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Non-coding RNAs (ncRNAs) are a newly discovered functional RNA different from
messenger RNA, which can participate in regulating the occurrence and
development of tumors. More and more research results show that ncRNAs
can participate in the regulation of gastric cancer (GC) radiotherapy response,
and its mechanism may be related to its effect on DNA damage repair, gastric
cancer cell stemness, cell apoptosis, activation of epidermal growth factor
receptor signaling pathway, etc. This article summarizes the relevant
mechanisms of ncRNAs regulating the response to radiotherapy in gastric
cancer, which will be directly important for the introduction of ncRNAs
particularly microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular
RNAs (circRNAs) into clinical medicine as biomarkers and therapeutic targets.
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1 Introduction

The incidence of gastric cancer (GC) ranks fifth in the world, and its death rate ranks
third in the world (Smyth et al., 2020). Because the early symptoms of GC are often hidden
and atypical, many patients usually present with advanced disease when they see a doctor.
Radiation therapy (radiotherapy), as one of the main treatment methods for GC, has shown
the advantages of reducing the recurrence rate and prolonging the survival of patients
(Leong, 2005; Foo et al., 2014). However, due to the low sensitivity of GC to radiotherapy, an
important problem remains the resistance of this tumor and, in particular, what mechanisms
are involved in this (Pasechnikov et al., 2014; Ruan et al., 2020). Therefore, it is necessary to
develop tumor-targeted drugs or radiosensitizers to enhance the radiosensitivity of GC and
improve the radiotherapy efficacy of GC patients. Studies have found that the aberrant
expression of non-coding RNAs (ncRNAs) are involved in regulating the radiotherapy
sensitivity of various tumors such as nasopharyngeal carcinoma (NPC), non-small cell lung
cancer (NSCLC), colorectal cancer (CC), GC and significantly affects the radiotherapy
efficacy of tumors (Slack and Chinnaiyan, 2019; Gareev et al., 2020; Machlowska et al., 2020;
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Yan and Bu, 2021). NcRNAs are usually divided into basic structure
type and regulatory type according to different functions. Regulatory
ncRNAs are mainly composed of long non-coding RNAs
(lncRNAs), microRNAs (miRNAs) and circular RNAs
(circRNAs) (Beylerli et al., 2021) (Figure 1). This article reviews
the dysregulation of ncRNAs in GC, summarizes and analyzes the
research results of ncRNAs related to GC radiotherapy sensitivity,
and explores new directions for improving the prognosis of GC
patients after radiotherapy.

2 Regulation of DNA damage by
ncRNAs in GC cells

Damage to DNA and cell membranes is considered to be the
main cause of radiation-induced cancer cell death (Beylerli et al.,
2021). Normal and cancer cells have the ability to sense DNA
damage and initiate DNA damage repair, the DNA damage
response. The DNA damage response plays an important role in
sensing DNA double-strand breaks, inducing cell cycle arrest, and
initiating DNA repair (Wang and Xie, 2022). The DNA damage
response manifests as a signaling cascade in which DNA-damaging
factors first activate telangiectatic ataxia mutant factors, which
subsequently activate cellular checkpoint kinases, phosphorylate
histone 2A variants, and inhibit cell entry into S and M phases,
leading to cell cycle arrest and initiation of damage repair to
maintain genome stability. The study by Hu et al. confirmed
that, under X-ray irradiation, hsa-let-7 g can significantly increase

the radiosensitivity of GC by reducing the expression of
telangiectasia ataxia mutation factor in GC cells and indirectly
inhibiting the activation of DNA damage response (Hu et al., 2015).

DNA double-strand breaks are the most prevalent and potent
type of damage induced by radiation therapy. The role of ncRNA in
DNA double-strand damage repair has been confirmed (Nickoloff
et al., 2020). In SNU-638 GC cells, ectopically expressed miR-196b
can reduce the expression of DNA repair protein RAD23B, leading
to the blockage of DNA damage repair mechanism in GC cells,
inducing cell death, and increasing the radiosensitivity of GC cells
(Tsai et al., 2010). Tissue-based GC-related ncRNAs are listed in
Table 1, focusing particularly on their involvement in DNA damage
(Qin et al., 2018; Huang et al., 2019; Manoel-Caetano et al., 2019;
Zhang et al., 2019; Zhang et al., 2020; Guo et al., 2022; Gupta et al.,
2022)

3 Regulation of ncRNA on tumor cell
stemness in GC

It’s no secret that, cancer stem cells are more resistant to
radiation than mature cancer cells. Studies have shown that
cancer stem cells have a strong ability to scavenge or reduce the
level of reactive oxygen species (ROS), resulting in less DNA damage
than mature cancer cells (Gareev et al., 2021). Currently, the Wnt/β-
catenin pathway is considered to be one of the main targets of anti-
tumor stem cell therapy. Studies have found that lncRNA HNF1A
antisense RNA 1 (HNF1A-AS1), miR-501-5, and circFAM73A can

FIGURE 1
Biosynthesis of non-coding RNAs (ncRNAs). The main types of ncRNAs are microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular
RNAs (circRNAs). In addition to those listed, many other types of RNA are also included in ncRNAs. For instance, small ncRNAs include RNAs that interact
with PIWI proteins (piRNA, piwi-interacting RNA, piwiRNA), transfer RNA (tRNA)-derived small non-coding RNA (tsRNA), and others. However, these types
of ncRNAs have not been found in human cells, and/or their pathogenetic and diagnostic (as well as therapeutic) significance has not yet been
shown, so we do not consider them here.
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promote the stemness of GC cells by activating the downstream
Wnt/β-catenin pathway (Fan et al., 2016; Liu et al., 2018; Xia et al.,
2021).

In addition, lncRNA metastasis-associated lung adenocarcinoma
transcript 1 (MALAT1) promotes the stemness of GC cells by
combining with sex determining region Y (SRY)-related HMG-box

TABLE 1 Some non-coding RNAs (ncRNAs) that regulate DNA damage in gastric cancer (GC) cells under the influence of radiotherapy.

NcRNA Model
study

Expression Target gene/
pathway

Type of
ncRNA

Biological function References

miR-21, miR-24
and miR-421

In silico and
in vitro

Up ATM/ATR/H2AX Oncogene Recognition and repair of DNA damage Manoel-Caetano
et al. (2019)

miR-192 and
miR-215

In vivo and
in vitro

Up SET8 and p53 Oncogene Promotes DNA damage repair and promotes
progression of GC

Zhang et al. (2020)

miR-129-3p In vitro Down SUMO-activating
enzyme subunit 1
(SAE1)

Tumor
suppressor

Induces more DNA damage and cell apoptosis,
and inhibits GC cell proliferation, migration
and invasion

Zhang et al. (2019)

lncRNA GAS5 Mathematical
model

Down ATM/p38 MAPK and
miR-34c

Tumor
suppressor

Stimulate of DNA damage and enhances the
radiosensitivity of GC

Gupta et al. (2022)

lncRNA
FOXD2-AS1

In vitro Up SETD1A Oncogene Promotes DNA damage repair and reduces the
radiosensitivity of GC

Guo et al. (2022)

lncRNA
MDC1-AS

In vivo and
in vitro

Up MDC1 Oncogene Promotes DNA damage repair and significantly
inhibits cell proliferation and metastasis

Qin et al. (2018)

Circular RNA
AKT3

In vivo and
in vitro

Up PIK3R1 Oncogene Promotes DNA damage repair and inhibits the
apoptosis of GC cells

Huang et al. (2019)

Abbreviations: ATM, Ataxia-telangiectasia mutated; ATR, Ataxia telangiectasia and Rad3-related protein; SAE1, SUMO-activating enzyme subunit one; MAPK, Mitogen-activated protein

kinase; MDC, Macrophage-derived/CCL22 chemokine; PIK3R1, Phosphatidylinositol 3-kinase regulatory subunit alpha; GAS5, Growth arrest-specific five; FOXD2-AS1, Forkhead box

D2 adjacent apposite strand RNA, one; MDC1-AS, Mediator of DNA, damage checkpoint protein one; AKT3, AKT, serine/threonine kinase 3.

TABLE 2 Some non-coding RNAs (ncRNAs) that regulate tumor cell stemness in gastric cancer (GC) under the influence of radiotherapy.

NcRNA Model study Expression Target gene/
pathway

Type of
ncRNA

Biological function References

miR-375 In vivo and in vitro Down SLC7A11 Tumor
suppressor

Inhibits the stemness and can induce
ferroptosis of GC cells

Ni et al. (2021)

miR-18 In vitro Up Meis2 and HMGB3 Oncogene Promotes the stemness of GC cells Zhang et al. (2022)

miR-216a-3p In vitro Down BRD4/Wnt/β-catenin
pathway

Tumor
suppressor

Promotes the stemness of GC cells Song et al. (2019)

lncRNA
PTCSC3

In vitro Down PTCSC3 Tumor
suppressor

Inhibits the stemness and GC cells
proliferation

Hong et al. (2019)

lncRNA THOR In vitro Down SOX9 Tumor
suppressor

Inhibits the stemness Song et al. (2018)

lncRNA
LOXL1-AS1

In vitro Up miR-708-5p and USF1 Oncogene Promotes the stemness and contributes
to GC cells proliferation, migration and
EMT. Reflects poor prognosis

Sun et al. (2019)

lncRNA
LINC00332

In silico, in vitro and
bioinformatics

Down MMP-13 Tumor
suppressor

Inhibits the stemness and proliferation,
migration, and invasion of GC cells

Taghehchian et al.
(2022)

circ-NOTCH1 In vivo and in vitro Up miR-449c-5p/MYC/
NOTCH1 axis

Oncogene Promotes metastasis and stemness
in GC

Zhao et al. (2020)

circRPPH1 In vitro Up SLC7A11 Oncogene Promotes the stemness and can
regulate ferroptosis of GC cells

Liu et al. (2023)

circ0007360 In vivo and in vitro Up miR-762/IRF7 axis Tumor
suppressor

Inhibitory effects of circ0007260 on the
survival, migration, invasion, and
stemness of GC cells

Xing et al. (2022)

Abbreviations: PTCSC3, Papillary thyroid carcinoma susceptibility candidate three; LOXL1-AS1, LOXL1 Antisense RNA, one; LINC00332, Long intergenic non-protein coding RNA, 332;

SLC7A11, Meis2, Meis homeobox two; HMGB3, High-mobility group protein B3; BRD4, Bromodomain-containing protein 4; PTCSC3, Papillary thyroid carcinoma susceptibility candidate

three; SOX9, SRY-Box transcription factor 9; USF1, Upstream stimulatory factor 1; MMP-13, Matrix metalloproteinase 13; NOTCH1, Neurogenic locus notch homolog protein one; SLC7A11,

Solute carrier family 7, membrane 11; IRF7, Interferon regulatory factor 7; EMT, Epithelial-mesenchymal transition.
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2 (SOX) mRNA, Sox2 SRY (sex determining region Y)-box 2 mRNA,
and knockdown of lncRNAMALAT1 can enhance the radiosensitivity
of GC cells (Xu et al., 2021). In summary, some ncRNAs may be
potential targets for GC radiotherapy by promoting the stem cell-like
characteristics of GC, enhancing the scavenging ability of reactive ROS,
reducing the damage effect of radiation on GC cells, and reducing the
radiosensitivity of GC. A variety of ncRNAs have been reported to be
involved in tumor cell stemness inGC (Table 2) (Song et al., 2018; Hong
et al., 2019; Song et al., 2019; Sun et al., 2019; Zhao et al., 2020; Ni et al.,
2021; Taghehchian et al., 2022; Xing et al., 2022; Zhang et al., 2022; Liu
et al., 2023).

4 Regulation of ncRNA on apoptosis of
GC cells

When repair of DNA damage caused by radiation fails, cells
initiate automatic death programs (apoptosis) to maintain
genome stability. For radiation-induced cell damage, whether
tumor cells choose to repair the damage or initiate apoptosis is of
great significance to the prognosis of tumors.

The p53 gene is currently the most widely studied cell
regulatory gene. Studies have shown that in p53-deficient GC
cells, miR-34 can restore p53 function and induce cell apoptosis
(Xiong et al., 2019). miR-375 can directly interact with the 3′-
untranslated region (3′-UTR) mRNA of the p53 gene, negatively
regulate p53 expression and downstream pathways, and reduce
the radiosensitivity of GC cells by inhibiting apoptosis and
causing cell cycle arrest (Xu et al., 2011). In addition, the
study found that in GC cells after radiation exposure,
inhibition of the miR-221/222 cluster can upregulate the
expression of phosphatase and tensin homolog deleted on
chromosome 10 (PTEN) in GC cells, activate
phosphatidylinositol-3-hydroxykinase (PI3K)/Akt signaling
pathway, induce apoptosis, and enhance the radiosensitivity of
GC cells (Chun-Zhi et al., 2010). LncRNA growth arrest-specific
5 (GAS5) significantly inhibits GC cell proliferation, promotes
apoptosis, and enhances radiosensitivity by targeting miR-196a
(Li et al., 2016). It can be seen that the abnormal expression of
ncRNA is closely related to the apoptosis of GC cells, which
largely determines the sensitivity of GC cells to radiotherapy
(Table 3) (He et al., 2014; Zhang et al., 2014; Mao et al., 2019; Wei

TABLE 3 Some non-coding RNAs (ncRNAs) that regulate stability to apoptosis in gastric cancer (GC) cells under the influence of radiotherapy.

NcRNA Model study Expression Target gene/pathway Type of
ncRNA

Biological function References

miR-4537 In vitro Down ZNF587 Tumor
suppressor

Inhibits the ability of cell
proliferation, but on the contrary, it
promotes the ability of cell apoptosis
and improves radiosensitivity of GC
cells

Liu et al. (2021a)

miR-4766-5p In vitro Down NKAP Tumor
suppressor

Induces GC cell apoptosis Wei et al. (2019)

miR-300 and
miR-642

In vitro and
bioinformatics

Down BCL2L11, GAS2, CASP8AP2,
APAF1, DLC1, TP53, CASPS2,
CASPS7, CASPS9, CASPS10,
and BCL2L11

Tumor
suppressor

Regulate cellular radiation response
by modulating apoptosis and cell
cycle regulation

He et al. (2014)

lncRNA
LINC00152

In vitro and in vivo Up Bcl-2 Oncogene Activates cell cycle signaling,
promotes migration and invasion,
and suppress apoptosis

Mao et al. (2019)

lncRNA OGFRP1 In vitro Up miR-149-5p/MAP3K3 axis Oncogene Promotes proliferation and
suppresses GC cells radiosensitivity

Qin et al. (2022)

lncRNA CARLo-5 In vitro Up ERK/MAPK pathway Oncogene Promotes the GC cells proliferation
and inhibits apoptosis

Zhang et al.
(2014)

lncRNA
SLC25A21-AS1

In vitro Down miR-15a-5p Tumor
suppressor

Inhibits cell malignant behaviors
(e.g., promotes to apoptosis) and
enhances cell radiosensitivity in GC

Wang et al.
(2022)

circ_0003506 In vitro and in vivo Up miR-1256/BMPR2 axis Oncogene Downregulation of
circ_0003506 inhibits radioresistance
to repress proliferation, migration
and invasion but increase apoptosis
in radioresistant GC cells

Zhou et al.
(2022)

circ_HN1 In vitro and in vivo Up miR-302b-3p/ROCK2 axis Oncogene Promotes tumor growth, cell
proliferation, migration, invasion,
and inhibit cell apoptosis in GC cells

Wang et al.
(2021a)

Abbreviations: OGFRP1, Opioid growth factor receptor pseudogene one; SLC25A21-AS1, SLC25A21 antisense RNA, one; circ_HN1, circRNA, Jupiter microtubule associated homolog one;

ZNF587, Zinc finger protein 587; NKAP, NF-kappa-B-activating protein; BCL2L11, recombinant human Bcl-2-like protein 11; GAS2, Growth arrest-specific protein two; CASP8AP2, Caspase

eight associated protein two; APAF1, Apoptotic protease activating factor 1; DLC1, Deleted in liver cancer one; TP53, Tumor protein P53; CASPS2, Caspase two; CASPS7, Caspase seven;

CASPS9, Caspase nine; CASPS10, Caspase 10; BCL2L11, Proapoptotic member of the B-cell CLL/lymphoma two; Bcl-2, B-cell lymphoma two MAP3K3, Mitogen-activated protein kinase

kinase kinase three; ERK, Extracellular signal-regulated kinase; MAPK, Mitogen-activated protein kinase; BMPR2, Bone morphogenetic protein receptor type 2; ROCK2, Rho associated coiled-

coil containing protein kinase two.
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et al., 2019; Liu et al., 2021a; Wang et al., 2021a; Qin et al., 2022;
Wang et al., 2022; Zhou et al., 2022).

5 Activation of epidermal growth factor
receptor (EGFR) signaling pathway by
ncRNA

Radiation can cause abnormal expression of various genes in
tumor cells, including epidermal growth factor receptor (EGFR).
Overexpression of EGFR is related to lymphatic metastasis of GC,
and can lead to growth and invasion of GC cells through the Akt
pathway (Chen et al., 2021). As a stress response to radiation, EGFR
is rapidly activated and induces the mitogen-activated protein kinase
(MAPK)/extracellular signal-regulated kinase (ERK) and PI3K/Akt
signaling pathways (Lei et al., 2022). Activation of these signaling
pathways may repair radiation-induced DNA damage, evade
apoptosis, and promote cell proliferation through homologous
and non-homologous recombination (Molina-Castro et al., 2017).

Previous studies have shown that anti-EGFR-targeted therapy is
an effective radiosensitizer for EGFR-overexpressing GC cells and
xenografts. This radiosensitization is associated with inhibition of
GC cell proliferation and promotion of apoptosis (Dragovich and
Campen, 2009). Recent studies have shown that a variety of ncRNAs
mediate the expression of EGFR in GC, so these ncRNAs can be used
as a medium to target and regulate the expression of EGFR, and then

promote the apoptosis of GC cells in the process of radiotherapy,
thereby improving the sensitivity of GC to radiotherapy
(Carlomagno et al., 2017; D’Souza et al., 2020; Kong et al., 2021;
Ye et al., 2022; Lazăr et al., 2016) (Figure 2). Therefore, analyzing the
regulatory mechanism of ncRNA on EGFR expression is a new
direction worth exploring to improve the radiosensitivity of GC, and
the EGFR inhibitor derived from this is expected to be a selective and
effective radiosensitizer for GC.

6 Regulation of epithelial-
mesenchymal transition (EMT) by
ncRNAs

A phenotypic change in tumor cells that may result in enhanced
tumor cell motility and invasiveness, increased metastatic potential,
and radiotherapy resistance (Lu et al., 2022). LncRNA HOX
transcript antisense RNA (HOTAIR) can bind to miR-331-3p
and inhibit its function, leading to upregulation of human
epidermal growth factor receptor 2 (HER2) expression,
promoting epithelial-mesenchymal transition (EMT) through
HER2/Akt/HSF-1/slug signaling pathway. This may be related to
the radiotherapy resistance of GC cells (Wang et al., 2015; Abdi et al.,
2020).

MiR-544a-5p can act on cadherin E and Wnt/β-catenin to
induce GC cell EMT through two independent pathways, and

FIGURE 2
Mechanisms of non-coding RNAs (ncRNAs) which involved in essential signaling pathways downstream and parallel pathways of epidermal growth
factor receptor (EGFR) in some human cancers including gastric cancer (GC). Several critical ncRNAs can regulate EGFR signaling pathways like Ras/Raf/
MEK/ERK axis, PI3K/AKT/mTOR axis, JAK/STAT/NF-κB, PTEN, andWnt/TGF-β1/NOTCH. Note: MEK, Mitogen-activated protein kinase; ERK, Extracellular
signal-regulated kinase; PI3K, Phosphoinositide 3-kinases; AKT, Serine/threonine-protein kinase; mTOR, Mammalian target of rapamycin; JAK,
Janus kinase two; STAT, Signal transducer and activator of transcription; NF-κB, Nuclear factor kappa-light-chain-enhancer of activated B cells; NOTCH,
Neurogenic locus notch homolog protein; EMT, epithelial-mesenchymal transition; IGF1R, Insulin-like growth factor 1 receptor; PTEN, Phosphatase and
ten sin homolog deleted on chromosome 10; TGF-β1, Transforming growth factor-β1; FGFR, Fibroblast growth factor receptor.

Frontiers in Physiology frontiersin.org05

Usman et al. 10.3389/fphys.2023.1149821

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1149821


lncRNA RP11-789C1.1 inhibits EMT in GC via the RP11-789C1.1/
miR-5003/cadherin E axis (Chen et al., 2018). LncRNA-h19 can
combine with miR-141-5p to promote the EMT process of GC cells
by up-regulating the expression of zinc finger E-box binding
homeobox 1 (ZEB1) (Liu et al., 2022). Therefore, there may be a
special signaling pathway between ncRNA and EMT, and through
the regulation of EMT expression, it can affect the curative effect of
GC cell radiotherapy (Figure 3) (Yang et al., 2015; Feng et al., 2019;
Liu et al., 2021b; Beilerli et al., 2022).

7 Regulation of oxygen adaptive
metabolism by ncRNAs

The most striking feature of tumor cells is the ability to
metabolize energy by glycolysis even in the presence of sufficient
oxygen, which is known as the Warburg effect. Studies have shown
that aerobic glycolysis in malignant tumors is closely related to
tumor radiotherapy resistance (Yuan et al., 2022). ROS play an
important role in radiation-induced DNA damage. The generation
of reactive oxygen species is mainly in the process of oxidative
phosphorylation in cells. Electron leakage during mitochondrial
electron transport is the main source of electrons for the
generation of intracellular ROS, and glycolysis leads to reduced
generation of ROS, which seriously affects ROS-induced radiation
damage (Tanprasert et al., 2022).

It is evident from many recent studies that when NSCLC,
cervical cancer (CC), and glioma cells are exposed to radiation,

various ncRNAs such as miR-449a and lncRNA urothelial
carcinoma-associated 1 (UCA1) in the cells target multiple
functions in the glycolytic metabolic pathway, specifically by
decreasing the rate of a key rate-limiting enzyme, leading to an
increase in the sensitivity of tumor cells to radiation (Yao et al.,
2015; Nie et al., 2016; Wang et al., 2019). This phenomenon also
occurs in GC cells, indicating that ncRNAs may play a role in
altering the metabolic mode of GC and influencing its radiation
sensitivity. MiR-4290 inhibits pyruvate dehydrogenase kinase 1
(PDK1), inhibiting glycolysis (Qian et al., 2021). MiR-7 can
inhibit the glycolysis, cell proliferation and colony formation
of GC cells by regulating the expression of lactate dehydrogenase
(Xie et al., 2014). Therefore, ncRNA may enhance the curative
effect of GC radiotherapy by regulating the glycolysis process of
GC cells, changing the metabolic mode of cells, and increasing
the level of ROS in cells.

Hypoxia is a pathophysiological feature of solid malignancies.
Under hypoxic conditions, hypoxia-inducible factor-1α (HIF-1α)
is upregulated, activating hypoxic adaptation pathways,
including angiogenesis, erythropoiesis, and glycolysis (Li et al.,
2019). HIF-1α protects blood vessels after radiotherapy and
regulates glycolysis and pentose phosphate pathways, which
increases the antioxidant capacity of tumors, thereby
counteracting the oxidative stress caused by radiotherapy and
affecting the radiosensitivity of tumors (Yasui et al., 2008).
Previous studies have found that ncRNAs can regulate tumor
glycolysis by regulating HIF-1α and its downstream glycolysis-
related enzymes, thereby affecting tumor radiosensitivity (Zheng

FIGURE 3
Non-coding RNAs (ncRNAs) involved in epithelial-mesenchymal transition (EMT). This illustration demonstrates that the EMT process is
predominantly composed of transforming growth factor-β1 (TGF-β), WNT and neurogenic locus notch homolog protein (NOTCH) signaling pathways.
Note: SMAD2,3,4, Mothers against decapentaplegic homolog 2,3,4; GSK3β, glycogen synthase kinase-3β; LEF, Lymphoid enhancer-binding factor;
N-cadherin, Neural cadherin; TCF, T cell factor; NOTCH-ICD, intracellular domain of the NOTCH receptor.
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et al., 2021; Xu et al., 2022). The high expression of lncRNA
ZNFX1 antisense RNA 1 (ZFAS1) in gastric cardia
adenocarcinoma (GCA) assists EPAS1 to enhance the
epigenetic silencing of HIF-1α and promote the proliferation
and metastasis of cancer cells (Zhu et al., 2020). MiR-376a binds
lncRNA NUTM2A Antisense RNA 1 (NUTM2A-AS1) and
negatively regulates HIF-1α to inhibit the invasion of GC
(Wang et al., 2020). Therefore, the ncRNA/HIF-1α/glycolysis-
related enzyme signaling pathway may be a potential target for
regulating the radiosensitivity of GC, and it may become a new
direction to improve the radiosensitivity of GC by regulating
tumor glucose metabolism and tumor microenvironment. The
ncRNAs that have been associated with the oxygen adaptive
metabolism and their molecular pathways are listed in Table 4
(Tu et al., 2014; Hong et al., 2016; Fang et al., 2020; Wang et al.,
2021b; Deng et al., 2021; Sun et al., 2021; Li et al., 2022; Tan et al.,
2022; Yang et al., 2022).

8 Clinical perspective of ncRNAs in GC
radiotherapy

There are suggestions that the direct involvement of miRNAs,
lncRNAs, and circRNAs in GC radiosensitivity is likely to be
applied in clinical practice in the near future. And this possibility
may involve many steps. First, before radiotherapy is given to
patients with GC, it will be necessary to assess the range of

expression changes in radiodependent miRNAs, lncRNAs, and
circRNAs in human biofluids (e.g., whole blood, plasma/serum, or
gastric juice), to in order to: 1) predict the response to radiation of
each specific patient, 2) determine the individual radiation dose,
and 3) minimize acute and latent damage to normal cells/tissues
(Das et al., 2019; May et al., 2021). Secondly, in the course of
radiotherapy, checking the expression change in radiodependent
miRNAs, lncRNAs, and circRNAs in biological fluids and
changing the expression of a number of certain miRNAs,
lncRNAs, and circRNAs among radiodependent ncRNAs can
help to effectively achieve the desired effect of radiation
therapy and further increase radiosensitivity of GC. Thirdly,
during the period of radiotherapy, radiation therapy itself can
be combined with chemotherapy drugs (e.g., oxaliplatin (FLO) or
cisplatin (FLP)), small molecule inhibitors (e.g., tyrosine kinase
inhibitors) and drugs that target specific miRNAs, lncRNAs, and
circRNAs to enhance the genetic instability of cancer cells,
increase the rate of destruction of radiation, and enhance the
overall effect of radiotherapy (Song et al., 2017; Patel and Cecchini,
2020; Fong et al., 2022). And fourth, when radiotherapy is
completed, determining the expression of so-called predictive
miRNAs, lncRNAs, and circRNAs in body fluids can help
control the therapeutic effect of radiation and reduce the risk
of metastasis and recurrence of GC (Figure 4) (Wei et al., 2020). In
addition, the discovery of the role of miRNAs, lncRNAs, and
circRNAs, as well as their interaction with each other, in the
regulation of GC radiosensitivity increases the likelihood that

TABLE 4 Some non-coding RNAs (ncRNAs) that regulate oxygen adaptive metabolism in gastric cancer (GC) cells.

NcRNA Model study Expression Target gene/
pathway

Type of
ncRNA

Biological function References

miR-21 In vitro Up PDCD4 Oncogene Participates in balance of oxidation and antioxidant
system in patients with GC

Tu et al. (2014)

miR-622 Bioinformatics,
in vitro and in vivo

Down NUAK1/p-protein
kinase B (Akt) axis

Tumor
suppressor

Decreases GC cell proliferation and migration but
increases oxidative stress and inhibits the
development of tumor

Yang et al.
(2022)

miR-448 In vitro Up KDM2B Oncogene Promotes glycolytic metabolism of GC. Significantly
associated with poor clinical outcomes of GC
patients

Hong et al.
(2016)

THUMPD3-
AS1

In vitro Down miR-1252-3p and
CXCL17

Tumor
suppressor

Inhibits proliferation, migration, invasion and ROS
accumulation of GC cells

Tan et al. (2022)

lncRNA
LINC00242

In vitro and in vivo Up miR-1-3p/G6PD
axis

Oncogene Promotes cell proliferation and aerobic glycolysis
and relieve the tumorigenesis

Deng et al.
(2021)

lncRNA H19 Bioinformatics,
in vitro and in vivo

Up miR-519d-3p/
LDHA axis

Oncogene Promotes aerobic glycolysis, proliferation, and
immune escape of GC cells

Sun et al. (2021)

circSLAMF6 In vitro and in vivo Up miR-204-5p/
MYH9 axis

Oncogene Promotes cell glycolysis, migration, and invasion of
GC cells

Fang et al.
(2020)

circDNMT1 In vitro and in vivo Up miR-576-3p/HIF-1α
axis

Oncogene Promotes the proliferation, migration, invasion and
glycolysis of GC cells. Promotes malignant behaviors
and metabolic reprogramming of GC

Li et al. (2022)

circBFAR In vitro and in vivo Up miR-513a-3p/
HK2 axis

Oncogene Promotes proliferation and glycolysis in GC Wang et al.
(2021b)

Abbreviations: THUMPD3-AS1, THUMPD3 antisense RNA, one; LINC00242, Long intergenic non-protein coding RNA, 242; circDNMT1, circRNA DNA, methyltransferase one; circBFAR,

circular RNA, bifunctional apoptosis regulator (circBFAR); PDCD4, Programmed cell death protein 4; NUAK1, Novel (nua) kinase family one; KDM2B, Human Lysine-specific demethylase

2B; CXCL17, Chemokine (C-X-C motif) ligand 17; G6PD, Glucose-6-phosphate dehydrogenase; LDHA, Lactate dehydrogenase A; MYH9, Myosin heavy chain nine; HIF-1α, Hypoxia-

inducible factor 1-alpha.
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these ncRNAs, in particular radio-dependent ones, will provide a
promising direction in the clinical practice of prevention,
diagnosis, prognosis and treatment of GC.

Advances in fluid biopsy, that is, the non-invasive detection of
radiospecific miRNAs, lncRNAs and circRNAs as biomarkers in
biological fluids to assess response to GC radiotherapy, are entirely
possible. In addition, the potential to improve the radiotherapeutic
effect by activating or inhibiting the expression of certain miRNAs,
lncRNAs and circRNAs and downstream target genes is extremely
promising.

9 Conclusion

To sum up, ncRNAs may play a role in regulating the sensitivity
of GC to radiation therapy by impacting important biological
processes such as DNA damage response, cell stemness,
apoptosis, EGFR activation, EMT, and oxygen adaptive
metabolism. This suggests new opportunities for research to
further investigate the impact of ncRNA dysregulation on the
radiation sensitivity of GC. Further studies are needed to explore
the potential role of ncRNA in regulating GC radiation sensitivity
in-depth, and to develop a prediction model and screening system
for ncRNAs to regulate radiation sensitivity of GC, which can bring
new hope to improve the prognosis of GC patients. Overall, the role
of ncRNA in the development and progression of tumors is a current
area of focus in tumor biology research. Targeting ncRNAmay be an
effective method to reduce the resistance of GC to radiation therapy,
which can help improve the effectiveness of radiation therapy for GC
patients and provide new ideas and strategies for GC radiation
therapy.
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FIGURE 4
Clinical perspective of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in gastric cancer (GC) radiotherapy. In
the future, in clinical practice with the use of radiotherapy, it is possible to assess and monitor the range of changes in the expression of radiodependent
miRNAs, lncRNAs, and circRNAs in human biofluids (e.g., whole blood, plasma/serum, or gastric juice) pre-radiation therapy, during radiation therapy, and
post-radiation therapy periods in order to enhance the therapeutic effect of radiotherapy and improve the overall survival of GC patients.
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