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It is crucial for living organisms to be in synchrony with their environment and to
anticipate circadian and annual changes. The circadian clock is responsible for
entraining organisms’ activity to the day-night rhythmicity. Artificial light at night
(ALAN) was shown to obstruct the natural light cycle, leading to desynchronized
behavioral patterns. Our knowledge of the mechanisms behind these adverse
effects of ALAN, however, is far from complete. Here we monitored the
stridulation and locomotion behavior of male field crickets (Gryllus
bimaculatus), raised under light:dark conditions, before, during, and after
exposure to a nocturnal 3-h pulse of different ALAN intensities. The
experimental insects were then placed under a constant light regime (of
different intensities); their behavior was continuously monitored; and the
period of their daily activity rhythms was calculated. The light pulse treatment
induced a simultaneous negative (suppressing stridulation) and positive (inducing
locomotion) effect, manifested in significant changes in the average level of the
specific activity on the night of the pulse compared to the preceding and the
following nights. The transition to constant light conditions led to significant
changes in the period of the circadian rhythms. Both effects were light-intensity-
dependent, indicating the importance of dark nights for both individual and
population synchronization.
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1 Introduction

The entrainment of a living organism’s circadian clock is mostly accomplished by means
of synchronization to light (Aschoff, 1960; Saunders et al., 2002; Merrow et al., 2005;
Tomioka and Matsumoto, 2019; Helfrich-Förster, 2020), which is the most reliable
environmental signal of the Earth’s cycle. Most animals depend on perceiving the light’s
rhythmicity for the anticipation and regulation of their activities: for choosing their foraging
and sleep times, and for predator avoidance, as well as for the regulation of internal,
hormonal, and molecular processes (Saunders et al., 2002; Kronfeld-Schor et al., 2013;
Saunders, 2013; Kuhlman et al., 2018). In accordance with the species’ diurnal, nocturnal, or
crepuscular nature, the same input may trigger different internal, and behavioral reactions
(Mrosovsky, 1999; Helm et al., 2017).
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Any obstruction of the light-dark cycle (or its perception) may
affect daily activity rhythms, manifested in either entrainment to the
new conditions, free-running behavior (an endogenous internal
rhythm, that is not synchronized to the environment), or
arrhythmic behavior. Yet another effect may be that of masking
(see Aschoff, 1960; Mrosovsky, 1999; Kronfeld-Schor et al., 2017):
i.e., an instantaneous reaction to an external signal that does not
entrain the rhythm but overrides the circadian clock circuits. Such
triggered interference may lead to an increase in activity
(i.e., positive masking) or to a decrease in activity (i.e., negative
masking), depending on the threshold and susceptibility of the
relevant species and specific behavior to the stimuli (Mrosovsky,
1999). For example, light may trigger activity in diurnal species while
eliciting an urge to rest in nocturnal species (Helm et al., 2017), a
phenomenon that has been described in various species (Aschoff
and von Goetz, 1988; Germ and Tomioka, 1998; Cohen et al., 2010;
Rotics et al., 2011; Erkert et al., 2012; Spoelstra et al., 2018).

An important and constantly increasing source of obstruction of
the light-dark cycle is that of artificial light at night (Hölker et al.,
2010; Falchi et al., 2016; Falchi et al., 2019). ALAN reduces (even
eliminates) the nocturnal darkness and thus disturbs the circadian
entrainment to the daily periodicity. It modifies the time, duration,
and intensity of the surrounding lighting conditions, as well as the
light spectrum. Each of these parameters may distinctly affect a
susceptible animal, depending on the species’ photoreceptive
properties and sensitivity. The reported negative impacts of
ALAN on the natural behavior of various animals include sleep
disruption (Bedrosian et al., 2013; Raap et al., 2015), changes in
foraging activity and predation (Sanders et al., 2018; Sanders et al.,
2021), loss of spatial orientation (Eisenbeis, 2006; Foster et al., 2021),
and disturbance to temporal partitioning and synchronization of
activity (Amichai and Kronfeld-Schor, 2019; Levy et al., 2021).

Crickets (Gryllidae) have been used as insect models for
behavioral research, neuroethology and, specifically, studies of
circadian activity (Huber et al., 1989; Tomioka and Chiba, 1989;
Horch et al., 2017). The nocturnal field cricket Gryllus bimaculatus
expresses temporal shifts in its locomotor activity, stridulatory
activity, or circadian gene expression following exposure to
changes in illumination patterns (Loher, 1972; Loher, 1989; Abe
et al., 1997; Uryu, 2014; Kutaragi et al., 2018; Tomioka and
Matsumoto, 2019). Moreover, in constant darkness the
compound eyes of G. bimaculatus display a clear circadian
rhythm in their response to stimuli, with a diurnal minimum
and a nocturnal maximum (Tomioka and Chiba, 1982), as well
as a circadian sensitivity of visual interneurons and serotonin levels
(Tomioka et al., 1993). We recently demonstrated the negative
impact of ALAN on male field crickets (Levy et al., 2021).
Lifelong exposure to even dim ALAN intensity had a
desynchronizing effect on the crickets’ stridulation and
locomotion behaviors. Recently, we also found tissue-, genes- and
light-intensity-dependent changes in circadian gene expression in
various body parts of the cricket, including the brain and optic lobes
(Levy et al., 2022).

Here we studied the effects of exposing male G. bimaculatus to a
pulse of ALAN of different intensities on stridulation and
locomotion behavior. We further investigated the effects of a
transition from light-dark conditions to constant light on the two
behaviors in the same individual. We describe a light-intensity-

dependent behavioral reaction, presenting simultaneous changes in
distinct activities’ levels, or simultaneous negative and positive
masking effects on stridulation and locomotion behavior,
respectively. We also demonstrate light-intensity-dependent
changes in the period of daily activity rhythms following
transition from light:dark (LD) to light:ALAN (LA) or constant
light (LL) treatments. The findings from this work emphasize the
importance of utilizing a multi-behavioral approach in order to
obtain a more complete understanding of the impact of ALAN, and
its related mechanisms.

2 Materials and methods

2.1 Cricket rearing conditions

G. bimaculatus crickets were reared in plastic containers
equipped with an egg carton shelter under a constant
temperature of 26°C ± 1°C and a 12 h light:12 h dark (LD) cycle
[compact fluorescent light (CFL, 40W, NeptOn, 6500K)]. Daylight
intensities measured above the containers ranged from 250 to
350 lux, while the actual daylight intensities under the shelter
ranged from 20 to 60 lux. The crickets were fed three times a
week with dog-food pellets and vegetables. The rearing boxes
contained water flasks with absorbent cotton wool.

2.2 Experimental set-up

The experimental methods largely followed those described in
Levy et al. (2021). In brief, the crickets were maintained individually
in custom-made experimental anechoic chambers, preventing
intraspecific communication while enabling continuous and
simultaneous monitoring of stridulation and locomotion
behaviors (see Levy et al., 2021; Figure 1 therein). Stridulation
was recorded using a condenser microphone, an amplifier, a
computer, and RavenLite2.0.0. Locomotion activity was captured
from above by an infra-red (IR) surveillance camera, using motion
detection (Ballon, 2015). Illumination was provided using a 5WCFL
bulb (NeptOn, 6500 K, Supplementary Figure S1), emitting 40 lux,
while lower illumination intensity was obtained by shading the
light bulb.

2.3 Experimental procedure

Adult males 3–7 days post adult emergence were removed from
the breeding colony and placed in the anechoic chamber under
similar LD conditions as in the colony (for experimental timeline,
see Figure 1). Stridulation and locomotion were monitored
simultaneously throughout the experiment. The crickets were
monitored until reaching three consecutive nights during which
consistent stridulation behavior was demonstrated. On the following
night, during the same time as that of the preceding consistent
stridulation, the experimental cricket was exposed to a 3-h duration
light pulse at an intensity of either 2, 5, or 40 lux (Figure 1). The
timing of consistent stridulation varied between individuals, and,
consequently, also did the precise Zeitgeber time of the pulse. In
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cases where no consistent behavior could be detected over the course
of a ten-night period, the experimental crickets were replaced by new
males, until the experimental pre-conditions were reached.
Following at least three additional nights under the same LD
regime, the experimental animals were subjected to one of several
treatments: 24 h cycles of 12 h 40-lux light: 12 h 0-lux dark (LD),
12 h 40-lux light: 12 h 2-lux light (LA2), 12 h 40-lux light: 12 h 5-lux
light (LA5), 12 h 40-lux light: 12 h 40-lux light (LL). For each cricket,
the continuous night-long ALAN was of the same intensity as that
used for the pulse.

2.4 Data processing and statistical analysis

Stridulation data extraction and processing followed Levy et al.
(2021), using “R”, version 3.4.1 (R Core Team, 2020), the “Rraven”
open source package (Araya-Salas, 2017), and RavenPro1.5
(Bioacoustics Research Program, 2013). Data processing and
statistical analyses were conducted in PYTHON v. 3.7 (PyCharm,
JetBrains), SPSS version 21 (IBMCorp., Armonk, NY, United States)
and PRISM 8 (GraphPad Software, San Diego, CA, United States).
The number of stridulation syllables and locomotion events were
assessed per animal in 10 min bouts. Values were normalized for
each individual by dividing that individual’s values by its own
maximum value, resulting in an activity index ranging from 0 to
1 (no activity to maximum activity). Stridulation and locomotion
during the exact same hours of the pulse in the night preceding and
following the pulse manipulation were averaged and compared to
those of the time of the pulse. Stridulation behavior was analyzed
using a one-tailed Repeated Measures ANOVA with Tukey’s
multiple comparisons, while locomotion behavior was analyzed
using a one-tailed non-parametric Friedman test with Dunn’s
multiple comparisons. Stridulation and locomotion behaviors
were also assessed and compared one hour before the pulse, one
hour during the pulse, and one hour after the pulse on the exact
same night of the pulse manipulation, using a one-tailed Wilcoxon
Signed Ranks Test.

Periodogram analyses of the activity rhythm periods were
performed using the ImageJ plugin ActogramJ (Schmid et al., 2011).
Comparisons of periodogram analyses of the activity rhythm periods
before and after LA or LL, as well as the changes within treatment, the
absolute differences between both behaviors, and the quantitative

analyses were performed using the Kruskal–Wallis test, followed by
a Dunn Sidak correction. Spearman’s rank-order correlation was used
to evaluate the relationship between stridulation and locomotion
behavior, as well as between the absolute behavioral reaction to the
pulse and to the transition to LA or LL for each behavior. Combined
actograms of stridulation and locomotion behavior were created using a
custom-written code in “R”, version 3.4.1. (Supplementary Material).

3 Results

3.1 Behavioral, temporal patterns under LD
conditions

Confirming our previous report (Levy et al., 2021), the
experimental crickets exposed to control LD conditions exhibited
a synchronized activity rhythm of 24 h, with stridulation being
nocturnal and locomotion activity mainly diurnal (Figure 2, top
rows in all the panels).

3.2 A light pulse at night evoked
simultaneous negative and positive changes
in specific activities’ levels

The effect of a light pulse on the experimental crickets was
largely intensity dependent (Figure 2): whereas a behavioral reaction
was detected in the 2 lux and 5 lux treatments in only a small number
of cases (Figures 3A, B, E, F), a clear simultaneous negative (for
stridulation) and positive (for locomotion) masking effect was
observed at 40 lux (Figures 2C, 3C, G). Stridulation activity
significantly dropped during the light pulse, compared to that on
the day prior to the pulse (Repeated Measures ANOVA with Tukey
multiple comparisons, F7,7 = 4.257, p = 0.023, n = 8, Figure 3C),
while locomotion activity increased (Friedman test with Dunn’s
multiple comparisons, χ2(2) = 9.750, p = 0.037, n = 8, Figure 3G).
The level of stridulation and locomotion activity during the light
pulse was found to be affected by the light intensity (stridulation:
between 2 and 40 lux; Kruskal–Wallis with Dunn’s multiple
comparisons, χ2,24 = 5.304, p = 0.024, and for locomotion:
between 2 and 40 lux, and between 5 and 40 lux; χ2,24 = 13.41,
p < 0.01 Figures 3D, H, respectively). While not all individuals

FIGURE 1
The experimental timeline: Adult, male crickets reared under LD 12:12 illumination regime (see Materials and Methods for details) were placed
individually, each in an anechoic chamber, and their stridulation and locomotion monitored simultaneously (two left black boxes). On the night following
three consecutive nights of consistent stridulation behavior, the experimental crickets were exposed to a light pulse (yellow box) of the duration of three
hours and an intensity of 2, 5, or 40 lux. Following three to five additional nights under LD regime (right black box), the experimental animals were
subjected to 12 h light:12 h ALAN (LA) or constant light (LL) conditions for at least five consecutive days and nights (grey box).
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seemed to be affected by the pulse, the percentage of animals
presenting a clear effect increased with higher light intensity. The
pulse seemed to have no residual effect on behavior during the
following night: in the 40 lux treatment, activity during the night of
the pulse and the night following the pulse differed significantly for
both stridulation and locomotion behavior (Repeated Measures
ANOVA with Tukey multiple comparisons, F7,7 = 3.609, p =
0.043, n = 8, 1-tailed; Friedman test with Dunn’s multiple
comparisons, χ2(2) = 9.750, p = 0.004, n = 8, 1-tailed, Figures
3C, G, respectively). A control group (no pulse treatment) revealed
no differences between days (during the duration of the
experiments), excluding possible time-dependent differences
between the pre-pulse and post-pulse conditions (data not
shown). Pre- and post-pulse behavior significantly differed only
in the 5 lux stridulation group (Repeated Measures ANOVA, F7,7 =
9.084, p < 0.001, n = 8, Figure 3B).

Despite of the general absence of behavioral changes on the
night following the night of the pulse, we further explored the
possibility of pulse-induced effects exceeding the limited period of
the pulse duration itself. We therefore compared the behavior of the
crickets one hour immediately prior to the pulse treatment, and one
hour immediately after the pulse treatment. Figure 4 reveals an
overall consistent decrease in stridulation (Figure 4A) and increase
in locomotion (Figure 4B) activity during the hour following the
pulse termination. The effect was significant for all experimental
groups (light intensities) for both observed behaviors (one-tailed

Wilcoxon signed ranks test; p < 0.05 for all). The light pulse, thus
also induced some residual behavioral effect (Figure 4); even when
this had been insignificant during the pulse itself (as in the case of the
2 and 5 lux treatments, Figure 3).

3.3 Transition to LA/LL evoked changes in
temporal patterns of stridulation and
locomotion behaviors

A transition of the experimental conditions from LD to LA and
LL affected the behavior of all individuals, as reflected in the high
percentage of induced free-run behavior (Figure 5). This differed
between the stridulation and locomotion behaviors (94.4%, and
68.75%, respectively; n = 20). For both behaviors, however, the
period of the behavioral cycle was found to be light-intensity-
dependent (Figure 5): the median period of stridulation behavior
increased in a light-intensity-dependent manner, while the median
of locomotion behavior increased only at 40 lux (Table 1). The
period of stridulation under LD conditions differed significantly
from that of the 5 and 40 lux treatments (Kruskal–Wallis with
Dunn’s post hoc test, p < 0.005, and p < 0.001, respectively,
Figure 5A); while for locomotion behavior, only the 40 lux
treatment significantly differed from that of LD (Kruskal–Wallis
with Dunn’s post hoc test, p < 0.001, Figure 5B). Thus, even an
ALAN of 2 lux leads to free running rhythms of stridulation.

FIGURE 2
Double-plotted actograms representing light-pulse-dependent behavior of experimental crickets. Normalized activity of stridulation (orange) and
locomotion (blue) are shown for each light intensity (A) 2 lux, (B) 5 lux, and (C) 40 lux. The first arrow and red rectangle represent the pulse treatment
showing either a weak to no behavioral reaction (A, B), or a strong masking reaction to the light pulse (C). The general area of the plot around the time of
the pulse was enlarged. The second arrow indicates the transition from LD into LA (constant, night-long ALAN) or LL (constant 40 lux), whereas
nocturnal light intensity matched the pulse intensity. Yellow and black bars indicate diurnal and nocturnal phases, respectively.
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A quantitative comparison of the overall normalized diurnal and
nocturnal stridulation activity levels prior to and following the
transition to LA and LL revealed a significant change in the
diurnal 5 lux and higher activity under 40 lux in both diurnal
and nocturnal stridulation (p < 0.05 for all, Kruskal–Wallis test with
Dunn’s multiple comparisons). However, no significant quantitative
differences were detected in locomotion behavior (p > 0.05 for all,
Kruskal–Wallis test). Moreover, no correlation was found between
the calculated LA or LL activity periods of stridulation and
locomotion (Spearman’s rank-order correlation, r (12) = 0.30,
p = 0.29), emphasizing the differential impacts of the treatment

on both examined behaviors and its effect on de-synchronization
among the two behavioral rhythms.

3.4 No correlation was found between the
responses to the pulse and to the transition
to LA/LL

To investigate a probable connection between stridulation and
locomotion behavior, as well as a possible individual susceptibility to
ALAN intensity, the correlation among the different behavioral

FIGURE 3
Normalized mean level (±s.e.) of stridulation (A–C) and locomotion (E–G) behavior, three nights before (‘Pre’), during the pulse treatment (‘Pulse’,
yellow), and three nights after (‘Post’) a pulse of 2 lux (A, E; n= 9), 5 lux (B, F; n = 8), and 40 lux (C,G; n= 8). (D–H) The normalizedmean behavior levels (D,
stridulation; and H, locomotion) during the pulse treatment under the different pulse intensities. *p < 0.05, **p < 0.01, ***p < 0.001.

FIGURE 4
Percentage of normalized level of (A) stridulation, and (B) locomotion behavior, one hour before (black), and one hour after (grey) the light pulse
treatment of 2 lux, 5 lux, and 40 lux. *p < 0.05, **p < 0.01, representing one-tailed p-values.
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parameters were calculated. No correlation was found between the
absolute effect of the pulse treatment and the absolute change in
activity periods following transition to LA or LL (Spearman’s rank-
order correlation, r (12) = −0.26, p = 0.36; and r (12) = 0.39, p =
0.17 for stridulation and locomotion, respectively).

4 Discussion

In this study, in order to provide novel insights into the adverse
effects of ALAN and into the mechanisms of these effects on animal
behavior, we investigated the impact of a pulse of light at night on
stridulation and locomotion behavior in the field cricket G.
bimaculatus.

Under exposure to 40 lux we identified simultaneous changes in
specific activity levels in the same individual crickets; simultaneous
negative and positive masking effects on the cricket’s stridulation and
locomotion behavior, respectively. Such findings, to the best of our
knowledge, have never been described in an insect. The masking
phenomenon reflects a flexible, immediate reaction to a stimulus
without affecting the animal’s endogenous rhythm (Kuhlman et al.,
2018). Aschoff (1960) suggested that light increases diurnal activity in
light-active animals and decreases it in dark-active animals. In accord
with the Aschoff’s rule, the light pulse evoked a negative masking effect
in the crickets’ nocturnal behavior, reflected in a decrease and even
cessation of stridulation; while the diurnal behavior (locomotion)

increased (positive masking) under the light pulse. Similarly, in
rodents, exposure to ALAN was reported to result in negative
masking in a nocturnal rodent, while no effect was observed in a
diurnal rodent (Rotics et al., 2011). In addition, the presented increase in
crickets’ diurnal locomotion activity during the light pulse is in
agreement with the previously described increase in burst and
intensity of locomotion during a pulse of light (Germ and Tomioka,
1998; though this was demonstrated under constant darkness). The
inter-individual variations and light-intensity dependent percentage of
crickets presenting a masking response in the current work (as seen in
Figure 3), may indicate both an individual and a population-related
illumination-sensitivity threshold.

It should be noted, that we had a preference in the current study
to present the ALAN-pulse 1–2 h after lights off, as the early and late
subjective night were reported to be more affected by a pulse of light
(Kutaragi et al., 2016). However, the pulse was not submitted at a
specific Zeitgeber time, but rather at the individual’s timing of
previous consistent stridulation. These differences may have
affected the responsiveness of the experimental individuals,
leading to an increased variance.

The reactions of animals to different light stimuli are affected by
many factors, such as the species’ way of life (i.e., nocturnal, diurnal;
Helm et al., 2017; Kronfeld-Schor and Dayan, 2003; Mrosovsky,
1999), the specific properties of the animal’s visual system (Warrant
and Nilsson, 2006; Land and Nilsson, 2012), visual sensory
processing (Blum and Labhart, 2000; Okamoto et al., 2001;
Mappes and Homberg, 2004), and of course the nature of the
specific stimuli. G. bimaculatus is a nocturnal species, which
possesses three types of visual receptors: UV (peak: 332 nm), blue
(peak: 445 nm) and green (peak: 515 nm) (Zufall et al., 1989), and
whose visual system is adapted for signal processing in dim light
(Zufall et al., 1989; Sakura et al., 2003; Frolov et al., 2014). While the
blue receptor has been reported to be responsible for polarization
vision (Labhart et al., 1984; Herzmann and Labhart, 1989), the
green-sensitive opsin-long wavelength (OpLW) was described to be
the major circadian photoreceptor molecule, responsible for photic

FIGURE 5
The transition from LD to LA or LL affects the individual daily activity periods of stridulation (A) and locomotion (B) in a light intensity dependent
manner. LD (before transition, black, n = 20), LA2 lux (dark grey, n = 7), LA5 lux (light grey, n = 7) and LL40 lux (yellow, n = 6, n = 7 for stridulation and
locomotion, respectively) treatments. *p < 0.05, **p < 0.01, ***p < 0.001.

TABLE 1 The median values of stridulation and locomotion daily activity cycle
periods in the experimental groups under LD (0 lux, n = 20), LA of 2 lux (n = 6),
5 lux (n = 7), and 40 lux (LL, n = 6, n = 7 for stridulation and locomotion
behavior, respectively).

0 lux 2 lux 5 lux 40 lux

Stridulation 24.00 24.17 25.67 25.75

Locomotion 24.00 24.00 24.00 25.33
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entrainment (Komada et al., 2015). Both, the visual and the
circadian pathways start at the compound eye. Information from
the eye is then transmitted to the optic lobe, where the circadian
clock is assumed to reside, and processed in parts of the lamina,
medulla and lobula of the optic lobe (Tomioka and Chiba, 1982;
Tomioka and Chiba, 1985; Tomioka and Chiba, 1989; Tomioka and
Chiba, 1992).

Insects, such as crickets, locusts, and cockroaches, may have several
parallel neuronal pathways reaching from the compound eye to the
brain, serving for similar or different functions (Okamoto et al., 2001;
Homberg et al., 2003; Homberg et al., 2011; Homberg, 2004; Helfrich-
Förster, 2020). Whether masking and entrainment use the same
neuronal pathway or different ones, is still far from fully resolved.
However, the current findings together with available other data suggest
a common pathway for both: here we induced masking by a single light
pulse, shown previously to affect circadian clock related transcriptional
responses in the cricket one hour following the pulse (Levy et al., 2022).
Our observations also revealed some residual effects of the pulse,
expressed in a change in the percentage of normalized behavioral
level one hour after pulse termination. This persisted even under
light intensities for which the pulse itself seemed to have no effect.
Such a lingering effect has not been described for rodents (Rotics et al.,
2011). In a previous study on crickets, repetitive 15 min pulses (at 4, or
8 h intervals) under constant darkness evoked rhythm synchronization
to the timing of the light pulses (Germ and Tomioka, 1998). It is
therefore probable that in addition to the observed transient change
(masking), a 3 h pulse of light at night triggers additional effects, which
may be involved in the observed residual changes andmaybe also in the
entrainment to repetitive stimuli. These results are in line with Aschoff
(1960) who suggested a connection between masking and entrainment,
which may depend on the frequency and intensity of the stimuli.

The transition to LA or LL evoked a reaction in at least one of
the two tested behaviors in all the experimental crickets,
including in individuals that seemed unaffected by the earlier
pulse. Our findings suggest, therefore, a light-intensity as well as a
light-duration-dependent effect of ALAN on cricket behavior.
This is in agreement with Germ and Tomioka’s (1998) findings,
showing that in crickets frequent light pulses modulated the free-
running period, depending on the interval of the pulses. The
herein described differences in the median of the period of
stridulation and locomotion activity patterns are in agreement
with our previous experimental findings regarding lifelong
exposure to ALAN illumination (Levy et al., 2021). These
differences and the lack of correlation among the two
behaviors could indicate a different susceptibility of
stridulation and locomotion behaviors to the same light
signals. It may also be that the differences reflect a more
pronounced effect on the nocturnal than the diurnal behavior,
simply since the light signal was presented at night. Our findings
indicate no correlation between the stridulation and locomotion
activity periods. No correlation was also found between the
change during the pulse treatment and the LA/LL-induced
change in activity periods for both behaviors. These findings
are in accord with those of Levy et al. (2021), suggesting that the
desynchronization of stridulation and locomotion activity
rhythms reflect control by several peripheral clocks. We
suggest that these different results for stridulation and
locomotion indicate that the crickets’ behavioral reactions to

light may rely on several mechanisms, rather than just one, but
remain unclear to date and require further study.

Interestingly, in our previous study (Levy et al., 2021), lifelong
illumination patterns evoked a high percentage of arrhythmic
stridulation and locomotion behavior (29%, and 42.8%,
respectively. In contrast, here, only one individual (14%)
subjected to 40 lux (LL) presented arrhythmic behavior. This
may be due to one or more of several reasons: First, the
complexity of the experiments described in the current report
have resulted in a relative small sample size, and it may be
possible that a larger sample size would have included some
additional arrhythmic individuals. Second, the experiments were
conducted only with crickets which demonstrated consistent
stridulation behavior during three consecutive nights. This pre-
requisite may have filtered out individuals with a stronger tendency
for arrhythmicity. Third, the crickets in (Levy et al., 2021) were
submitted to lifelong ALAN, whereas the crickets in this study were
raised under LD and transferred to ALAN as adults. It may be that
the exposure to lifelong ALAN resulted in more arrhythmic crickets.

In summary, to date the response to a light pulse has been
mostly studied in relation to phase shifts or entrainment under
constant darkness. Here, we present instantaneous masking
effects in two key insect behaviors. We describe for the first
time a simultaneous pulse-induced negative and positive
reaction, as well as a residual effect. We also demonstrate a
change in behavior generated by transition to LA or LL
conditions. This study and its findings add to the alarming
effects of ALAN on living organisms, both individuals and
populations. Our findings indicate the importance of darkness
for timekeeping in nocturnal insects, and present the harsh, and
fast effects of a pulse of light or chronic dim-ALAN on activity
rhythms and courtship behavior of the crickets. The findings
indicate that not only can life-long or night-long exposure to
ALAN alter animal behavior (Rich and Longcore, 2006; Levy
et al., 2021; Borges, 2022; Dominoni et al., 2022), but so too can a
transient light exposure, such as a single pulse of ALAN (Rotics
et al., 2011; Spoelstra et al., 2018; Levy et al., 2022). This aspect
should be added to the other possible effects of ALAN, as it may
become a stressor when frequently experienced, or even entrain
individual behaviors, as shown for the cricket (Germ and
Tomioka, 1998). The findings from this study provide further
new insights into the importance of a multi-modal approach in
order to more fully uncover the effects of ALAN on animal
behavior and populations.
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