
TYPE Original Research
PUBLISHED 25 April 2023
DOI 10.3389/fphys.2023.1151312

OPEN ACCESS

EDITED BY

Shujaat Khan,
Siemens Healthineers, United States

REVIEWED BY

Alishba Sadiq,
University of Maryland, United States
Eamonn John Keogh,
University of California, Riverside, United
States

*CORRESPONDENCE

Ulysse Côté-Allard,
ulysseca@uio.no

SPECIALTY SECTION

This article was submitted to
Computational Physiology and Medicine,
a section of the journal Frontiers in
Physiology

RECEIVED 25 January 2023
ACCEPTED 28 March 2023
PUBLISHED 25 April 2023

CITATION

Strommen KJ, Tørresen J and
Côté-Allard U (2023), Latent space
unsupervised semantic segmentation.
Front. Physiol. 14:1151312.
doi: 10.3389/fphys.2023.1151312

COPYRIGHT

© 2023 Strommen, Tørresen and
Côté-Allard. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Latent space unsupervised
semantic segmentation

Knut J. Strommen1, Jim Tørresen1,2 and Ulysse Côté-Allard1,2*

Department of Informatics, University of Oslo, Oslo, Norway, RITMO, University of Oslo, Oslo, Norway

The development of compact and energy-efficient wearable sensors has led to
an increase in the availability of biosignals. To effectively and efficiently analyze
continuously recorded and multidimensional time series at scale, the ability to
perform meaningful unsupervised data segmentation is an auspicious target.
A common way to achieve this is to identify change-points within the time
series as the segmentation basis. However, traditional change-point detection
algorithms often come with drawbacks, limiting their real-world applicability.
Notably, they generally rely on the complete time series to be available and
thus cannot be used for real-time applications. Another common limitation
is that they poorly (or cannot) handle the segmentation of multidimensional
time series. Consequently, the main contribution of this work is to propose a
novel unsupervised segmentation algorithm for multidimensional time series
named Latent Space Unsupervised Semantic Segmentation (LS-USS), which
was designed to easily work with both online and batch data. Latent Space
Unsupervised Semantic Segmentation addresses the challenge of multivariate
change-point detection by utilizing an autoencoder to learn a 1-dimensional
latent space on which change-point detection is then performed. To address
the challenge of real-time time series segmentation, this work introduces the
Local Threshold Extraction Algorithm (LTEA) and a “batch collapse” algorithm.
The “batch collapse” algorithm enables Latent Space Unsupervised Semantic
Segmentation to process streaming data by dividing it into manageable batches,
while Local Threshold Extraction Algorithm is employed to detect change-
points in the time series whenever the computed metric by Latent Space
Unsupervised Semantic Segmentation exceeds a predefined threshold. By using
these algorithms in combination, our approach is able to accurately segment
time series data in real-time, making it well-suited for applications where timely
detection of changes is critical. When evaluating Latent Space Unsupervised
Semantic Segmentation on a variety of real-world datasets the Latent Space
Unsupervised Semantic Segmentation systematically achieves equal or better
performance than other state-of-the-art change-point detection algorithms it
is compared to in both offline and real-time settings.

KEYWORDS

multi-dimensional time series, semantic segmentation, unsupervised learning, change-
point detection (CPD), biosignal processing, machine learning, autoencoder

1 Introduction

The physiological processes occurring in the human body generate a plethora of
biosignals (e.g.,motion,muscle activity, biopotential) that can provide otherwise inaccessible
insights into a person’s health and activity Demrozi et al. (2020), and may even be leveraged
for the development of human-computer interfaces Campbell et al. (2020). Through the

Frontiers in Physiology 01 frontiersin.org

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2023.1151312
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2023.1151312&domain=pdf&date_stamp=2023-04-20
mailto:ulysseca@uio.no
mailto:ulysseca@uio.no
https://doi.org/10.3389/fphys.2023.1151312
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fphys.2023.1151312/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1151312/full
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Strommen et al. 10.3389/fphys.2023.1151312

rise of the Internet of Things and the development of more
compact and energy efficient sensors, wearable technologies can
now provide continuous, non-intrusive andmultimodal monitoring
of these biosignals in real-time. However, the sheer amount of data
generated by these devices make the processing and analysis of this
information challenging and time-consuming to perform. As an
example, a single 9-axis inertial measurement unit cadenced at a
low sampling rate of 60 Hz generates around 2 million data-points
every hour. Having to manually annotate these unlabelled data
streams can thus rapidly become impractical. Another commonly
occurring type of data are weakly labeled time series which include
imprecise or inexact labels of when a change actually occurred.
For both unlabeled and weakly labeled time series, the most useful
information often lies in the precise location where a transition in
the time series take place. Thus to make use of this data at scale,
being able to identify these critical points in the time series in
an unsupervised manner would be highly beneficial. Unsupervised
change-point detection (CPD) algorithms attempt to identify these
abrupt change in the data generating process Aminikhanghahi and
Cook (2017).

Unfortunately, CPD algorithms also tend to suffer from
limitations that reduce their suitability for real-world applications.
Notably, they tend to make assumptions and require prior
knowledge of the data which in practice implicitly or explicitly
restrict them to a specific domain (as opposed to being domain
agnostic) Aminikhanghahi and Cook (2017); Gharghabi et al.
(2017); Lin et al. (2016). Another common limitation is that many
CPD algorithms are defined only for offline applications (i.e.,
they require access to the full time series before performing the
segmentation) Aminikhanghahi and Cook (2017); Truong et al.
(2020). Further, for many real-world applications fast change-
point detection are necessary to execute time-sensitive actions.
Thus, algorithms that cannot handle online streaming data are
ill-adapted for this type of reality, as they require a complete
rerun every time a new data point is added. This problem is
compounded by the fact that time series are often recorded over
a long time and with a high sampling rate. Thus, algorithms
with high computational complexity or poor scalability are also
inappropriate for these types of real-world applications. Therefore,
creating a domain-agnostic, hyperparameter-light unsupervised
semantic segmentation algorithm that can handle online streaming
data at scale is a highly desirable goal.

One state-of-the-art algorithm, which meets many of these
requirements is Fast Low-cost Unipotent Semantic Segmentation
Gharghabi et al. (2017) (FLUSS). FLUSS is a domain agnostic,
scalable CPD algorithm, that can work with both online and
offline data. The main hypothesis behind the development of
FLUSS is that subsequences (small snippets of the time series
data extracted around each time step in the time series) in
similar segments are more similar than subsequences occurring
after a change-point. FLUSS handles multidimensional data by
implicitly calculating the likelihood of a change-point at each time
step for each channel independently before taking the average
likelihood over all the channels. However, some of the considered
dimensions might not contain information that is helpful for the
segmentation, or they might be heavily correlated. Thus, when
taking the average across all the channels, these “not so useful”
channels will dilute the information from the meaningful channels.

The authors acknowledge this problem and recommend that when
dealing with high dimensional data one should do a search or
manually find the most useful subset of channels and remove the
rest.

As time series data are often sampled from multiple sources
and sensors, especially when working with wearable devices, it
would be helpful to have an algorithm that can automatically extract
the most useful information from high-dimensional time series
data during segmentation. Consequently, the main contribution
of this work is the introduction of Latent Space Unsupervised
Semantic Segmentation (LS-USS). LS-USS is a domain-agnostic
unsupervised semantic segmentation method that can handle both
online streaming and offline multidimensional data with easy-to-
tune hyperparameters. LS-USS is based on FLUSS, but differs in
its approach by identifying similarities between lower-dimensional
encodings of the multidimensional subsequences, obtained through
the use of an autoencoder, instead of similarities between the
subsequences themselves. The idea is that the dimensionality
reduction learned by the autoencoder will reduce redundant
and correlated information between channels, which in turn will
improve time series segmentation.

This work is organized as follows; an overview of the related
work is given in Section 2. Section 3 introduces the notions
necessary for the description of the proposed algorithm in Section 4.
The experiments are then presented in Section 5. Finally, the
results and their associated discussion are covered in Section 6 and
Section 7 respectively.

2 Related work

CPD algorithms can be divided into two categories depending
on their reliance on labeled data: Supervised and Unsupervised
CPD. Supervised CPD usually entails extracting subsequences over
a sliding window where each subsequence is assigned a class or
label. Most of the classifiers used in other machine learning tasks are
also leveraged for supervised CPD such as naïve Bayes Reddy et al.
(2010), Support Vector Machines (SVMs) Reddy et al. (2010),
Gaussian Mixture Models (GMMs) Reddy et al. (2010), Decision
Trees Reddy et al. (2010), Hidden Markov Models Cleland et al.
(2014), and Neural Networks Ronneberger et al. (2015). When
labels are available, the supervised methods are often the preferred
solution.Unfortunately, labeling time series data can be prohibitively
expensive (in terms of time, cost and/or human labor) making it
an impractical solution for a wide variety of domains. Another
challengewith supervisedCPD is that they generally require training
samples from all possible states (classes) of the signals beforehand
and thus cannot easily adapt to novel behavior in the time series.
Therefore, unsupervised CPD remains of great interest in many
practical applications.

Most of the existing unsupervised CPD algorithms make
statistical assumptions on the data (e.g., stationarity, independent
and identically distributed) Kuncheva (2013); Adams and MacKay
(2007); Malladi et al. (2013); Harchaoui et al. (2008); Rosenbaum
(2005); Friedman and Rafsky (1979); Itoh and Kurths (2010),
and/or require extensive tuning of model parameters as they rely
on predefined parametric models Kawahara et al. (2007); Itoh and
Kurths (2010); Yamanishi and Takeuchi (2002). As such, this type of

Frontiers in Physiology 02 frontiersin.org

https://doi.org/10.3389/fphys.2023.1151312
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Strommen et al. 10.3389/fphys.2023.1151312

algorithm can be cumbersome to apply on new domains and less
robust to changes in the data over time. In contrast, LS-USS was
designed to work using only minimal assumptions about the data
and without requiring domain knowledge.

Another common limitation of existing CPD algorithms is
that they require batched data to function and are thus ill-
suited for real-time applications Aminikhanghahi and Cook
(2017); Rakthanmanon et al. (2011); Kawahara et al. (2007); Itoh
andKurths (2010) such as detecting change-points in a patient’s vital
signs Yang et al. (2006) or continuously monitoring the wear and
tear of industrial robots Nentwich and Reinhart (2021). In contrast,
LS-USS can be efficiently updated every time a new data point is
added to the time series, allowing it to run in real-time.

A popular form of unsupervised CPD algorithms relies on
clustering subsequences of the time series Yairi et al. (2001);
Fu et al. (2001); Li et al. (1998). These methods cluster individual
subsequences extracted from running a sliding window over the
time series.The idea being that if two temporally close subsequences
belong to different clusters, a change-point most likely exist between
the two. However, Keogh et al. Keogh and Lin (2005) have shown
that using subsequence clustering essentially produces cluster
centers which tend towards a sinusoidal signal with random phases
that average to the mean of the time series for any dataset used. In
other words, the change-points detected are essentially random. To
address this issue, Keogh et al. Keogh and Lin (2005) proposes to
instead cluster the time series data points usingmotifs. In the context
of datamining,motifs can be seen as fingerprints for time series data,
as all non-random time series data produced by the same process are
bound to contain some reoccurring patterns. Thus, the difference
between clustering motifs and subsequence clustering is that in the
former case clusters are made up of short individual time series,
while in the latter case the clusters are derived from subsequences
extracted from a sliding window. This means that cluster centers in
motif clustering represent averages over motifs (i.e., similar patterns
in data), rather than averages over all the data. Several methods
have been proposed to extractmotifs in time series dataMueen et al.
(2009); Rakthanmanon et al. (2011); Bailey (2021); Yeh et al. (2016).
In particular, matrix profile Yeh et al. (2016) is a recent approach to
motif discovery based on efficient calculation of the self-similarity
matrix. As matrix profiles are a core aspect of LS-USS, they will be
presented in more detail in Section 3.1. In Rodrigues et al. (2022),
the authors propose a novel segmentation method that uses a
feature-based self-similarity matrix (SSM) to measure the pairwise
distance between subsequences of a time series. Unlike previous
works, such as Yeh et al. (2016) and our own work, where the
SSM is based on the raw time series or a latent representation
of it, this method selects features from the Time Series Feature
Extraction Library (TSFEL) Barandas et al. (2020) to construct the
SSM. The authors then employ three techniques, namely, novelty
search, periodic search, and similarity profile analysis, to segment
the time series based on the constructed SSM.

Many of the current states-of-the-art CPD algorithms
Alippi et al. (2015); Gu et al. (2010); Kawahara and Sugiyama
(2012); Kawahara et al. (2007), including FLUSS Gharghabi et al.
(2017), were primarily designed for one-dimensional data.
Unfortunately, this often limits their ability to effectively process
multidimensional data Aminikhanghahi and Cook (2017), as
they don’t effectively consider the varying levels of correlated

FIGURE 1
The diagram of the LFMD algorithm presented in Lee et al. (2018). The
distance of the latent features are calculated between each adjacent
window. The distance’s local maxima are selected as the
change-points to be returned by the algorithm. Note that the overlap
between window is an hyperparamter that has to be optimized for.

information across dimensions, which can increase the complexity
of finding change-points accurately. To alleviate this issue, CPD
algorithms have been specifically designed for multidimensional
data Qahtan et al. (2015); Kim et al. (2019); Lee et al. (2018);
Sakurada and Yairi (2014); Zhou and Paffenroth (2017); Zhang et al.
(2019). In Qahtan et al. (2015) principal component analysis
(PCA) is first used to obtain a one-dimensional signal (using the
principal component) before performing the segmentation. Kim
et al. Kim et al. (2019) aims to segment out driving patterns from
sensors on driving vehicles by leveraging word2vec Mikolov et al.
(2013) to make an encoded representation of time series data
consisting of both categorical and numerical information in
varying scales. Autoencoders Tschannen et al. (2018) have also
been employed in the domain of anomaly detection with great
success Sakurada and Yairi (2014); Zhou and Paffenroth (2017);
Zhang et al. (2019). The most common approach is to first train
the autoencoder on time series data which does not contain
that contains minimal or no anomalies. At inference time, the
reconstruction error is employed as a measure of how likely the
current time series contain an anomaly. The idea being that if the
autoencoder cannot effectively reconstruct the input signal, it is
likely because it is dissimilar from the training data. While this
approach successfully finds change-points that are anomalies, it
isn’t straightforward to adapt it for time series segmentation as the
different segments are a natural part of the data. As such, it should
be expected that an autoencoder trained on specific segments will
also have a low reconstruction error when the data seen during
inference belongs to any of the type of segments seen during
training. Nevertheless, as shown in Lee et al. (2018), unsupervised
segmentation can still be performed using an autoencoder while
achieving state-of-the-art results by calculating a distance between
consecutive windows in the latent space. This method referred
to as Latent Feature Maximal Distance (LFMD), is illustrated
in Figure 1. The central idea behind LFMD, using a learned
latent space of an autoencoder as a way to efficiently characterize
multidimensional data for CPD is also a core concept in LS-USS.
As such, LFMD will be used in this work to better contextualize
the performance of the proposed algorithm. Deep Time Series

Frontiers in Physiology 03 frontiersin.org

https://doi.org/10.3389/fphys.2023.1151312
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Strommen et al. 10.3389/fphys.2023.1151312

Embedding Clustering (DeTSEC) Ienco and Interdonato (2020)
is another example of segmentation using autoencoders on
high dimensional multivariate data. It has two stages: first, an
attentive-gated autoencoder that creates a vector embedding
representation of the time series; second, a clustering refinement
stage that optimizes a loss function that balances reconstruction
and clustering objectives. The final cluster assignment is
obtained by applying the K-means clustering algorithm on the
embeddings.

3 Preliminaries

The following section presents an overview of the fundamental
building blocks used by LS-USS.

3.1 Matrix profiles

One of the core concepts behind LS-USS is the matrix profile
Yeh et al. (2016), a data structure for time series that facilitates
change-point detection and motif discovery. The matrix profile
represents the distance between each motif and their most similar
associated motif (excluding themselves). To calculate the matrix
profile, one first has to find the set of all subsequence A from
the time series t⃗A by utilizing a sliding window of length m ∈ ℕ
with a step size of 1 to extract all the possible subsequences of
t⃗A. After this, a distance matrix is calculated by computing the z-
normalized Euclidian distance between every subsequence inAwith
every other subsequence in A. Figure 2 shows what the resulting
distance matrix looks like for the time series GunPoint from the
UCR time series archive Dau et al. (2019). Each row in the distance
matrix, referred to as the distance profile D depicts the distance
from the subsequence at the current row index to every other
subsequence in the time series. The distance profile D is calculated
efficiently in O (nlog (n), using a technique referred to as Mueen’s
algorithm for similarity search (MASS) Rakthanmanon et al.
(2012).

The matrix profile is obtained by calculating the Euclidean
distances between every subsequence in A and its closest non-
trivial neighbor in the same matrix. To create the matrix profile, the
distance matrix is examined, and the minimum value in each row
is extracted, representing the distance to the nearest neighboring
subsequence. Note, however, that the most similar subsequence
to a given subsequence will always be the subsequence itself
(as they are identical). Similarly, subsequences that are extracted
close in time will also be nearly identical. To avoid these trivial
matches, an exclusion zone around each index is created by setting
the values in these areas of A to infinity. As seen in Figure 2,
this exclusion zone will be along the diagonal of the distance
matrix.

The matrix profile can be used to identify recurring patterns,
known as motifs, and unique patterns, known as discords, in
time series data. In the areas with relatively low values (i.e., high
similarity), the subsequences in the original time series must
have (at least one) relatively similar subsequence elsewhere in the
data. These regions are reoccurring patterns which are classified
as motifs and always come in pairs. In contrast, for areas with

FIGURE 2
Plot depicting a time series and its corresponding distance matrix and
matrix profile. The time series presented is an excerpt from the UCR
GunPoint dataset from the UCR time series archive.

FIGURE 3
The distance matrix is a matrix constructed from all the distance
profiles, which shows how similar each subsequence in the times
series is to every other subsequence in the same time series. The
matrix profile is derived by taking the minimum distance of each row.
The original time series is shown in yellow and the matrix profile in
green.

relatively high values (i.e., low similarity), the subsequence in
the original time series must be a unique shape since it doesn’t
match any other subsequence. These areas of discords can be
considered anomalies in the data. Figure 3 shows an example of
how motifs and discords can easily be identified using a matrix
profile.

When calculating the matrix profile p⃗A, one can also extract the
index of the nearest neighbor for each row in the distance matrix
to make the matrix profile index ⃗iA, which is defined as the vector
containing the indices of the nearest non-trivial neighbor in A for
every subsequence in A. The matrix profile index can thus be seen
as a time series containing pointers to the nearest neighbors for
each subsequence and will serve as the basis for the segmentation
algorithm in LS-USS.Thematrix profile can be efficiently calculated
inO(n2 log(n)) using the Scalable time series AnytimeMatrix Profile
(STAMP) Yeh et al. (2016) outlined in Algorithm 1.

Frontiers in Physiology 04 frontiersin.org

https://doi.org/10.3389/fphys.2023.1151312
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Strommen et al. 10.3389/fphys.2023.1151312

Input:

t⃗A—time series

m—subsequence length

Output:

p⃗A, i⃗A—The incrementally updated matrix profile

and the associated matrix profile index

1: procedure STAMP(t⃗A,m)

2: p⃗A = inf’s, i⃗A = zeros

3: A ←the all-subsequence set from t⃗A

4: for idx = 0: length(t⃗A)-m do

5: D[idx] = MASS(A[idx],t⃗A) ⊳ MASS

calculates the distance profile for

the current subsequence

6: p⃗A[idx],i⃗A[idx] = ElementWiseMin

(D[idx]) Save the minimum values in

the distance profile and the

corresponding index

return p⃗A, i⃗A

Algorithm 1. The pseudo code for the algorithm Scalable Time Series Anytime
Matrix Profile (STAMP) which is an efficient method for calculating the matrix
profile.

3.2 Fast Low-cost Unipotent Semantic
Segmentation

Fast Low-cost Unipotent Semantic Segmentation (FLUSS)
Gharghabi et al. (2017) is a segmentation algorithm that builds upon
the matrix profile. This algorithm utilizes the matrix profile index
(⃗iA), to segment time series data.The intuition behind FLUSS can be
illustrated through this simple example:

When analyzing time series data collected from an inertial
measurement unit worn by an individual who walks for a set period
of time and then starts running, it is reasonable to expect that
the walking subsequences will be highly similar to other walking
subsequences, and the same for the running subsequences.Thus, for
a given index in the time series ⃗t, the number of connections (arcs)
crossing “over” that index would be low if it falls within an area of
the time series where the activity is transitioning, whereas a high arc-
count would be expected in areas with a clear homogeneous pattern.
By counting the number of arc-crossings over each index, we can
generate the Arc Curve (AC) which can be used to identify patterns
and changes in the time series data.

The AC of a given time series ⃗t of length n will itself be a time
series of length n containing only non-negative values. The value at
the ith index in the AC specifies the number of arcs spatially crossing
over location i in the original time series ⃗t Gharghabi et al. (2017).

Figure 4 shows that the AC is close to zero at the transition
between the segments. However, by definition, the arc count will
naturally be lower closer to the edges until it becomes zero as no arcs
can cross the borders of the time series. To compensate for this, the
authors in Gharghabi et al. (2017) divide the AC with an inverted
parabola with a height equal to half the length of the time series.
This parabola is called the idealized arc curve (IAC) and is what the
AC would look like for a time series with no structure, where all

FIGURE 4
The top plots show a time series recorded from a gyroscope placed on
a person’s arm Banos et al. (2014). During the recording, the person is
initially walking but then starts jogging at around timestep 500. The
bottom plot shows the corresponding arc curves. Importantly, the arc
counts are low around timestep 500, corresponding to the time series
true change-point. However, the arc counts also decrease towards
the beginning and end of the time series, which corresponds to a
construction artifact that has to be corrected for.

FIGURE 5
The top plot shows the empirical vs. theoretical idealized arc curve
(IAC). The bottom plot shows the corrected arc curve (CAC)
computed on the walking-jogging time series from Banos et al. (2014).
As shown by the purple vertical line, the minimum value on the CAC
can be used to identify this time series change-point.

arc curves would just point to random locations. The empirical and
theoretical IAC is depicted in the top plot in Figure 5. Dividing the
AC with the IAC will normalize the time series between 0 and 1 and
solve the edge effects.The resulting vector is known as the Corrected
Arc Curve (CAC). A min function is also applied to ensure that the
CAC is between 0 and 1, even in the unlikely event that AC > IAC.

3.2.1 Regime Extraction Algorithm
Low values in the CAC are used to identify potential change-

points. In Gharghabi et al. (2017), change-points are then selected
using the Regime Extraction Algorithm (REA). REA search for
the k lowest “valley” points in the CAC. However, if the point at
time t is the lowest point on the CAC, the points at time t− 1
and t+ 1 are likely the second and third-lowest point. To avoid
all the change-points ending up in one “valley”, an exclusion zone
is set around the already detected “valley” points, the width of
which is a hyperparameter. Note that REA only works when the
number of change-points is known beforehand. Unfortunately such

Frontiers in Physiology 05 frontiersin.org

https://doi.org/10.3389/fphys.2023.1151312
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Strommen et al. 10.3389/fphys.2023.1151312

Input:

CAC—a Corrected Arc Curve

numRegimes—number of regime changes

NW—Subsequence size

Output:

locRegimes—the location of the change-points

1: procedure REA(CAC,numRegimes, NW)

2: locRegimes = empty array of length

numRegimes

3: for idx = 0: numRegimes do

4: locRegimes[i] = indexOf(min(CAC))

5: Set exclusion zone of 5 × NW

around locRegimes[i] ⊳ To prevent

matches to “self”

return locRegimes

Algorithm2. The pseudo code for theRegimeExtractionAlgorithm (REA)which
is used for extracting change-points based on the CAC and number of change-
points.

FIGURE 6
The bi-directional idealized arc curve (IAC) vs the one-directional IAC.

a requirement can in practice be hard/impossible to fulfill for a
wide variety of applications. The pseudo-code for REA is outlined
in Algorithm 2.

3.2.2 Fast Low-cost Online Semantic
Segmentation

Adding a newpoint to theCAC takes onlyO(n log(n)). However,
removing the oldest point takes O(n2) as every subsequences
could point to the ejected point, thus requiring the whole matrix
profile to be updated. As such, while FLUSS can easily be run on
offline datasets, it doesn’t scale well in the context of streaming
data. To solve this issue, the authors in Gharghabi et al. (2017)
propose an online version of FLUSS, referred to as Fast Low-
cost Online Semantic Segmentation (FLOSS). FLOSS addresses the
online streaming issue by explicitly forcing each arc to only point
towards a newer data point. Consequently, as no arc can point to
an older point, ejecting the oldest point in the currently considered
time series can now be done in O(1). Thus, maintaining the one-
directional CAC1D can be done in O(nlog(n)). It should be noted
however that in the case of the CAC1D, the IAC will now be skewed
to the right as the rightmost part of the CAC1D will have a higher
chance of arc crossings (see Figure 6).

FLOSS in conjunction with the one-directional CAC thus
enables online streaming using thematrix profile.However, it should

be expected that FLOSS will perform worse than FLUSS due to the
directional constraints imposed on the arcs.

3.2.3 Locality—Temporal constraint
In some time series datasets, the same activities or events can

arise multiple times in a disjointed manner (e.g., a time series
representing the electrocardiogram of a person laying down and
standing upmultiple times in succession). In these cases, the CAC is
not a good indicator of a regime change as the arcs for a given event-
type (e.g., laying down)would have practically the same likelihoodof
pointing to subsequences in the segment they are occurring in than
they would have in pointing to subsequences from other segments
of the same event-type. This challenge can be addressed by using
a temporal constraint (TC) that limits how far in time an arc can
point, thus forcing each index in the CAC to only consider a local
area around itself. While this adds a hyperparameter (length of TC)
to the algorithm, it also reduces the computational time of FLUSS.
If considered, this hyperparameter is suggested in Gharghabi et al.
(2017) to be set to circa maximum expected segment length,
allowing for the use of domain knowledge to the algorithm if
available. Furthermore, as pointed out in Gharghabi et al. (2017),
this hyperparameter isn’t very sensitive and thus only requires a
rough idea of the order of the temporal scale at which the change-
points occurs.

3.3 Autoencoder

Autoencoders Tschannen et al. (2018) are a type of neural
network architecture designed to learn in an unsupervised manner
a mapping from the high-dimensional input space to a lower-
dimensional feature space (latent space) while preserving the salient
information of the original observations. This mapping is learned
by minimizing the distance between the original input and its
corresponding reconstruction from the latent space.

More precisely, define X as the input space and consider a
probability measure p onX . The objective of an autoencoder is then
to learn two functions ψ and ϕ, such that:

ψ:X →Z (1)

ϕ:Z → X (2)

ψ,ϕ = argmin
ψ,ϕ
𝔼x∼p [‖x− (ϕ◦ψ) (x)‖] (3)

WhereZ is the latent feature space that serves as an information
bottleneck to the original feature space.

The input of the autoencoder is the time series partitioned into
windows of length w. Note that these subsequences can be defined
with an overlap.The detailed autoencoder architectures employed in
this work will be presented in Section 4.

4 Materials and methods

LS-USS proposes to perform unsupervised segmentation by
leveraging an autoencoder to learn ameaningful latent feature space
which the corrected arc curve can be computed from. This section
details the proposed algorithms and contributions of this work.

Frontiers in Physiology 06 frontiersin.org

https://doi.org/10.3389/fphys.2023.1151312
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Strommen et al. 10.3389/fphys.2023.1151312

4.1 Autoencoder implementation

For comparison’s sake, the fully connected network architecture
used by LFMD Lee et al. (2018) is employed in this work. Further,
a simple convolutional network is also considered to evaluate if
modeling the input’s temporal characteristics can help find a better
latent representation than the fully connected version.

4.1.1 Fully connected model
Following the autoencoder implementation Lee et al. (2018), the

fully reproduced connected model uses two hidden layers for both
the encoder and decoder, transposed weights for the decoder, and
the sigmoid function as its activation function. For the decode
encoder, each hidden layer is half the size of the previous layer
and the opposite for the decoder layer (the initial size of which
will depend on the input/subsequence size). Adam Kingma and Ba
(2017) is employed to optimize the network’s weights using themean
square error as the loss function. Finally, the dimension of the latent
space is defined so that the ratio between the feature representation
and the input dim(x)

dim(z)
is 0.1. Where x ∈ X and z ∈Z .

4.1.2 Convolutional model
The architecture employed for the convolutional model is

presented in Table 1. The model is trained in the same way as the
fully connected model using mean square error as loss function and
Adamas optimizer.The feature size, which is nowdefined as the ratio
(dim(z)
NC×NW
), is set to 1

6
.

4.2 Latent space matrix profile

As previously stated, LS-USS leverages an autoencoder as a way
to learn a meaningful representation of a multidimensional time
series. Because the time series is first segmented into windows
with each window going through the autoencoder, the resulting
representation of the time series in the latent space is not a
continuous time series. Unfortunately, this also means that the
matrix profile cannot be computed from this latent space using
the STAMP algorithm as presented in Section 3.1 as doing so
is only possible if a sliding window can be applied to the time
series itself. Thus, this work introduces the Latent Space Matrix
Profile (LSMP) which, as the name implies, is the matrix profile
computed directly on the latent representation.The LSMP is defined
by the same logic used for calculating the regular matrix profile (see
Section 3.1). The difference being the use of latent representations
instead of subsequences. By exploiting the fact that each distance
calculation can be done independently, it is possible to implement
the computation of the Euclidean distance between pairs of vectors
to run in parallel (e.g., GPU). The pseudo-code to compute the
LSMP is presented in Algorithm 3.

Similarly to FLUSS, performing time series segmentation based
on the LSMP and CAC is only meaningful when the same segment-
type isn’t repeated other places in the time series (see Section 3.2.3).
Therefore, a TC is also applied when computing the CAC from the
LSMP. Adding this TC also comes with the added benefit that only
the distances between the latent features located inside the temporal
constraint need to be calculated. The top of figure 7-A depicts the

Input:

t⃗A—time series

m—subsequence length

Output:

p⃗F, i⃗F—The incrementally updated latent space

matrix profile and the associated latent space

matrix profile index

1: procedure LSMP(t⃗A,m)

2: p⃗F = inf’s, i⃗F = zeros

3: F←the latent all-subsequence set from

t⃗A

4: for idx = 0: length(t⃗A)-m do

5: D[idx] = CDIST(A[idx],t⃗A) ⊳ CDIST

calculates the distance profile for

the current subsequence.

6: p⃗F[idx],i⃗F[idx] = ElementWiseMin

(D[idx]) Save the minimum values in

the distance profile and the

corresponding index

return p⃗F, i⃗F

Algorithm 3. The pseudo code for calculating the Latent Space Matrix Profile
(LSMP)which is a representation of thematrix profile that is based on the latent
representations of the original time series.

collapse of the temporally constrained latent distancematrix into the
LSMP.

A memory problem arises for long time series as it is necessary
to save 2*TC data points per time step to make the temporally
constrained distance profile, which can rapidly become intractable.
To address this memory issue, instead of considering the full
distance matrix (constrained by TC), this work proposes using an
overlapping window on the time series where a distance matrix
will be computed for each window. A matrix profile for each
distance matrix is then computed. Finally, the different matrix
profiles are merged together by taking the minimum value (and
the corresponding index) over the overlapping area of each matrix
profile. This operation is referred to as the batched collapse of
the matrix profile, a depiction of which is shown in Figure 7 (the
pseudo-code is also provided in Algorithm 4).

As seen in the Batched collapse algorithm, collapsing the matrix
profile before processing the entire time series comes with the
cost of recalculating the last (TC*2–1) time steps of the matrix
profile. This recalculation is necessary as the first time steps
in the new matrix profile can point back to the old ones (see
Figure 7).

The “batch collapse” algorithm allows for the adaptation of
LS-USS to an online setting by accumulating a batch of data
before appending it to the matrix profile. This approach enables the
algorithm to detect change-points with a minimum of ϵ data points,
thus operating in ϵ real-time. However, it is important to note that
this method incurs a trade-off between batch size and computation
time, as the recalculation of TC× 2− 1 time steps is required each
time a batch is added. A completely online algorithm would be 1
real-time.

Frontiers in Physiology 07 frontiersin.org

https://doi.org/10.3389/fphys.2023.1151312
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Strommen et al. 10.3389/fphys.2023.1151312

TA
BL

E
1

O
ve

rv
ie
w
of

th
e
ar
ch

it
ec
tu
re

us
ed

fo
rt
he

co
nv

ol
ut
io
na

ln
et
w
or
k
ve

rs
io
n
of

th
e
au

to
en

co
de

r.
N
C
is
th
e
or
ig
in
al

nu
m
be

ro
fc
ha

nn
el
s
fr
om

th
e
in
pu

td
at
a,
w
hi
le

N
W

re
pr
es
en

ts
th
e
su

b-
se
qu

en
ce

le
ng

th
.

La
ye
r

Ty
pe

In
pu

tl
en

gt
h

O
ut
pu

tl
en

gt
h

In
pu

tw
id
th

O
ut
pu

tw
id
th

Ke
rn
el
si
ze

St
rid

e
Pa
dd

in
g

Ac
tiv

at
io
n

H
id
de
n
La
ye
r1

En
co
de
r

C
on

vo
lu
tio

n
N
W

N
W
/2

N
C

2x
N
C

3
2

1
Re

LU

H
id
de
n
La
ye
r2

En
co
de
r

C
on

vo
lu
tio

n
N
W
/2

N
W
/4

2x
N
C

4x
N
C

3
2

1
Re

LU

Re
sh
ap
e
En

co
de
r

Re
sh
ap
in
g

N
W
/4

N
W

4x
N
C

1
—

—
—

—

H
id
de
n
La
ye
r3

En
co
de
r

Fu
lly

C
on

ne
ct
ed

N
W

N
W
/2

1
1

—
—

—
Re

LU

H
id
de
n
La
ye
r4

En
co
de
r

Fu
lly

C
on

ne
ct
ed

N
W
/2

N
W
/4

1
1

—
—

—
Re

LU

H
id
de
n
La
ye
r5

En
co
de
r

Fu
lly

C
on

ne
ct
ed

N
W
/4

N
W
/6

1
1

—
—

—
Re

LU

H
id
de
n
La
ye
r1

D
ec
od

er
Tr
an
sp
os
ed

H
id
de
n
La
ye
r5

En
co
de
r

N
W
/6

N
W
/4

1
1

—
—

—
Re

LU

H
id
de
n
La
ye
r1

D
ec
od

er
Tr
an
sp
os
ed

H
id
de
n
La
ye
r4

En
co
de
r

N
W
/4

N
W
/2

1
1

—
—

—
Re

LU

H
id
de
n
La
ye
r2

D
ec
od

er
Tr
an
sp
os
ed

H
id
de
n
La
ye
r3

En
co
de
r

N
W
/2

N
W

1
1

—
—

—
Re

LU

Re
sh
ap
e
D
ec
od

er
Re

sh
ap
in
g

N
W

N
W
/4

1
4x
N
C

—
—

—
—

H
id
de
n
La
ye
r1

En
co
de
r

Tr
an
sp
os
ed

C
on

vo
lu
tio

n
N
W
/4

N
W
/2

4x
N
C

2x
N
C

3
1

1
Re

LU

H
id
de
n
La
ye
r1

En
co
de
r

Tr
an
sp
os
ed

C
on

vo
lu
tio

n
N
W
/2

N
W

2x
N
C

N
C

3
2

1
Li
ne
ar

1: procedure (tlim)

2: D← The distance matrix, calculated from

timestamp 0 to tlim

3: p⃗F ←The matrix profile obtained by

collapsing D

4: tlim _curr← tlim

5: while tlim < len(t⃗A) do

6: tlim _prev← tlim _curr

7: tlim _curr← tlim _curr +tlim
8: Dnew← Calculate distance matrix from

tlim _prev-TC×2−1 to tlim _curr

9: Collapse Dnew to get the matrix

profile p⃗Fnew

10: p⃗Fmerged ← Merge p⃗F with p⃗Fnew ⊳ keep

the minimum value between p⃗F and

p⃗Fnew where the two vectors overlap in

time

11: p⃗F ← p⃗Fmerged

return p⃗F

Algorithm 4. The pseudo code for Batched Collapse Algorithm which is
a method of calculating parts of the LSMP (with temporal constraints)
for a given time series without the need to calculate the full distance
profile.

FIGURE 7
The top part of (A) (blue arrow) depicts the batched collapse of the
temporally constrained latent distance matrix into the LSMP. (A) as a
whole shows the temporarily constrained matrix profile of a time
series of length 10,400. (B) shows the three batched matrix profiles
calculated where they overlap with each other. (C) shows the full
matrix profile after taking the minimum value in the overlapping area.

Frontiers in Physiology 08 frontiersin.org

https://doi.org/10.3389/fphys.2023.1151312
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Strommen et al. 10.3389/fphys.2023.1151312

FIGURE 8
Online version of LSMP on a time series of length 10,400. No
recalculation is needed when updating the distance matrix.

In section 3.2.2, FLOSSwasmade to work online by forcing arcs
to only point forwards in time. This trick can also be borrowed to
update the LSMP in real-time. If one only looks for the nearest-
neighbor forward in time, no subsequence can have a nearest-
neighbor in the previous LSMP. As such, the requirement of
recalculating TC*2-1 time steps at each new batch also disappears
(see Figure 8). As with FLOSS, it should be expected that using only
forward-pointing arcs will have a negative impact on the algorithm’s
performance.

4.3 Latent space unsupervised semantic
segmentation (LS-USS)

LS-USS uses an autoencoder to encode the multidimensional all
subsequences set A into the one-dimensional latent all subsequence
set F. F is then used to compute the LSMP P⃗F and the corresponding
LSMP index vector ⃗IF as described in the previous section. The
indices ⃗IF are then used to make the CAC, which is the graph
that contains the number of arc crossings at each time step. Like
in FLUSS, few arc crossings over a particular data point indicates
a high likelihood of a change-point at that time step, and a
high number of arc crossings indicates a low likelihood for a
change-point.

LS-USS online is similar to LS-USS, except that it uses the
version of the LSMP that works online by only considering right-
pointing arcs. Doing this makes it possible to update ⃗IF without
recomputing the distance matrix for the last (TC× 2− 1) time
steps. As mentioned, the regular LSMP can also be ϵ real-time by
accumulating a batch of data before adding it to the end of the P⃗F,
making the regular LS-USS ϵ real-time.

An overview of the relation between LS-USS, LS-USS online,
FLUSS, FLOSS and LFMD is shown in Figure 9.The diagram shows
that the LS-USS algorithms utilizes the same autoencoder as LFMD
to learn a latent representation of a multidimensional time series.
They also use the concept of matrix profiles from FLUSS/FLOSS

FIGURE 9
Overview of the LS-USS and LS-USS online algorithms compared to
the other considered algorithms.

(although it is here computed from latent features of the original
data). The exact same algorithm is used to calculate the CAC for the
FLUSS/FLOSS and the LS-USS algorithms.

4.4 Local Regime Extraction Algorithm

REA was presented as an algorithm for extracting segments
based on the k-lowest “valley” points of the CAC. For most
long time series data the change-points are distributed relatively
evenly in time. In these cases, when extracting change-points, local
minimums are often more meaningful than the global minimums.
The REA algorithm will always pick the global k-lowest “valley”
points on the CAC instead of locating where the CAC is at its lowest
compared to the local area around it. To address this issue, this
work introduces the Local Regime Extraction Algorithm (LREA).
The method scales each point in the CAC to zero mean and unit
variance based on the local mean and standard deviation calculated
over a rollingwindow (as shown in Eq. 4). After the scaling, the same
procedure used in the REA algorithm extracts the lowest k “valley
points” from the scaled CAC.

CACscaled =
CAC− μrolling

σrolling
(4)

Note that by increasing thewindow size, the extraction threshold
will be increasingly global and thus tend towards REA.

4.5 Local Threshold Extraction Algorithm

For comparisons between the offline CPD algorithms in
this work, the algorithms REA and LREA are used. However,
these algorithms require information about the number of
segments, which is often unavailable in practice. To address
this, this work introduces the Local Threshold Extraction
Algorithm (LTEA). As the name suggests, this algorithm works
by scaling the CAC before doing threshold-based change-point
extraction.

The same CAC scaling used in the LREA algorithm is first
applied to LTEA. Note that in the case where the algorithm is
applied on an online (streaming) time series, the rolling statistics
can naturally be computed only on prior data (which is the main
difference with offline dataset).

Frontiers in Physiology 09 frontiersin.org

https://doi.org/10.3389/fphys.2023.1151312
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Strommen et al. 10.3389/fphys.2023.1151312

FIGURE 10
Plot (A) shows one channel from subject 4 in the UCI dataset. Plot (B)
shows the regular CAC for subject 4. Plot (C) shows the scaled CAC.
Plot (D) shows the thresholded CAC and the predicted change-points
when using LTEA on this CAC. Note that the LTEA algorithm does not
have prior knowledge of the number of change-points present in a
given time series. As a result, it may detect more or less change-points
than are actually present. In this example, an additional change-point,
not present in the ground truth, was detected at an approximate index
of 13,500.

In LTEA, the scaled CAC-values over a given threshold are
disregarded by being set to a value of one. When the scaled
CAC is standardized to zero mean and unit variance, a good
threshold value was found to be around minus one (one standard
deviation).

After thresholding the CAC, the local minimum obtained are
identified as the change-point location. An exclusion zone like the
one used in LREA and REA is also applied to avoid trivial matches
caused by valleys close in time. The pseudo-code to compute LTEA
is presented in Algorithm 5 and an example of the application of
LTEA is shown in Figure 10.

5 Experiments

5.1 Datasets

To benchmark the performance of LS-USS (and LS-USSOnline)
against FLUSS, FLOSS and LFMD, five biosignal-based datasets are
considered.

Input:

CAC–a Corrected Arc Curve or Distance Curve

localWindowSize–The size of the window used to

normalize the CAC

threshold–Values of the CACscaled above this

threshold will be set to 1. A good default

value is to set this to -1.

Output:

locRegimes–the location of the change-points

1: procedure LTEA(CAC, localWindowSize,

threshold = -1.)

2: CACscaled← empty array with same length

as the CAC

3: for i = 0:length(CACscaled) do

4: localWindow ← CAC[idx-

(localWindowSize): idx+

(localWindowSize)]

5: μrolling← mean(localWidow)

6: σrolling← std(localWindow)

7: CACscaled[i] ← (CAC[i] -

μrolling)/σrolling

8: if CACscaled[i] > threshold then

9: CACscaled[i] ← 1 valleys ← List

of sequences in CACscaled, where

a sequence corresponds to all

the consecutive points with a

value different than 1 in the

CACscaled

10: for valley in valleys do

11: locRegimes[i] ← indexOf(min(valley))

return locRegimes

Algorithm 5. The pseudo code for the Local Threshold Extraction Algorithm
(LTEA) which is used to extract change-points in an online fashion by scaling a
CAC based on its local statistics and thresholding the resulting scaled CAC.

5.1.1 UCI human activity recognition
The UCI Human Activity Recognition Using Smartphones

Dataset Anguita et al. (2013) contains 30 volunteers between the
ages of 19 and 48who performed six activities wearing a smartphone
on the waist. The activities were walking, walking up stairs, walking
down stairs, sitting, standing, and laying down. The collected
data came from the 3-axial accelerometer and 3-axial gyroscope
located in a Samsung Galaxy S2 and were sampled at 50 Hz. The
raw acceleration data signals have three main components: body
movement, gravity, and noise. The sensor data was filtered using
a median filter and a 3rd order low pass Butterworth filter with a
corner frequency of 20 Hz for noise removal. A lowpass Butterworth
filter, with a corner frequency of 0.3 Hz, was used to separate the
body movement and gravity signals. The reason for choosing to use
a 0.3 Hz cut-off frequency is that gravitational forces are assumed
only to have low-frequency components.This work will use the data
from the gyroscope, accelerometer, and the filtered body movement
from the accelerometer. As all these signals are sampled in all

Frontiers in Physiology 10 frontiersin.org

https://doi.org/10.3389/fphys.2023.1151312
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Strommen et al. 10.3389/fphys.2023.1151312

three spatial dimensions, the dataset contains nine channels in total.
Nine subjects constitute the training set, five subjects are used as a
validation set, while the remaining 16 subjects are picked for the test
set. The labeled change-point detection is available in this dataset
with the goal of detecting when the participant starts a new activity.
This dataset will be referred to as the UCI dataset.

5.1.2 EMG-based long-term 3DC dataset
The EMG-Based Long-Term 3DC Dataset Côté-Allard et al.

(2021) contains data from 22 able-bodied participants who
performed eleven hand gestures while recording their forearm’s
muscle activity over a period of 21 days.The recording sessions took
place every ∼7 day. The goal for the unsupervised segmentation is
to detect when a participant transitions towards a new gesture. This
is of particular interest for myoelectric-based control as being able
to detect such transitions accurately in real-time would improve the
performance of previously proposed self-learning classifiers Côté-
Allard et al. (2020). The armband used when recording this dataset
is the 3DC Armband Côté-Allard et al. (2019). The 3DC is a ten-
channel, dry electrode 3D printed EMG band with a sampling rate
of 1,000 Hz per channel. While the armband also features a 9-
axis Magnetic, Angular Rate, and Gravity (MARG) sensor, only
the 10 EMG channels are considered in this work. The dataset is
divided into training sessions and evaluation sessions. In the training
session, participants were asked to hold each of the 11 gestures for
5 s. The transitions between gestures weren’t recorded, yielding a
discontinuous time series.This procedurewas repeated four times by
each participant on every recording day. For the evaluation session,
participants were randomly asked to hold a total of 42 gestures.
The requested gestures were selected at random every 5 s (the time
series associated with an evaluation session thus lasted 210 s). Each
participant recorded a minimum of 6 evaluation sessions (twice
per recording session). Importantly, for the evaluation session, the
transition between each gesture was recorded, yielding a continuous
time series.

For this work, two datasets were derived from the Long-Term
3DC Dataset: The EMG Artificial Dataset and the EMG Dataset.

The EMG Artificial Dataset was created from the original
training sessions by concatenating these gesture recordings together
to form a continuous time series for each participant. The
artificial training set consists of training sessions recorded from ten
participants. The validation set consists of 15 time series made by
gestures from four participants, while the test sets includes 30 time
series from eight participants. Note that no participant is included
in more than one set to avoid data leakage.

The EMG Dataset was constructed using data from the
evaluation sessions of the Long-Term 3DCDataset. Six participants’
data were used to create the training set, five participant’s data were
used to form the validation set, and the remaining nine participant’s
data were used to comprise the test set. Similarly to the EMG
Artificial Dataset, no participant was included in more than one
set.

5.1.3 Expressive motion with dancers
The dataset Expressive motion with dancers St-Onge (2018)

is made in collaboration with professional dancers performing
different dance moves that correspond to three emotional states.
The dancers were wearing two Myo armbands, one on the calf and

one on the forearm.TheMyo is a low-cost eight-channel consumer-
grade, dry-electrode EMG armband that also integrates a nine
degree of freedom IMU (inertial measurement unit). Data from
the two IMU sensors are represented by yaw, pitch roll coordinates
and are sampled at 50 Hz. The dancer was instructed to develop
three choreographic moods differentiated by the emotion they
subjectively represented for the performer. To generate training data,
the dancer repeated each sequence of moods for around 20 s. In
addition to this, the dancers also created dance performances using
the same lexicon of sequences used when building the training set.
The dataset contains data from 27 participants.

Here, the training dataset is used as the training set, while the
dance performances from 9 participants are used as the validation
set, and the remaining 18 are used for testing.

An additional artificial dataset is made from the original
training data. The new training set includes raw data from
12 participants, while the validation and test sets have been
made by randomly concatenating ten to seventeen choreographic
moods from remaining six and nine participants, respectively. The
validation set consists of 20 artificial time series, while the test set
consists of 50.

The two datasets that are based on data from Expressive motion
with dancers will hereafter be referred to as Dance and Dance
Artificial.

5.2 Hyperparameter selection

The segmentation algorithms are divided into two categories:
online and offline.

Even if they are not fully online, LS-USS, FLUSS and LFMD
are also included in the online category as they can be made
to work ɛ real-time when using a temporal constraint. The
hyperparameter optimization is done using grid search by leveraging
the previously described training and validation sets for the five
differnt datasets considered in this work. The step size, used in
LFMD, decides the amount of overlap between subsequences. For
the segmentation algorithms that use an autoencoder (LS-USS and
LFMD), the fully connected and convolutional model is included in
the hyperparameter search. For the offline algorithms the extraction
algorithms REA and LREA are included in the hyperparameter
search. Four data scaling techniques are applied to the data for
comparing the segmentation algorithms on the different datasets.
These methods use the implementation provided in scikit-learn
Pedregosa et al. (2011) and are widely used for machine learning
and data mining tasks. The scaling is done independently over all
channels, and the statistics used for scaling the data are computed
using only the training data. The choice of scaling method is also
incorporated into the hyperparameter search.

To summarize, FLUSS and LS-USS (and their online
counterparts) require us to specify the subsequence size (NW)
and the Temporal Constraint (TC), while LFMD requires us
to specify subsequence size (NW) and a step size. LS-USS and
LFMD also have the option between two different autoencoder
architectures.

Themean distance between the change-points from the training
set is calculated for use as the local window size for scaling the CAC
when using the LREA and LTEA extractors. The training set is also

Frontiers in Physiology 11 frontiersin.org

https://doi.org/10.3389/fphys.2023.1151312
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Strommen et al. 10.3389/fphys.2023.1151312

utilized for training the autoencoders. As the autoencoders require
both training and validation sets, 80% of the training set is used as
training examples, while the remaining 20% is used to validate the
autoencoder. The validation portion of the dataset is used to find
the optimal hyperparameters of the segmentation algorithms. After
the best performing model configurations on the validation set are
found, the test set is used tomake the final comparisons between the
different segmentation algorithms.

For a detailed presentation of the considered hyperparamters
see Supplementary Tables S1, S2 in the Appendix. Furthermore,
Supplementary Tables S3, S4 in the Appendix shows the
hyperparameters selected for the offline and online evaluation
respectively.

5.3 Evaluation metrics

The performance of the offline algorithms are evaluated based
on the ScoreRegimes from Table 3 in Gharghabi et al. (2017). The
definition of the ScoreRegimes is as follows:

ScoreRegimes =
∑NGT

i=1
|CPpred −CPactual|

NGT ⋆ n
(5)

Where NGT is the number of ground truth change-points, and n is
the length of the time series.

Note that the ScoreRegimes requires knowing the number of
ground truth change-points and are thus ill-adapted to evaluate
online CPD algorithms as they might identify a different number
of change-points compared to the ground truth. Thus, the online
algorithms are evaluated using the Prediction Loss mean absolute
error (MAE), which is a slight modification of Eq. 12 in Lee et al.
(2018). The Prediction Loss MAE used in this work is defined as
follows:

Prediction lossMAE = |1−
Npred

NGT
| ×MAE (6)

Where Npredis the number of predicted change-points and NGT is
the number of ground truth change-points. Thus, instead of relying
on pre-defined change-points, the Prediction loss MAE weights the
mean absolute error with the prediction ratio. Importantly, as the
metrics used for the offline and online case aren’t related, it is also
not possible to make comparisons between the online and offline
algorithm’s performance based on them.

As suggested in Demšar (2006), a two-step statistical procedure
is applied to compare LS-USS against the relevant CPD algorithms.
First, Friedman’s test ranks the algorithms amongst each other.Then,
Holm’s post-hoc test is applied using the best ranked method as a
comparison basis. The null hypothesis of the post hoc test is that the
performance of the two models is the same. The null hypothesis is
rejected when p<0.05.

6 Results

The comparisons in this section are made from the five datasets
in both the offline and online setting: UCI, EMG artificial, EMG,
Dance Artificial and Dance.

TABLE 2 Comparison between the considered CPD algorithms in the offline
setting.

UCI

LS-USS FLUSS LFMD

Mean Score Regimes 0.00687 0.00931 0.01580

Friedman Rank 1.33 2.07 2.60

H0 (Adjusted p-value) − 0 (0.04461) 0 (0.00105)

Mean MAE 164 (3.28 s) 213 (4.26 s) 369 (7.38 s)

EMG Artificial

LS-USS FLUSS LFMD

 Mean Score Regimes 0.00214 0.00718 0.01839

 Friedman Rank 1.03 1.97 3.00

 H0 (Adjusted p-value) − 0 (0.00030) 0 (<0.00001)

 Mean MAE 84 (0.08 s) 274 (0.27 s) 1,219 (1.22 s)

EMG

LS-USS FLUSS LFMD

 Mean Score Regimes 0.00452 0.00593 0.00715

 Friedman Rank 1.00 2.00 3.50

 H0 (Adjusted p-value) − 0 (0.01431) 0 (<0.00001)

 Mean MAE 917 (0.91 s) 1,200 (1.2 s) 2,449 (2.45 s)

Dance Artificial

LS-USS FLUSS LFMD

 Score Regimes 0.01802 0.01735 0.03807

 Friedman Rank 1.54 1.54 2.92

 H0 (Adjusted p-value) 1 − 0 (<0.00001)

 Mean MAE 158 (3.16 s) 151 (3.02 s) 331 (6.60 s)

Dance

LS-USS FLUSS LFMD

 Mean Score Regimes 0.02899 0.03806 0.03665

 Friedman Rank 1.47059 2.47059 2.05882

 H0 (Adjusted p-value) — 0 (0.00710) 1

 Mean MAE 512 (10.24 s) 637 (12.74 s) 629 (12.58 s)

For each dataset, values corresponding to the best performing algorithm are highlighted in
bold.

6.1 Offline

In this subsection, for each dataset and participant, the full time
series was available when performing unsupervised segmentation
and the number of change-points in each time serieswas also known.
Table 2 presents the results obtained in the offline setting.

6.2 Online

In this subsection, data was fed to the CPD algorithms as
if they were acquired in real-time. Further, the total number of

Frontiers in Physiology 12 frontiersin.org

https://doi.org/10.3389/fphys.2023.1151312
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Strommen et al. 10.3389/fphys.2023.1151312

change-points in a time series was not given. Table 3 presents the
results obtained in the online setting.

7 Discussion

7.1 Observations from the hyperparameter
search

The results presented in Supplementary Table S1 in the
appendix shows that LREA is chosen 12 out of 15 times across
the five datasets for the three algorithms considered in the offline
setting. This indicates that scaling the CAC based on the local
statistics is useful when dealing with longer time series data.
Another interesting finding from the hyperparameter selection
is that the autoencoder selected by the hyperparameter search
for the LS-USS models (both offline and online) varies between
the datasets; some use the less complex, fully connected model,
while others use the convolutional model. As alluded to in
Lee et al. (2018), using a smaller model with only two hidden
layers might be beneficial for feature representation as it could
lead to a more general way to represent the data. The drawback of
simpler autoencoder models is that one risks losing some of the
information needed for segment differentiation. Note that an in-
depth analysis of the impact of the autoencoder’s architecture was
outside the scope of the current work and will be the focus of future
works.

7.2 Offline

Table 2 illustrates that LS-USS outperforms the other
segmentation algorithms significantly and consistently on three
of the five datasets considered in the offline setting, namely, UCI,
EMG, and EMG artificial. On the Dance Artificial dataset, LS-USS
and FLUSS exhibit comparable performance, while LFMD performs
significantly worst. Contrastingly, while LS-USS significantly
outperforms FLUSS on the Dance dataset, there is no significant
difference between it and LFMD (despite achieving a higher
ranking than LFMD). These results suggest that incorporating
the multidimensionality of time series data by learning a specific
representation provides a clear advantage compared to using FLUSS
directly. Additionally, the poor performance of LFMD highlights
the utility of leveraging the latent space matrix profile for time series
segmentation.

Overall, LS-USS demonstrates good performance on the offline
datasets, as evident from the Mean ScoreRegimes and Mean MAE
metrics. However, a more thorough evaluation of its performance
can be done by considering the time scale of the datasets. For
instance, the UCI data typically consists of segments that are 20–60 s
long, and LS-USS is off by an average of 3.22 s compared to 4.26 s
for FLUSS and 7.38 s for LFMD. For the EMG datasets, which have
a segment length of around 5 s, LS-USS is off by 0.08 s and 0.91 s on
average for the EMG artificial and EMG datasets respectively. The
dance dataset, on the other hand, has segment lengths of around
20 s long, with LS-USS detecting change-points that are 3.16 s off
on average for the artificial dataset and 10.24 s off for the non-
artificial dataset. It’s important to note that not all change-points

are perfectly matched to their actual locations, which may result in
some false positives.This could have significant impact on the MAE
metric, especially for longer time series, if the algorithm detects
too many false positives on non-trivial data. To address this issue,
the ScoreRegimes evaluation metric normalizes the score between
0 and 1 based on the number of segments and the length of the
time series, which as discussed in Section 5.3makes it amore robust
metric for offline CPD. Furthermore, it’s worth keeping inmind that
the change-points are defined by humans, who may not be entirely
precise. As a result, some discrepancies between the ground truth
and the LS-USS predictionsmaynot necessarily be indicative of poor
algorithmic performance. Overall, LS-USS shows promising results,
but it’s important to consider these factors when interpreting the
metrics.

7.3 Online

The UCI dataset results reveal that LS-USS is the top-ranked
algorithm, but its performance doesn’t differ significantly from
that of other algorithms. However, when tested on both the
EMG and EMG Artificial datasets, ɛ-real time LS-USS significantly
outperforms all other algorithms, except for LS-USS online on the
EMG Artificial dataset and LS-USS online and FLOSS on the EMG
dataset. In addition, when evaluated on the Dance Artificial dataset,
ɛ-real time LS-USS once again shows significant improvement over
the other algorithms. However, when tested on the Dance dataset,
the results are inconsistent, with LS-USS Online outperforming
all other models, while ɛ-LS-USS ranks last among all the tested
algorithms. Statistical analysis confirms that there is significant
variation in the performance of algorithms between recordings,
as none of the algorithms is significantly better than any other.
This is likely due to their sensitivity to the threshold parameters
which might not generalize well between the training and test
set for the dance dataset (and also between the recordings in
the test set itself). Overall, the ɛ-real time LS-USS LTEA model
performs the best across all datasets as an online segmentation
algorithm.

Upon examining the real-world performance of the ɛ-real time
LS-USS algorithm on online datasets, it is interesting to observe its
performance compare to the offline setting. For example, the ɛ-real
time LS-USS algorithm is on average 6.25 s off on the UCI dataset
compared to 3.28 s when offline, 1.43 s off on the EMG dataset
(0.91 s offline), and 0.63 s off on the EMG artificial dataset (0.08 s
offline). Additionally, the performance of the LS-USS algorithm
on the dance dataset is also comparable to its online counterpart.
Overall, amongst the online algorithms, he results also shows that
LS-USS online tends to perform slightly worse than ɛ-real time LS-
USS, likely due to the limitation of considering only right pointing
arcs. This pattern is also observed between the FLUSS and FLOSS
algorithms. As previously mentioned in Section 5.3, it is important
to take into account that comparing online algorithms solely on the
basis of MAE can be deceiving, as the algorithms must predict not
only the change-points but also the number of change-points. This
issue is exemplified by the performance of LFMD on the Dance
Artificial dataset, where it achieved the best MAE score but was
ranked the lowest overall. The algorithm tended to over-predict
the number of change-points, resulting in a mean prediction ratio

Frontiers in Physiology 13 frontiersin.org

https://doi.org/10.3389/fphys.2023.1151312
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Strommen et al. 10.3389/fphys.2023.1151312

TABLE 3 Comparison between the considered CPD algorithms in the online setting. Note that the Prediction Loss MAE is calculated as the average value across
the test set for each dataset.

UCI

ɛ LS-USS LS-USS Online ɛ FLUSS FLOSS LFMD

Prediction Loss MAE 45.54 114.82 47.27 87.36 51.99

Friedman Rank 2.50 4.20 2.56 3.12 2.60

H0 (Adjusted p-value) - 0 (0.01294) 1 1 1

Mean Prediction Ratio 1.02 1.49 1.03 0.93 1.11

Mean MAE 326 (6.52 s) 262 (5.24 s) 304 (6.08 s) 508 (10.16 s) 316 (6.32 s)

EMG Artificial

ɛ LS-USS LS-USS Online ɛ FLUSS FLOSS LFMD

 Prediction Loss MAE 6.64 16.10 26.73 86.44 97.54

 Friedman Rank 1.82 2.28 2.80 3.88 4.22

 H0 (Adjusted p-value) — 1 0 (0.03202) 0 (<0.00001) 0 (<0.00001)

 Mean Prediction Ratio 1.00 1.00 1.02 0.95 1.08

 Mean MAE 163 (0.16 s) 258 (0.26 s) 304 (0.30 s) 626 (0.63 s) 721 (0.72 s)

EMG

ɛ LS-USS LS-USS Online ɛ FLUSS FLOSS LFMD

 Prediction Loss MAE 121.97 164.68 251.41 163.71 388.82

 Friedman Rank 1.50 2.50 3.70 2.55 4.75

 H0 (Adjusted p-value) — 1 0 (0.00003) 1 0 (<0.00001)

 Mean Prediction Ratio 1.00 0.94 0.87 0.98 0.81

 Mean MAE 1,430 (1.43 s) 1,681 (1.68 s) 1709 (1.71 s) 1,621 (1.62 s) 2,116 (2.12 s)

Dance Artificial

ɛ LS-USS LS-USS Online ɛ FLUSS FLOSS LFMD

 Prediction Loss MAE 27.15 64.07 48.00 55.05 109.04

 Friedman Rank 1.92 3.17 2.77 2.80 4.34

 H0 (Adjusted p-value) — 0 (0.00023) 0 (0.01078) 0 (0.01078) 0 (0.00000)

 Mean Prediction Ratio 0.91 0.83 0.85 0.87 1.86

 Mean MAE 177 (3.54 s) 260 (5.20 s) 235 (4.70 s) 272 (5.44 s) 129 (2.58 s)

Dance

ɛ LS-USS LS-USS Online ɛ FLUSS FLOSS LFMD

 Prediction Loss MAE 415.31 204.12 281.01 334.65 289.20

 Friedman Rank 3.88 2.17 2.71 3.12 3.12

 H0 (Adjusted p-value) 1 - 1 1 1

 Mean Prediction Ratio 0.83 1.18 1.26 0.94 1.25

 Mean MAE 785 (15.7 s) 411 (8.22 s) 397 (7.94 s) 593 (11.86 s) 468 (9.36 s)

For each dataset, values corresponding to the best performing algorithm are highlighted in bold.

of 1.86. While this resulted in some inaccuracies, it also led to a
higher density of predicted change-points, bringing at least some of
them closer to the ground-truth values. As a result, the MAE score
improved, giving a false impression of a well performing algorithm
if looking at theMAEmetric alone.This emphasizes the importance
of weighing the prediction rate with distance metric MAE, as seen
in the evaluation metric Prediction loss MAE.

Overall, and as anticipated, the offline setting proved to be
easier in comparison to the online setting, owing to its access
to the true number of change-points and full time series data
for making decisions. In contrast, the online setting posed a
challenge as the number of change-points was unknown and
their identification solely relied on past information. Despite
this disparity, the difference in performance wasn’t substantial,

Frontiers in Physiology 14 frontiersin.org

https://doi.org/10.3389/fphys.2023.1151312
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Strommen et al. 10.3389/fphys.2023.1151312

FIGURE 11
Top: Channel 0 of participant3_evaluation3 in the EMG dataset. Middle: Segmentation using LS-USS–LREA- Bottom: Segmentation using LS-USS–LTEA.

indicating the effectiveness of the threshold-based approach
proposed with LTEA in identifying significant change-points in
an online setting. Notably, ɛ-real time LS-USS demonstrated an
average prediction rate ranging from 0.83 to 1.02 across multiple
datasets, underscoring the reliability of LTEA in extracting change-
points from the CAC. Figure 11 shows how the LTEA extractor
compares to the LREA extractor on a typical time series of the EMG
dataset. For a more detailed understanding of the performance
of LS-USS in both offline and online settings for each dataset,
we provide visually illustrative examples in Section 2 of the
appendix.

7.4 Limitations

This work’s main limitation is that the experiments conducted
havemainly been on data with similar sampling rates, and numerical
data only.Therefore, how the algorithm performs when considering
time series data containing channels with both numerical and
categorical variables remains to be evaluated. Furthermore, doing
an in-depth analysis on how the number of channels affects the
performance of LS-USS is also required and will be conducted in
futureworks. Additionally, futureworkswill also consider other type
of model to learn the latent space such as a variational autoencoder.

The performance of the segmentation algorithms is heavily
influenced by the hyperparameter search process. Therefore,
a more comprehensive hyperparameter search that includes
sampling from predefined distributions should be conducted

instead of relying on a simple grid search. Moreover, evaluating
the sensitivity of hyperparameter selection is crucial to determine
which hyperparameters require more thorough optimization and
to identify any potential hyperparameters that generalize well
using a constant value. This process helps us understand which
hyperparameters have a significant impact on the algorithm’s
performance and which ones can be set to a constant value
without affecting the results significantly. Identifying such
hyperparameters can streamline the optimization process and make
the algorithm more practical and efficient in real-world scenarios.
Additionally, future research should explore alternative approaches
to segmentation based on the LSMP. A promising starting point
would be to investigate the application of techniques used in
Rodrigues et al. (2022), such as novelty search, periodic search,
and similarity profile, to the LSMP instead of the feature-based
self-similarity matrix.

8 Conclusion

The main contribution of this work are the segmentation
algorithms LS-USS and LS-USS online. Through extensive testing
conducted on both artificial and real-world datasets from various
domains and sensors, it was found that LS-USS generally delivers
on par or better segmentation scores compared to other state-
of-the-art algorithms such as FLUSS/FLOSS and LFMD. The
LS-USS algorithms have many desirable properties. They can
be implemented both online and in an “anytime” fashion. They

Frontiers in Physiology 15 frontiersin.org

https://doi.org/10.3389/fphys.2023.1151312
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Strommen et al. 10.3389/fphys.2023.1151312

are domain agnostic (beyond knowing the order of time scale
considered for change-points) and do not need extensive tuning of
hyperparameters to achieve state-of-the-art performance. Further,
they don’t make any statistical assumptions about the input data.
The LSMP component used in LS-USS also shows that it is
possible to calculate a temporarily constrained matrix profile from
feature vectors by exploiting highly parallelized hardware. The
same methods used for constructing the LSMP can be used on
any vector-based Representation Learning algorithms Bengio et al.
(2013), which represents an excellent potential direction for future
research.

The extraction algorithms LREA and LTEA presented in this
work also show potential. LREA usually outperformed the more
global REA algorithm, which shows that scaling the CAC based on
the local statistics is highly useful, especially for long time series data.
The online extraction algorithm LTEA uses the same CAC scaling as
LREA but uses a threshold to identify the change-points instead of
extracting the n lowest “valley” points. Consequently, in contrast to
REA and LREA, LTEA doesn’t need any information on the number
of change-points to extract, making it applicable to a wider array of
real-world segmentation problems.

Data availability statement

Publicly available datasets were analyzed in this study.
This data can be found here: The UCR Dataset (https://
www.cs.ucr.edu/%7Eeamonn/time_series_data_2018), the UCI
Dataset (https://archive.ics.uci.edu/ml/datasets/human+activity+
recognition+using+smartphones), the Long Term EMG Dataset
(https://github.com/UlysseCoteAllard/LongTermEMG) and the
Dance Dataset (https://doi.org/10.1145/3323213). Further, the
modified datasets used in this work, notably the EMG Artificial
and Dance Artificial are available at the following link: https://
github.com/UlysseCoteAllard/SemanticSegmentationDatasets.

Author contributions

KS and UC-A: Conceptualization. KS, JT, and UC-
A: Methodology. KS: Software and validation. KS and

UC-A: Formal analysis and investigation. JT and UC-
A: Resources. KS and UC-A: Data curation and writing
original draft preparation. KS, JT, and UC-A: Writing review
and editing. KS and UC-A: Visualization. JT and UC-A:
Supervision. JT and UC-A: Project administration. JT: Funding
acquisition.

Funding

This work was partially supported by the Research
Council of Norway as a part of the INTROMAT project
under Grant 259293, the Predictive and Intuitive Robot
Companion (PIRC) project under Grant 312333 and through
its Centres of Excellence scheme, RITMO under Grant
262762.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary material

The Supplementary Material for this article can
be found online at: https://www.frontiersin.org/articles/
10.3389/fphys.2023.1151312/full#supplementary-material

References

Adams, R. P., and MacKay, D. J. C. (2007). Bayesian online changepoint detection.
arXiv:0710.3742 [stat] ArXiv: 0710.3742

Alippi, C., Boracchi, G., Carrera, D., and Roveri, M. (2015). Change detection
in multivariate datastreams: Likelihood and detectability loss. arXiv preprint
arXiv:1510.04850

Aminikhanghahi, S., and Cook, D. J. (2017). A survey of methods for time series
change point detection. Knowl. Inf. Syst. 51, 339–367. doi:10.1007/s10115-016-0987-z

Anguita, D., Ghio, A., Oneto, L., Parra, X., and Reyes-Ortiz, J. L. (2013). A public
domain dataset for human activity recognition using smartphones. Esann 3, 6.

Bailey, T. L. (2021). Streme: Accurate and versatile sequence motif discovery.
Bioinformatics 37, 2834–2840. doi:10.1093/bioinformatics/btab203

Banos,O., Toth,M.A., Damas,M., Pomares,H., andRojas, I. (2014). Dealingwith the
effects of sensor displacement in wearable activity recognition. Sensors 14, 9995–10023.
doi:10.3390/s140609995

Barandas, M., Folgado, D., Fernandes, L., Santos, S., Abreu, M., Bota, P.,
et al. (2020). Tsfel: Time series feature extraction library. SoftwareX 11, 100456.
doi:10.1016/j.softx.2020.100456

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A review
and new perspectives. IEEE Trans. pattern analysis Mach. Intell. 35, 1798–1828.
doi:10.1109/TPAMI.2013.50

Campbell, E., Phinyomark, A., and Scheme, E. (2020). Current trends and
confounding factors in myoelectric control: Limb position and contraction intensity.
Sensors 20, 1613. doi:10.3390/s20061613

Cleland, I., Han, M., Nugent, C., Lee, H., McClean, S., Zhang, S., et al. (2014).
Evaluation of prompted annotation of activity data recorded from a smart phone.
Sensors 14, 15861–15879. doi:10.3390/s140915861

Côté-Allard, U., Gagnon-Turcotte, G., Laviolette, F., and Gosselin, B. (2019). A low-
cost, wireless, 3-d-printed custom armband for semg hand gesture recognition. Sensors
19, 2811. doi:10.3390/s19122811

Frontiers in Physiology 16 frontiersin.org

https://doi.org/10.3389/fphys.2023.1151312
https://www.cs.ucr.edu/%7Eeamonn/time_series_data_2018
https://www.cs.ucr.edu/%7Eeamonn/time_series_data_2018
https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
https://github.com/UlysseCoteAllard/LongTermEMG
https://doi.org/10.1145/3323213
https://github.com/UlysseCoteAllard/SemanticSegmentationDatasets
https://github.com/UlysseCoteAllard/SemanticSegmentationDatasets
https://www.frontiersin.org/articles/10.3389/fphys.2023.1151312/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphys.2023.1151312/full#supplementary-material
https://doi.org/10.1007/s10115-016-0987-z
https://doi.org/10.1093/bioinformatics/btab203
https://doi.org/10.3390/s140609995
https://doi.org/10.1016/j.softx.2020.100456
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.3390/s20061613
https://doi.org/10.3390/s140915861
https://doi.org/10.3390/s19122811
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Strommen et al. 10.3389/fphys.2023.1151312

Côté-Allard, U., Gagnon-Turcotte, G., Phinyomark, A., Glette, K., Scheme, E.
J., Laviolette, F., et al. (2020). Unsupervised domain adversarial self-calibration
for electromyography-based gesture recognition. IEEE Access 8, 177941–177955.
doi:10.1109/access.2020.3027497

Côté-Allard, U., Gagnon-Turcotte, G., Phinyomark, A., Glette, K., Scheme, E.,
Laviolette, F., et al. (2021). A transferable adaptive domain adversarial neural network
for virtual reality augmented emg-based gesture recognition. IEEE Trans. Neural Syst.
Rehabilitation Eng. 29, 546–555. doi:10.1109/TNSRE.2021.3059741

Dau, H. A., Bagnall, A., Kamgar, K., Yeh, C.-C. M., Zhu, Y., Gharghabi, S., et al.
(2019). The ucr time series archive. IEEE/CAA J. Automatica Sinica 6, 1293–1305.
doi:10.1109/jas.2019.1911747

Demrozi, F., Pravadelli, G., Bihorac, A., and Rashidi, P. (2020). Human activity
recognition using inertial, physiological and environmental sensors: A comprehensive
survey. IEEE access 8, 210816–210836. doi:10.1109/access.2020.3037715

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. J.
Mach. Learn. Res. 7, 1–30.

Friedman, J. H., and Rafsky, L. C. (1979). Multivariate generalizations of
the wald-wolfowitz and smirnov two-sample tests. Ann. Statistics 7, 697–717.
doi:10.1214/aos/1176344722

Fu, T.-c., Chung, F.-l., Ng, V., and Luk, R. (2001). Pattern discovery from stock time
series using self-organizing maps 1.

Gharghabi, S., Ding, Y., Yeh, C.-C.M., Kamgar, K., Ulanova, L., and Keogh, E. (2017).
“Matrix profile viii: Domain agnostic online semantic segmentation at superhuman
performance levels,” in 2017 IEEE international conference on data mining (ICDM)
(IEEE), 117–126.

Gu, T., Chen, S., Tao, X., and Lu, J. (2010). An unsupervised approach to activity
recognition and segmentation based on object-use fingerprints.Data & Knowl. Eng. 69,
533–544. doi:10.1016/j.datak.2010.01.004

Harchaoui, Z., Moulines, E., and Bach, F. (2008). “Kernel change-point analysis,” in
Advances in neural information processing systems (San Diego, CA: Curran Associates,
Inc), 21.

Ienco, D., and Interdonato, R. (2020). “Deep multivariate time series embedding
clustering via attentive-gated autoencoder,” inAdvances in knowledge discovery and data
mining. Editors H. W. Lauw, R. C.-W. Wong, A. Ntoulas, E.-P. Lim, S.-K. Ng, and S. J.
Pan (Cham: Springer International Publishing), Lecture Notes in Computer Science),
318–329. doi:10.1007/978-3-030-47426-3_25

Itoh, N., and Kurths, J. (2010). Change-point detection of climate time series by
nonparametric method, 4.

Kawahara, Y., and Sugiyama, M. (2012). Sequential change-point detection based on
direct density-ratio estimation. Stat. Analysis Data Min. ASA Data Sci. J. 5, 114–127.
doi:10.1002/sam.10124

Kawahara, Y., Yairi, T., and Machida, K. (2007). “Change-point detection in time-
series data based on subspace identification,” in Seventh IEEE International Conference
on Data Mining (New York, NY: ICDM), 559–564. doi:10.1109/ICDM.2007.78

Keogh, E., and Lin, J. (2005). Clustering of time-series subsequences is meaningless:
Implications for previous and future research. Knowl. Inf. Syst. 8, 154–177.
doi:10.1007/s10115-004-0172-7

Kim, H., Kim, H. K., Kim,M., Park, J., Cho, S., Im, K. B., et al. (2019). Representation
learning for unsupervised heterogeneous multivariate time series segmentation and its
application. Comput. Industrial Eng. 130, 272–281. doi:10.1016/j.cie.2019.02.029

Kingma, D. P., and Ba, J. (2017). Adam: A method for stochastic optimization.
arXiv:1412.6980 [cs] ArXiv: 1412.6980

Kuncheva, L. I. (2013). Change detection in streaming multivariate data
using likelihood detectors. IEEE Trans. Knowl. Data Eng. 25, 1175–1180.
doi:10.1109/TKDE.2011.226

Lee, W.-H., Ortiz, J., Ko, B., and Lee, R. (2018). Time series segmentation through
automatic feature learning. arXiv preprint arXiv:1801.05394

Li, C.-S., Yu, P. S., and Castelli, V. (1998). “Malm: A framework for mining
sequence database at multiple abstraction levels,” in Proceedings of the
seventh international conference on Information and knowledge management,
267–272.

Lin, J. F.-S., Karg, M., and Kulić, D. (2016). Movement primitive segmentation for
humanmotion modeling: A framework for analysis. IEEE Trans. Human-Machine Syst.
46, 325–339. doi:10.1109/thms.2015.2493536

Malladi, R., Kalamangalam, G. P., and Aazhang, B. (2013). “Online Bayesian
change point detection algorithms for segmentation of epileptic activity,” in 2013
Asilomar Conference on Signals (New York, NY: Systems and Computers), 1833–1837.
doi:10.1109/ACSSC.2013.6810619

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). “Distributed
representations of words and phrases and their compositionality,” in Advances in neural
information processing systems, 3111–3119.

Mueen, A., Keogh, E., Zhu, Q., Cash, S., and Westover, B. (2009). Exact
discovery of time series motifs. Proc. SIAM Int. Conf. Data Min. 2009, 473–484.
doi:10.1137/1.9781611972795.41

Nentwich, C., and Reinhart, G. (2021). A combined anomaly and trend detection
system for industrial robot gear condition monitoring. Appl. Sci. 11, 10403.
doi:10.3390/app112110403

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
et al. (2011). Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12,
2825–2830.

Qahtan, A. A., Alharbi, B., Wang, S., and Zhang, X. (2015). “A pca-based
change detection framework for multidimensional data streams: Change detection
in multidimensional data streams,” in Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 935–944.
doi:10.1145/2783258.2783359

Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, M. B., Zhu,
Q., et al. (2012). “Searching and mining trillions of time series subsequences
under dynamic time warping,” in Journal Abbreviation: Proceedings of the
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining Publication Title: Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. doi:10.1145/2339530.
2339576

Rakthanmanon, T., Keogh, E. J., Lonardi, S., and Evans, S. (2011).
“Time series epenthesis: Clustering time series streams requires ignoring
some data,” in 2011 IEEE 11th International Conference on Data Mining,
547–556.

Reddy, S.,Mun,M., Burke, J., Estrin, D., Hansen,M., and Srivastava,M. (2010). Using
mobile phones to determine transportation modes. ACM Trans. Sens. Netw. 6, 1–27.
doi:10.1145/1689239.1689243

Rodrigues, J., Liu, H., Folgado, D., Belo, D., Schultz, T., and Gamboa, H.
(2022). Feature-based information retrieval of multimodal biosignals with a
self-similarity matrix: Focus on automatic segmentation. Biosensors 12, 1182.
doi:10.3390/bios12121182

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-Net: Convolutional networks for
biomedical image segmentation. arXiv:1505.04597 [cs] ArXiv: 1505.04597

Rosenbaum, P. R. (2005). An exact distribution-free test comparing two multivariate
distributions based on adjacency. J. R. Stat. Soc. Ser. B Stat. Methodol. 67, 515–530.
doi:10.1111/j.1467-9868.2005.00513.x

Sakurada, M., and Yairi, T. (2014). “Anomaly detection using autoencoders with
nonlinear dimensionality reduction,” in Proceedings of the MLSDA 2014 2nd
Workshop onMachine Learning for Sensory Data Analysis (NewYork, NY: Association
for Computing Machinery MLSDA’14), 4–11. doi:10.1145/2689746.2689747

St-Onge, D. (2018). Expressive motion with dancers publisher: IEEE type: Dataset.
doi:10.21227/H29M1Q

Truong, C., Oudre, L., and Vayatis, N. (2020). Selective review of offline change point
detection methods. Signal Process. 167, 107299. doi:10.1016/j.sigpro.2019.107299

Tschannen, M., Bachem, O., and Lucic, M. (2018). Recent advances in autoencoder-
based representation learning. arXiv preprint arXiv:1812.05069

Yairi, T., Kato, Y., and Hori, K. (2001). Fault detection by mining association rules
from. house-keeping data 18, 21.

Yamanishi, K., andTakeuchi, J.-i. (2002). “Aunifying framework for detecting outliers
and change points from non-stationary time series data,” in Proceedings of the eighth
ACM SIGKDD international conference on Knowledge discovery and data mining,
NewYork, NY,USA (NewYork, NY:Association for ComputingMachinery), KDD ’02),
676–681. doi:10.1145/775047.775148

Yang, P., Dumont, G., and Ansermino, J. M. (2006). Adaptive change detection in
heart rate trend monitoring in anesthetized children. IEEE Trans. bio-medical Eng. 53,
2211–2219. doi:10.1109/TBME.2006.877107

Yeh, C.-C. M., Zhu, Y., Ulanova, L., Begum, N., Ding, Y., Dau, H.
A., et al. (2016). “Matrix profile i: All pairs similarity joins for time
series: A unifying view that includes motifs, discords and shapelets,” in
2016 IEEE 16th international conference on data mining (ICDM) (Ieee),
1317–1322.

Zhang, C., Song, D., Chen, Y., Feng, X., Lumezanu, C., Cheng, W., et al.
(2019). “A deep neural network for unsupervised anomaly detection and
diagnosis in multivariate time series data,” in Proceedings of the AAAI
Conference on Artificial Intelligence, 1409–1416. doi:10.1609/aaai.v33i01.
33011409

Zhou, C., and Paffenroth, R. C. (2017). “Anomaly detection with
robust deep autoencoders,” in Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(Association for Computing Machinery), 665–674. doi:10.1145/3097983.
3098052

Frontiers in Physiology 17 frontiersin.org

https://doi.org/10.3389/fphys.2023.1151312
https://doi.org/10.1109/access.2020.3027497
https://doi.org/10.1109/TNSRE.2021.3059741
https://doi.org/10.1109/jas.2019.1911747
https://doi.org/10.1109/access.2020.3037715
https://doi.org/10.1214/aos/1176344722
https://doi.org/10.1016/j.datak.2010.01.004
https://doi.org/10.1007/978-3-030-47426-3_25
https://doi.org/10.1002/sam.10124
https://doi.org/10.1109/ICDM.2007.78
https://doi.org/10.1007/s10115-004-0172-7
https://doi.org/10.1016/j.cie.2019.02.029
https://doi.org/10.1109/TKDE.2011.226
https://doi.org/10.1109/thms.2015.2493536
https://doi.org/10.1109/ACSSC.2013.6810619
https://doi.org/10.1137/1.9781611972795.41
https://doi.org/10.3390/app112110403
https://doi.org/10.1145/2783258.2783359
https://doi.org/10.1145/2339530.2339576
https://doi.org/10.1145/2339530.2339576
https://doi.org/10.1145/1689239.1689243
https://doi.org/10.3390/bios12121182
https://doi.org/10.1111/j.1467-9868.2005.00513.x
https://doi.org/10.1145/2689746.2689747
https://doi.org/10.21227/H29M1Q
https://doi.org/10.1016/j.sigpro.2019.107299
https://doi.org/10.1145/775047.775148
https://doi.org/10.1109/TBME.2006.877107
https://doi.org/10.1609/aaai.v33i01.33011409
https://doi.org/10.1609/aaai.v33i01.33011409
https://doi.org/10.1145/3097983.3098052
https://doi.org/10.1145/3097983.3098052
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

