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Editorial on the Research Topic
Data assimilation in cardiovascular medicine: Merging experimental
measurements with physics-based computational models

Introduction

Physics-based computational models, constructed based on sound theoretical principles,
can give meaningful insight into the complex interrelationship among different parts of the
cardiovascular system, such as the heart, vessels and valves. To date, diverse types of physics-
based cardiovascular models (Shi et al., 2018; Leong et al., 2019a; Niederer et al., 2019; Ong
et al., 2020; Geddes et al., 2022), spanning the disciplines of electrophysiology,
electromechanics, solid mechanics, fluid dynamics and cardiovascular reflex, have greatly
enhanced our understanding of cardiovascular diseases. However, most of these models used
population-based parameters, and thus had significant model uncertainties due to huge
intra- and interpatient variability. Rapid advancement of imaging and hemodynamic
monitoring technologies has made available useful patient-specific information for
personalization of cardiovascular models. Integrating imaging and hemodynamic
measurements with physics-based computational models not only enables more accurate
prediction of physiological or pathological status for individual patients, but also allows for
computation of hemodynamic variables that are challenging to measure experimentally. In
addition, patient-specific simulations can provide important insights into the mechanism
underlying the disease progression.

This Research Topic focuses on using imaging and hemodynamic measurements for
geometry reconstruction, parameterization, or validation of cardiovascular models, with the
aim to generate personalized models that could reproduce clinical observations. There is a
total of four published articles relevant to basic and clinical studies, covering: 1) deep
learning-based framework for feature identification and segmentation; 2) effect of patient-
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specific boundary conditions or microstructure on biomechanical
parameters; and 3) predicting the response of patients to specific
therapies using personalized models. We briefly summarize the
contributions from the four publications in this Editorial Article
in the following.

Deep learning-based framework for
feature identification and segmentation

3D cardiovascular models are typically used to represent
anatomically detailed features of the heart and blood vessels
(Cuomo et al., 2017; Leong et al., 2019b). Segmentation and
reconstruction of 3D geometries based on medical images serves
as the first step towards accurate 3D patient-specific
hemodynamics analysis. Conventionally, segmentation of the
intended structures (e.g., vessel, ventricle) on medical images
was performed manually by experienced researchers. However,
various challenges were associated with manual segmentation:
the need for researchers with rich experience in the interpretation
of medical images, highly labor-intensive nature of the manual
segmentation process complicated by a large dataset for each
patient, interindividual variability in segmentation of
complicated anatomy; all of which made patient-specific
analyses in large cohorts difficult.

Zhu et al. (paper 1) developed a deep-learning-based
framework for the identification and segmentation of
intracranial aneurysms (IA) using three convolutional neural
network (CNN) models. In addition, the impacts of image pre-
processing and convolutional neural network architectures on
the performance of the network were evaluated. The study
dataset consisted of 101 sets of anonymized cranial computed
tomography angiography (CTA) images with 140 IA cases. The
long-term aim of their work is to predict IA rupture according
to the morphological and hemodynamic analysis based on
individualized 3D IA models.

Effect of patient-specific boundary
conditions or microstructure on
biomechanical parameters

Boundary conditions have a significant impact on
biomechanical parameters in a cardiovascular model, such as
pressure or velocity field as well as stress or strain distribution
(Pirola et al., 2019; Strocchi et al., 2020). Unlike patient-specific
geometries, acquisition of in vivo pressure and velocity is more
challenging as they involve invasive measurements. However,
recent advancement of four-dimensional flow MRI data has
enabled non-invasive acquisition of detailed flow field in the
heart and blood vessels (Pirola et al., 2019). On the other hand,
in-vivo cardiac Diffusion Tensor Imaging (cDTI) has allowed
personalized representation of cardiac microstructure (Ferreira
et al., 2014), despite limiting factors such as low resolution,
signal-to-noise ratio and spatial coverage.

Compared with using zero pressure or outflow boundary
conditions at the abdominal arterial branches of a
computational fluid dynamics (CFD) model, the use of

patient-specific boundary conditions derived from 4D flow
MRI yielded more accurate flow field in the descending aorta
of type B aortic dissection cases (paper 2). The difference in the
hemodynamics among CFD models with different boundary
conditions, including flow field, wall pressure, time-averaged
wall shear stress and oscillating shear index of the abdominal
aorta, is higher in cases where the false lumen involves the
abdominal aorta branches. On the other hand, Stimm et al.
outlined four interpolation techniques to bridge the gap
between the sparse in-vivo cDTI data and the biomechanical
left ventricle model in generating a 3D representation of the
microstructure across the myocardium (paper 3). The study
showed that errors in fiber representation propagate to the
simulation results, where the differences in simulation results
(such as strains and ventricular twist) among the four fiber
models were correlated with the error introduced by the
interpolation model. Reduced interpolation error was
correlated with higher material stiffness and more
physiological twist.

Predicting the response of patients to
specific therapies using personalized
models

Cardiovascular models have been used to investigate aging (Holmes
and Lumens, 2018), ventricular diseases (e.g., LV hypertrophy and
myocardial infarction) (Tang et al., 2016), valvular diseases (e.g., aortic
valve stenosis and regurgitation) (Maragiannis et al., 2015) as well as
vascular diseases (e.g., aortic coarctation and aneurysm) (Bäumler et al.,
2020). As individual characteristics of patients affect their response to
various classes of medications, properly parameterized cardiovascular
models based on patient-specific data can be applied to predict the
response of a patient to different therapies using reproducible simulation
experiments.

Using a modular agent-based model of the cardiovascular and
renal systems, Kutumova et al. (paper 4) simulated the response of a
group of virtual patients with hypertension to antihypertensive
therapies with different mechanisms of action. The therapeutic
parameters in the model equations simulating the
pharmacodynamic effects of different antihypertensive
medications were fitted based on published clinical trials results.
The model was able to reproduce reasonably the response dynamics
following treatment with individual drugs, in accordance with
clinical observations.
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