and Ntrain = 146. (A) Evolution of AEp. (B) Evolution of MEp.

FIGURE 8
Two examples from the test dataset: focus on 100 points sampled within the multivariate normal distribution predicted by the GPR for the
displacement of the first node of the stent mesh. (A) HF (black) and predicted (green) solution using μB as predictors. (B) HF (black) and predicted (red)
solution using μcl as predictors.

dataset size. The results showed that the prediction error stabilises
with a relatively low number of RBs (15). On the other hand,
with 47 training samples, we were able to achieve a maximum
prediction error slightly lower than the spatial resolution of 3DRA;
with 147 training samples, we were able to reduce it to 0.07 mm,
half the spatial resolution of 3DRA. In our analysis, the average
prediction error is never greater than 0.15 mm (3DRA spatial
resolution) while the maximum prediction error is never greater
than 0.4 mm (CTA spatial resolution) and is lower than 0.15 mm
(3DRA spatial resolution) in 90% of the total test cases. By looking
at the test examples reported in Figure 11, it can be observed that
the prediction error is evenly distributed and the stent configuration
accommodates very well the vessel curvature. In light of these
results, we can conclude that a prediction error in the range of
0.01 mm–0.05 mm leads to an approximated stent that is very close
to the HF results and such an error is achievable even with a
relatively small dataset (47 simulations). In the cases characterised

by larger prediction errors (Figures 11C, E), the greatest differences
can be observed at the stent extremities. These cases correspond
to the same “boundary” situation that also affects the classification
models, where one of the stent extremities lands immediately after
the aneurysmneck. Asmentioned above, by introducing deformable
walls, the stent would most likely slip within the aneurysmal space
in this situation, making the deployment unsuccessful. Thanks to
the complete decoupling between the offline stage (extraction of
RBs and training of the regression model) and the online one
(prediction of new solutions), the computational cost is decreased
from ∼15 min, using the FE simulation scheme proposed, to a few
milliseconds.

The results here presented are promising as they demonstrate the
ability ofML and reduced ordermodelling techniques to account for
the non-linearities of the stent deployment problem and accurately
model its outcome. Compared to other fast virtual stenting methods
proposed in the literature, reduced order modelling has the
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FIGURE 9
Sensitivity analysis on the training database size (Ntrain). The results are obtained with L = 15 and using the centerline points parameters (μcl with Ncl = 8)
as GPR predictors. (A) Evolution of AEp. (B) Evolution of MEp.

FIGURE 10
Four examples of false negatives misclassification from the test dataset.

potential of reducing the computational cost of stent deployment
simulationwithout simplifying the underlying biomechanicalmodel
[Larrabide et al. (2012); Spranger et al. (2015); Zhong et al. (2016)].
However, the current approach presents some limitations that need
to be addressed. The first limitation is the ability to consider only
one stent geometry at a time: due to the analytical formulation
we used to build the braided stent mesh (Eq. 1), variations in the
stent radius result in a different number of nodes and, therefore,
number of DOFs. This in turn would render displacement vectors
of different lengths that could not be assembled in the same
snapshot matrix S. Considering stents of various sizes would require
the construction of separate ROMs. Nevertheless, flow diverters
are available in a finite and limited number of sizes, so creating
different models could be feasible. An alternative solution could
be the introduction of a sampling step to transform the stent

mesh into a point cloud with a fixed number of points. Besides,
the independent single-output GPR method used in this project
does not model the correlation between outputs (Appendix 1): a
multi-output GPR approach should be considered in the future
(Liu et al., 2018). Secondly, both the stent and vessel FE models
here considered are based on some simplifications: In particular,
the penalty-based constraints at the wires interconnections for the
stent and the rigid-wall hypothesis for the vessels. Given the high
braiding angle and number of wires of flow diverters (Kim et al.,
2008), the simplified contact technique employed for modelling
wire-to-wire interactions reduces its radial and axial flexibility
limiting the application within tortuous vessels (Zaccaria et al.,
2020) and prevents modelling clinical practice as the “push-pull”
technique (Ma et al., 2014). Therefore, with the aim of applying the
same workflow to patient-specific geometries, the current approach
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FIGURE 11
Six examples from the test dataset. The nodal absolute error Ep between HF and predicted solution is shown as a colourmap. As comparative scale, for
each solution we reported the diameter of the vessel and the aneurysm. The wire thickness is magnified (2×) to better visualize the stent. (A) Dv =
3.3 mm, Da = 8.24 mm. (B) Dv = 2.62 mm, Da = 8.84 mm. (C) Dv = 2.9 mm, Da = 9.68 mm. (D) Dv = 2.84 mm, Da = 7.08 mm. (E) Dv = 2.38 mm, Da =
7.86 mm. (F) Dv = 3.62 mm, Da = 8.4 mm.

should be replaced by amore general contact formulation (Ma et al.,
2012; Shiozaki et al., 2020). On the other hand, it is still unclear if
the introduction of wall deformability would have a strong impact
on the stenting simulation. Since intracranial arteries are more rigid
than extracranial ones [Hayashi et al. (1980)], most studies assume
rigid walls finding good agreement between the results of numerical
simulations and experimental tests [Ma et al. (2012); Ma et al.
(2013); Ma et al. (2014)]. However, some preliminary comparisons
on idealised geometries highlighted the presence of differences
in the stent deployed configuration, in particular in the radial
direction (Fu and Xia, 2017; Cai et al., 2020). Moreover, deformable
walls would enable modelling vessel straightening following the
insertion of endovascular guides and stent sheaths (King et al., 2012;
Gindre et al., 2017). Concerning the ROM construction, both of
these improvements to the biomechanical model would increase the
computational cost of the HF simulations, introduce a higher level
of complexity in the modelled problem and, thus, require a larger
training dataset. Moreover, deformable walls would most likely
change the outcome of the deployment simulation, in particular
in the “boundary” situations discussed above. Finally, the vessel
geometry considered for this work is rather far from patient-specific

geometries. Introducing more parameters will result in the need for
a larger number of bases (hence, a larger training dataset) to predict
the solution well. Therefore, efficient algorithms to construct the
training dataset should be explored to reduce its size as much as
possible as well as alternative ML algorithms for regression, e.g.,
neural networks.

5 Conclusion

This work represents the first attempt to combine finite element
simulations with machine learning and reduced order modelling
for the analysis of braided stent deployment. Its feasibility was
demonstrated using an idealised vessel model, where a set of
geometrical features can be controlled. Surgical decisions were also
taken into account in the creation of the high-fidelity dataset.
The two-step workflow allows the classification of deployment
conditions with up to 95% accuracy and real-time prediction of
the stent deployed configuration with a maximum prediction error
always lower than the spatial resolution of computed tomography
angiography (0.4 mm) and lower than that of 3D rotational
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angiography (0.15 mm) in 90% of test cases. Despite the simplified
vessel shape and the assumption of rigid walls, this study is
representative of the clinical scenario and can be extended to
more realistic applications without modification. Current efforts are
focused on understanding how many parameters are needed to fully
describe patient-specific models. To represent such geometries in
the reduced-order model, a statistical shape model will be used
instead of the parametrization presented here. Future developments
of the presented framework will also include the improvement of
the clinical criterion used to assess the effectiveness of treatment:
for example, the porosity of the stent at the neck of the aneurysm
should be taken into account as it affects the outcome of flow
diversion. In the future, a similar computational tool could be used
by practitioners before and during intracranial aneurysm surgery
to rule out conditions that would lead to unsuccessful deployment,
visualize the stent configuration depending on the deployment site
and check whether the chosen device covers one or more side
branches.
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Appendix: Gaussian process
regression

A brief theoretical introduction to single-output GPR is presented
here,more details can be found in (Carè andCamporeale, 2018).The
approach employed to extend single-output GPR to multi-output
problems is to model each of the outputs independently. This is
referred to as independent single-output GPR (IGPR).
Let D = {(xi,yi)}

N
i=1 be a generic training dataset where xi represents

one input vector and yi the corresponding output. We assume that yi
are noisy observations of an unknown regression function f (xi):

yi = f (xi) + εi, εi ∼N (0,σ2
i ) . (16)

GPR consists in calculating the probability distribution over all
admissible functions that fit the input data and making predictions
when fed with new input data. This is possible by considering f (xi)
distributed as a Gaussian process (GP):

f (xi) ∼ GP(0,κ(x,x′)) . (17)

A GP is a collection of random variables, any finite number of
which have a joint Gaussian distribution. It is fully described by
a mean function (considered 0 for simplicity) and a covariance
function κ(x,x′), known as kernel, which should be chosen carefully
according to the problem under study. The most commonly used
is the squared exponential (SE) kernel, also known as radial basis
function (RBF) kernel:

κ(xi,xj) = σ2
κ ⁡exp(−

‖xi − xj‖2

2l
), (18)

where the standard deviation σκ and the lengthscale l represent the
two kernel hyperparameters.

Following the GP definition, the prior Gaussian distribution for the
outputs is:

y|X ∼N (0,Ky) , Ky = κ (X,X) + σ2I, (19)

where y = {yi,y2,… ,yN} and X = [x1,x2,… ,xN].
Predictions of the noise-free outputs f* on new input
data X* are made by exploiting the joint probability
distribution:

f, f*|X,X* =
[[[[

[

f

f*

]]]]

]

∼N(
[[[[

[

0

0

]]]]

]

,
[[[[

[

K K*

K*T K**

]]]]

]

), (20)

where K** = κ(X*,X*) and K* = κ(X,X*). Thus, following the
conditioning theorem for Gaussians, the posterior predictive
distribution of f* is:

f*|X,X*, f ∼N (m,C) , m = K*TK−1y y, C = K** −K*TK−1y K*.
(21)

The powerful aspect of GPR is that the output of the prediction
is a multivariate normal distribution, characterised by a mean
vector and a covariance matrix: in our case, N (uL,KL). Therefore,
the full-order solution is also a multivariate normal distribution,
N (up = VuL,Kp = VKLVT). We can visualise the prediction
uncertainty by sampling this distribution using the Matlab function
mvnrnd(). Since in Matlab we are limited to IGPR, i.e., one GPR
model for each projection coefficient, the covariance matrix is
diagonal.
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