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Introduction: Given the direct association with malignant ventricular
arrhythmias, cardiotoxicity is amajor concern in drug design. In the past decades,
computational models based on the quantitative structure–activity relationship
have been proposed to screen out cardiotoxic compounds and have shown
promising results. The combination of molecular fingerprint and the machine
learning model shows stable performance for a wide spectrum of problems;
however, not long after the advent of the graph neural network (GNN) deep
learning model and its variant (e.g., graph transformer), it has become the
principal way of quantitative structure–activity relationship-based modeling
for its high flexibility in feature extraction and decision rule generation. Despite
all these progresses, the expressiveness (the ability of a program to identify
non-isomorphic graph structures) of the GNN model is bounded by the WL
isomorphism test, and a suitable thresholding scheme that relates directly to the
sensitivity and credibility of a model is still an open question.

Methods: In this research, we further improved the expressiveness of the
GNN model by introducing the substructure-aware bias by the graph subgraph
transformer network model. Moreover, to propose the most appropriate
thresholding scheme, a comprehensive comparison of the thresholding
schemes was conducted.

Results: Based on these improvements, the best model attains performance with
90.4% precision, 90.4% recall, and 90.5% F1-score with a dual-threshold scheme
(active: <1 μM; non-active: >30 μM). The improved pipeline (graph subgraph
transformer network model and thresholding scheme) also shows its advantages
in terms of the activity cliff problem and model interpretability.
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1 Introduction

It is known that cardiotoxicity is a staple step for healthcare
in the cardiovascular drug design because cardiotoxicity leads to
electrophysiological dysfunction of the heart or muscle damage
(Hayat (2017); Albini et al. (2010)). Therefore, cardiotoxicity is
the main reason for the failure of clinical candidates or post-
market withdrawal (Klon, 2010). Genetically pharmacological
studies evidence the causalities to cardiotoxicity is the human ether-
à-go-go-related gene (hERG) ion channel protein expressed in
the cardiomyocyte (Comollo et al. (2022); Warmke and Ganetzky
(1994)).The hERG gene encodes a voltage-gated potassium channel,
which is a key component in the formation of the cardiac action
potential by activating the delayed rectifier potassium current
rapidly (Cavalluzzi et al., 2020). The extended pockets of the
hERG channel are sensitive to a wide range of drugs (Wang and
MacKinnon, 2017): the binding to the hERG may result in blockage
of the potassium ion channel, which delays the repolarization of
the action potential across the cell membrane, potentially leading
to prolongation of the QT interval in the electrocardiogram (ECG)
(Kratz et al. (2017); Curran et al. (1995)). QT prolongation leads
to a potentially lethal form of ventricular tachycardia associated
with decreased blood pressure and fainting (Viskin (1999); Aerssens
and Paulussen (2005)). Despite the strictly controlled process that
has been taken for drug development, it has been confirmed
that many types of drugs, including antibiotics, antimalarials,
gastroprokinetics, antiarrhythmics, and antipsychotics, bind with
the hERG (Ma et al., 2022). Therefore, the assessment of hERG-
related cardiotoxicity now is recognized as a common practice in the
preclinical stage of drug discovery (Sanguinetti and Tristani-Firouzi,
2006).

Determining hERG-related cardiotoxicity in a medical
manner has two approaches: non-electrophysiological and
electrophysiological methodologies (Yu et al., 2016a). Considering
that the effectiveness of non-electrophysiological metrics is still
an open question (e.g., radioligand binding assays and rubidium
efflux assays), electrophysiological methods predominate (e.g.,
the well-known patch clamp) (Villoutreix and Taboureau, 2015).
Electrophysiological methods involve measurements of voltage
changes, and voltage states can significantly alter hERG IC50
values, which may not be reflected in non-electrophysiology assays
(Jing et al. (2015); Scanziani and Häusser (2009); Park et al. (2013)).
However, electrophysiological experiments are time consuming
with low throughput, and the procedure usually relies on highly
trained practitioners (Yu et al. (2016b); Kornreich (2007)). Albeit
with the rapid progress in instrumental automation, the advanced
throughput is far from satisfactory given tens of thousands of
candidates (Wang and MacKinnon, 2017).

Quantitative structure–activity relationship (QSAR) is a
general concept for computational models, which is proposed
based on the presumption that similar chemical structures
give birth to similar bioactivities (Harkati et al., 2016).
Conventionally, the computational model can be divided into two
consecutive but independent steps: chemical representation and
structure–bioactivity association (Butler et al., 2018). Regarding
chemical representation, molecular fingerprint, which is a
predefined way to characterize molecular structures by annotating
the chemical substructures, is pervasively used. Amongst a variety

of fingerprints, the extended connectivity fingerprint (ECFP) is
an efficient way for characterization (Morgan, 1965). The ECFP
extracts substructures iteratively as the inclusion radius increases
and assigns an identifier to each unique substructure. Of note, in
the final fingerprint, the order of identifiers is rearranged, and the
connectivity between substructures is not included (Rogers and
Hahn, 2010). In the second step, machine learning algorithms, such
as support vector machine and partial least squares regression, are
used to associate the representation and the targeted properties
(Rathman et al., 2018).

The utilization of graph neural networks (GNNs) in molecular
representation generation has been gaining increasing attention
in the field of computational chemistry as a promising approach.
Unlike traditional, modular computational models, GNNs offer
a more flexible and problem-oriented end-to-end framework
(Reiser et al., 2022). This flexibility is a result of the GNNs’
ability to effectively incorporate the interdependencies between the
various steps involved in molecular representation generation, as
opposed to the mutually independent steps of conventional models
(Zhou et al., 2020). The adoption of GNNs as a framework for
molecular representation generation can, thus, provide a more
holistic and efficient approach to the analysis of chemical systems
(Reiser et al.,(2022). In GNN models, graphs, as a fundamental data
structure, model a set of entities (nodes) and their interconnections
(edges). In this context, molecules can be conceptualized as graphs,
with atoms serving as the nodes and chemical bonds serving
as the edges. The application of GNNs to molecular graphs has
the potential to generate more robust molecular fingerprints, thus
enhancing the prediction of molecular properties (Duvenaud et al.,
2015). The capability of the GNN and its variant has been
validated in the studies by Koge et al. (2021) and Miyazaki et al.
(2020).

Even though the molecular structure of the hERG channel
has been resolved recently, the binding of chemical compounds
to the hERG molecule is still difficult to predict due to the high
flexibility in the structure. Hence, ligand-based in-silico modeling
is still a highly attractive approach in cardiotoxicity prediction
(Chen et al., 2018). Doddareddy et al. (2010) collected a dataset of
2,644 compounds and used them to build an SVM classification
model based on ECFP for hERG blockers. Chavan et al. (2016)
tried to use a consensus model based on the k-nearest neighbor
model (KNN) input with eight types of fingerprints to predict
the cardiotoxicity for a dataset of 172 compounds, and a careful
comparison of different models, including random forest and SVM,
was conducted by Delre et al. (2022) to extract the best pipeline
of cardiotoxicity modeling. Cai et al. (2019) constructed a multi-
task deep neural network input with Mol2vec feature vectors and
MOE descriptors to predict the cardiotoxicity for a total of 7,889
compounds.

Before devising a computational model of cardiotoxicity, insight
into this problem, i.e., domain knowledge, should be indicated
and addressed in the modeling process. Molecular activity cliff
(AC) refers to pairs of molecules with similar structures but
greatly different bioactivity potency (Ayed, 2022). It is a common
phenomenon that could be misleading for machine learning
models based on the QSAR principle (Van Tilborg et al., 2022).
Consequently, the problem of “how to build a model to find the
key feature from massive redundant data in active cliff molecules?”
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is actually problem oriented. Based on this idea, the match
molecular pair (MMP) dataset (Park et al., 2022) and the subsequent
MMP fingerprint (Tamura et al., 2021) are erected to facilitate AC
identification.TheMMPfingerprint represents amolecule by taking
in its activity cliff counterpart, that is, to encode the shared core
(scaffold), as well as the distinction and resemblance of the two
substituents in a binary vector of a variable length (Tamura et al.,
2021). In a study that focuses on the detection of AC detection,
this relative distance is plausible and efficient. However, in a more
comprehensive problem where the AC is only one of the influential
factors of a model, a self-context-aware encoding of the core
and the branches is desirable. Self-context-aware means that the
relations between the core and the branches of a molecule are
embedded in some way. It is different from global-structure-aware,
where only the relation between the core and a specific branch is
considered.

Another issue is the unambiguous labeling, which is a non-
trivial step in the process of computational modeling (Villoutreix
and Taboureau, 2015). Esposito et al. and Cai et al. tried to use
automated procedures to select the optimal threshold (Esposito et al.
(2021); Cai et al. (2019)). However, given that the optimal threshold
should be biomedically sound as well, there is no gold standard
for the threshold of cardiotoxicity as of now, although 1, 10, and
30 μM are the most commonly used for thresholding (Konda et al.
(2019); Zhang et al. (2016); Kim and Nam (2020); Ryu et al. (2020);
Zhang et al. (2022)). Recently, some studies have used a dual-
threshold approach in modeling (Creanza et al., 2021). A multi-task
DNN model was constructed by Cai et al. to investigate different
inactive thresholds (10, 20, 40, 60, 80, and 100 μM); the accuracy
was 0.81, 0.82, 0.89, 0.90, 0.93, and 0.91, respectively Cai et al.
(2019). Even though Cai’s model obtained an accuracy of 0.93 with
the 80 μM threshold, the resultant dataset was unbalanced (3,485
positives vs. 469 negatives), and the class-wise performances for the
blocker and non-blocker differed greatly (0.99 vs. 0.62).

Stemming from the aforementioned considerations, the
presented work tries to introduce a subgraph bias for message
passing and aggregation based on domain knowledge about
cardiotoxicity. By passing the message from the neighboring nodes
with the same and different kinds of subgraphs (predefined meta-
paths), the new framework is expected to improve the expressiveness
of the conventional GNN model. In this manner, heterogeneity
that has been abolished by the simplification of homogeneity
of the GNN model can also be partially recovered. The domain
knowledge-inspired method uses the predefined subgraphs to
express the heterogeneity of chemical structure and implicitly
injects the structural information into the nodes by introducing the
learnable weights for the subgraphs. By introducing the problem-
wise subgraph bias into the model, it is believed that the framework
could be applied to a broad spectrum of problems that need to
incorporate heterogeneity into the model. The contribution of this
study is summarized as follows:

• Weproposed a new graph neuralmodel whose expressiveness is
lifted by introducing the cardiotoxicity-specific subgraph aware
bias.
• We determined a dual-thresholdmechanism for computational

modeling based on a comprehensive validation (a dedicated
hERG database and 50 FDA-approved drugs).

The aforementioned improved pipeline is expected to be more
robust against the activity cliff and to further improve the
performance of the model.

2 Materials and methods

2.1 Data collection

The dataset hERG-DB is extracted from the hEMBL bioactivity
database (Creanza et al., 2021) and used as the main training
and testing datasets. The supplementary material provides details
regarding the selection method. For sparsity consideration of
adjacency matrices, we selected molecules with less than 45 non-
hydrogen atoms from the hERG-DB for training and testing, which
covers 99.0% of the molecules in the entire dataset. As a result,
the dataset in our study contains 8,253 molecules. Furthermore,
50 FDA-approved drugs compiled by Zhang et al. (2022) were used
to examine the proposed method’s performance and finalize the
optimized thresholding scheme.

As explained in Introduction, the setting of a threshold for
computational modeling is still controversial. Therefore, single- and
dual-threshold schemeswith different values (Table 1) are applied to
the dataset for a comprehensive comparison. Regarding the single-
threshold scheme, in addition to the commonly used 1 and 10 μM,
we consider using 20 μM. In the case of the dual-threshold scheme,
the values that define the blockers (active threshold) and the decoys
(inactive threshold) are different. For example, the dual threshold
“≤1 μM,> 10 μM” means that molecules with IC50 values less than
1 μM are viewed as blockers, while those with IC50 values higher
than 10 μM are viewed as non-blockers. The ones with IC50 values
between 1 and 10 μM are removed from the dataset. The dual
threshold is also denoted as [XX, YY] μM hereafter, where XX
represents the blocker threshold and YY represents the non-blocker
threshold. In determining the dual threshold, the active threshold
is relatively well defined at 1 μM and, thus, fixed throughout the
study. A comparison is made between the inactive thresholds of
10, 20, 30, and 40 μM, as indicated in Table 1. Additionally, the
balanced version is created by randomly selecting non-blockers and
maintaining the same sample number as the dual-threshold datasets.

2.2 Graph subgraph transformer network
model

2.2.1 Molecular graph representation
To represent the properties of molecules in a computational

format, that is, to define a molecule with N atoms as two main
components, the adjacencymatrix and featurematrix, the adjacency
matrix A, which is defined by A ∈ ℝN×N, represents the topological
information of the molecule, such as the connectivity of atoms.
The D-dimension feature matrix X, which is defined by X ∈ ℝN×D,
stores information about the atomic features of the molecule, such
as atomic properties and location in relation to the topological
information represented in the adjacency matrix. This information
can then be used for computational analysis and simulations of
molecular systems.
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TABLE 1 Datasets of different thresholds.

Usage Range Class Sample no. All

One threshold

≤1 μM,> 1 μM
>1 μM Non-blocker 6,958

8,253
≤1 μM Blocker 1,295

≤10 μM,> 10 μM
>10 μM Non-blocker 3,722

8,253
≤10 μM Blocker 4,531

≤20 μM,> 20 μM
>20 μM Non-blocker 2,871

8,253
≤20 μM Blocker 5,283

Dual threshold/imbalanced

≤1 μM,> 1 μM
>1 μM Non-blocker 6,958

8,253
≤1 μM Blocker 1,295

≤1 μM,> 10 μM
>10 μM Non-blocker 3,722

5,017
≤1 μM Blocker 1,295

≤1 μM,> 20 μM
>20 μM Non-blocker 2,871

4,166
≤1 μM Blocker 1,295

≤1 μM,> 30 μM
>30 μM Non-blocker 2,052

3,347
≤1 μM Blocker 1,295

≤1 μM,> 40 μM
>40 μM Non-blocker 1,358

2,653
≤1 μM Blocker 1,295

Balanced

≤1 μM,> 1 μM
>1 μM Non-blocker 1,295

2,590
≤1 μM Blocker 1,295

≤1 μM,> 10 μM
>10 μM Non-blocker 1,295

2,590
≤1 μM Blocker 1,295

≤1 μM,> 20 μM
>20 μM Non-blocker 1,295

2,590
≤1 μM Blocker 1,295

≤1 μM,> 30 μM
>30 μM Non-blocker 1,295

2,590
≤1 μM Blocker 1,295

≤1 μM,> 40 μM
>40 μM Non-blocker 1,295

2,590
≤1 μM Blocker 1,295

2.2.2 Subgraph bias expressiveness enhancement
It has been shown that the graph neural networks based on the

message passing and aggregation scheme are the neural approaches
of the 1st-order Weisfeiler–Leman algorithm (1-WL) (Morris et al.,
2021). Given that the 1-WL fails at distinguishing some basic non-
isomorphic graph structures, improvements/amendments, such
as the GNN for higher-order WL or additional structure-aware
information, have been tried to make the GNN universal (refer
to the universal approximation theorem of neural network)
(Bouritsas et al., 2020).

On the other hand, it is well known that the simplification from
a heterogeneous graph into the homogeneous one, which is the
underlying requirement of the conventional GNN model, abolishes
the relational information that is important for chemical structure.
In this paper, we propose a domain knowledge-inspired technique
that uses the predefined substructure (subgraph) to 1) express the
heterogeneity of chemical structure and 2) implicitly inject the
structural information into the nodes by introducing the learnable
weights for the predefined subgraphs.

Specifically, subgraph bias to enhance the expressiveness of a
GNN model is introduced based on the domain knowledge in
cardiotoxicity screening. The chemical core, the Murcko scaffold, is
extracted as a special subgraph. Alongside the wholemolecule being
another subgraph, context-aware information can be encoded. In
addition, the aromatic rings and the heteroatoms (nitrogen, oxygen,
and sulfur atoms) are also extracted as independent subgraphs
because their interactions with residues are reported responsible for
hERG blockage (Creanza et al. (2021); Moorthy et al. (2021); Kim
and Nam (2020)).

2.2.3 Heterogeneous decomposition mapping
In order to integrate the heterogeneous information presented

by the subgraphs defined above, we propose amapping function that
decomposes the adjacency matrix A into T sub-adjacency matrices
(subgraphs) denoted by Gi, i ∈ {1,…,T}. Here, i represents the index
of the subgraphs, ranging from 1 to T, and T is the number of
subgraphs. To facilitate this integration of subgraphs, adjacency
matrix A is transformed into a T-dimensional tensor M ∈ ℝT×N×N.
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The tensor M can be constructed as follows:

M = G1 ⊕G2 ⊕⋯⊕Gi, i ∈ 1,…,T. (1)

Here, ⊕ represents the concatenation function that combines
matrices into tensors along the specified dimension; in this case,
dim = 0, which is particularly useful for scientific computing
applications.

2.2.4 Graph transformer process
The graph transformer (GT) process is inspired by the self-

attention mechanism in the transformer framework (Vaswani et al.,
2017). Similarly, the GT process incorporates learnable weight
vectors W that associate and weigh the subgraphs to capture and
learn more expressive and powerful node embeddings, which can
be used for various graph-based learning tasks.

To associate the subgraphs and apply subgraph weighting, we
introduce learnable vectors W represented by W = {w1,w2,…,wT}.
These learnable vectors are used to perform tensor–scalar
multiplication along the first dimension of M, which corresponds
to the adjacency matrix of a subgraph M = {G1,G2,…,GT}. The
multiplication of the learnable vectors W with the tensor M and
subsequent dimensional accumulation results in the generation of a
meta-path, denoted by Q:

Q =W ⋅M =∑
i∈T
(wi ⋅Gi) . (2)

The elements of wi are aligned with the subgraphs’ type
dimension and are optimized during the training process. This
approach can be considered as the core mechanism that introduces
subgraph bias tailored to a specific problem. Consequently, the GT
process essentially constitutes an attention-basedmessage passing at
the substructure level.

Similar to the multi-head attention mechanism in transformers,
the multi-head graph transformer (MGT) process is introduced
to capture and integrate diverse higher-order relationships among
nodes by computing multiple meta-paths in parallel. Specifically,
MGT defines a set W(n), which contains n weight vectors W, where n
is the number of heads. During the inference process, the elements
of W(n) will be calculated in parallel to generate multiple meta-paths
Q1⋯Qn. We first define the terms of individual Q as Qk:

Qk =W(k) ⋅M =∑
i∈T
(w(k)i Gi) , k ∈ 1,…,n. (3)

At the end of the MGT process, the Qp that integrates multiple
meta-paths is calculated as the product of the Qk terms:

Qp =
L

∏
k=1

Qk = Q1⋯Qn, (4)

where n also represents the n-hop connections that associate Q1
with Qn. Each Qkk ∈ {1,…,n} (n = 2 in this study) captures different
aspects of node relationships, and by combining them through
multiplication, as shown in Eq. 4, the resulting Qp effectively
encodes essential and comprehensive information of the graph. In
other words, the representation of the graph in the pipeline above
containsmore relevant information about the specific task, while the
expressiveness of the model is enhanced by the introduction of the
weighted subgraphs.Themajor steps of the GT process are shown in
Figure 1.

2.2.5 Graph convolution
After establishing the meta-path Qp, the graph convolution

process is performed, and atomic information is passed as

f (X(l),Qp) = σ(D̂
− 1

2 ̂Qp D̂−
1
2 X(l)W(l)) , (5)

where f is the function of graph convolution. X ∈ ℝN×F is defined
as an atomic feature matrix, where N is the total number of nodes
in the graph and F is the dimensionality of the node features. l is
the iteration counter for f, with l ∈ {1⋯L} representing the depth of
the convolutional layers, ̂Qp is self-attended meta-path matrix, with
̂Qp = Qp + I, where I is the identitymatrix, and D̂ is the diagonal node

degree matrix of ̂Qp. The L-iteration message passing is designed
with

X(l+1) = f (X(l),Qp) . (6)

In the graph convolution process, each iteration l captures the
local neighborhood information up to an l-hop distance through
themeta-path Qp, aggregating and transforming features X(l) at each
step to learn more complex and higher-order representations X(l+1)

of the graph structure.

2.2.5.1 Decisionmaking
The two-dimensional matrix X is expanded into a one-

dimensional vector V by flattening it according to the row-prime
reshaping scheme. The resulting vector V with the shape of V ∈
ℝ1×N×D, where N is the number of rows and d is the number of
columns in matrix X. The flattened vector V is used for further
computations. We designed a neural network NN, with weight
matrices that are shaped as {ℝ(N*D,h1),⋯ℝ(hn,2)}, hn is a hidden
dimension of NN, and n+ 1 is the number of neurons layers.

2.3 Baseline models

To validate the improvement of the proposed model, several
baseline models have been constructed. Since the GSTN model
is built on the graph transformer network (GTN) model, a GTN
model (Yun et al., 2019), which is actually the GSTN model
without the predefined substructures, is directly compared with
it. As the original graph neural network model, the molecular
graph convolutional neural network (MGCNN) is used as another
baseline model. In this study, an MGCNN model with two graph
convolution layers and the accompanying batch normalization
layers for feature extraction and fully connected layers for
decision rule generation (Wu et al., 2018) was constructed. Another
pervasively used molecular codingmethod in QSAR is the extended
connectivity fingerprint (ECFP). For comparison, the ECFP (1,024
bits, diameter = 4) is input to the support vector machine (SVM) to
construct a conventional QSAR model.

All of the baseline models were developed in the Python
programming language by using the machine learning library
Scikit-learn and the open-source cheminformatics toolkit RDKit
(http://www.rdkit.org). All datasets and model implementations are
available in ourGitHub repository (https://github.com/huijia-wang/
hERG_ChEMBL240). The preprocessed ChEMBL data and scripts
for building models are also provided.
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FIGURE 1
The flowchart of the GSTN model has two main stacks before the generation of the decision rule: the graph transformer (GT) and the graph
convolution. In the part of GT, the first meta-graph generation step involves subgraph defining and weighing. Thereafter, a multi-head GT process is
used to integrate multiple meta-paths to capture a more comprehensive relationship between the graph and the targeted property (cardiotoxicity).

Trained with the same hERG-DB, a structure-based prediction
with a LASSO regularized SVM model proposed by Creanza et al.
(2021) is used as an additional reference outside of the QSAR
modeling. The pipeline proposed by Creanza et al. differs in
the input, which integrates docking scores and protein–ligand
interaction fingerprints, while the SVM model was used to project
the features to generate the classifying boundary.

2.4 Validation and evaluation

In this study, each model was trained with 10-fold cross
validation and summarized with the following statistics: accuracy,
precision, F1-score, recall, and area under the receiver operating
characteristic curve (AUC-ROC).

Accuracy = TP+TN
TP+TN+ FP+ FN

, (7)

Precision = TP
TP+ FP

, (8)

Recall (TPR) = TP
TP+ FN

, (9)

F1− score = 2RecallPresision
Recall+ Precision

. (10)

Here, TP, TN, FP, and FN are true positive, false positive, false
negative, and true negative, respectively.

3 Results

3.1 Comprehensive evaluation of
thresholding schemes

3.1.1 Single threshold
GSTN was trained with three single thresholds:

IC50 = 1,10,and 20 μM. The performance is shown in Figure 2.

Even though the 1 μM threshold had the highest accuracy, its recall
is lower than those of other thresholds. Additionally, in themetric of
F1-score, which is suitable for assessing the performance of a model
in an imbalanced dataset, IC50 = 1 μM has the lowest performance.
In addition, all the single-threshold F1-score values are lower than
0.80. Given the discrepancy in the precision and recall, it can be
inferred that the single-threshold scheme hinders the model from
learning the essential features of cardiotoxicity, which is exactly the
property pursued in modeling.

3.1.2 Dual threshold

The molecules with IC50 values in between the active and
inactive thresholds can still be regarded as weak blockers and
cause ambiguity in cardiotoxicity prediction, which can be generally
mitigated by introducing a dual-threshold scheme. In this part,
the dual thresholds will be discussed concerning 1) the effect of
the different combinations of the active and inactive thresholds on
removing the ambiguity of the original dataset and 2) the influence
of data imbalance on the model.

For the first term, after fixing the activity threshold (IC50 =
1 μM), different inactive thresholds (IC50 = 10, 20, 30, and 40 μM)
were investigated. According to the Tanimoto similarity coefficient,
the diversity values of all the datasets (including the original one)
range between 0.768 and 0.783. Hence, it is unlikely that the removal
of ambiguous molecules has a significant impact on the diversity
of the dataset. As shown in Figure 3, except for the accuracy,
which is substantially biased by the data imbalance, the other
metrics have significant improvement after replacing the single
threshold with the dual threshold. The combinations [1, 30] μM
and [1, 40] μM have significantly better outcomes than the others
according to the t-test, while no significant difference exists between
them.

As the inactive threshold increases, fewer molecules can be
attributed as non-blockers. Consequently, the resultant dataset in
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FIGURE 2
Barplot of single-threshold performance: (A) accuracy, (B) precision, (C)recall, (D) AUC, and (E) F1-score.

FIGURE 3
Metrics of models with different dual thresholds (imbalanced training dataset).

use becomes more balanced (Table 1). These results confirm that
the weak blockers introduce ambiguity in the cardiotoxicity model,
and the ambiguity can be greatlymitigated by weak blocker removal.
In addition, the recall has the largest improvement from single
threshold to dual threshold (refer to the step change of recall from
single to dual threshold of [1,10] μM in Figure 3), it can be inferred
that the ambiguity is more impeditive for the model to generate
representative features for the blockers.

By balancing the number of blocker and non-blocker samples
according to different dual thresholds, the influence of data
imbalance was further investigated. In detail, for every inactive
threshold, 1,295 non-blockerswere selected randomly from the non-
blocker class, and the number of the blockers class was constant
at 1,295 (refer to Table 1 for the details). Regarding the model
performance with the balanced datasets, similarly, the improvement
in performance by introducing a dual threshold and enlarging the
gap between the inactive and the active ones can be seen. However,
the performance reaches the plateau earlier than the imbalanced
one at [1, 20] μM (Figure 4). Combining the observations in both
the balanced and imbalanced datasets, the effect of the mitigation

of ambiguity from the training dataset is a positive factor and is
independent of the data balancing problem.

Metric-wise cross comparisons between the imbalanced and
balanced datasets are shown in Supplementary Figure S2 in the
Supplementary Material, from which it can be confirmed that the
adverse impact of the data imbalance is trivial. Intriguingly, the
performance of the model generated with the balanced datasets is
generally more stable than those generated with the imbalanced
datasets in terms of the lengths of the bars and whiskers. Therefore,
it is safe to conclude that the removed decoys (non-blockers)
are informative for the generalizability of the model. Due to the
insignificant differences between the [1, 30] μM and the [1, 40] μM
in model performances, the question that which dual threshold is
the most appropriate remains open at this point.

3.1.3 Validation with FDA-approved drugs

The FDA-approved drugs contain 45 compounds that appear
in the hERG-DB, while the other five compounds are outside of
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FIGURE 4
Metrics of models with different dual thresholds (balanced training dataset).

the database. Noteworthily, as the non-active threshold increases,
the number of undefined drugs, which are outside of the training
set, increases (Table 2). These 50 FDA-approved drugs serve as
an additional evaluation of the different thresholding schemes for
the proposed method. Table 2 summarizes the results of GSTN
models with different thresholds. Each colored block corresponds
to the results with a thresholding scheme, and the first and second
columns in each block show the reference with the corresponding
threshold and the prediction of the GSTN model. Results in red font
indicate false predictions. In addition to the five compounds which
are outside of the hERG-DB, another four compounds are outside
of the training set in the 10th-fold validation, the trained model of
which is used to test the 50 drugs. These nine drugs are marked in
bold and italic in Table 2. For the undefined ones due to the dual
thresholds (marked as “-”), predictions of the correspondingmodels
are supplied for further confirmation.

First, since the over-fitting has been abolished by the bias
introduced by the subgraphs, data leakage does not cause a nearly
perfect prediction in most cases except the [1,30] μM scheme. After
changing the single-threshold scheme to the dual one, there is a
substantial improvement. As the signal threshold is not capable
of identifying some blockers (cisapride, sertindole, etc.), by using
the [1,10] μM scheme, most of the undetected blockers can be
picked up correctly. This observation suggests that by removing the
weak blockers, the model becomes more sensitive to the blockers.
Combined with the similar observation in the dual threshold
that the ambiguity is more impeditive for the model to generate
representative features for the blockers, it is safe to conclude that the
dual-threshold scheme is necessary for a sensitive blocker predictor.

The model performance peaks at the [1, 30] μM scheme, with
which all classifiable drugs can be recognized correctly. Regarding
the nine external drugs, none of the thresholding schemes except
for the [1, 30] μM can predict the blocker quinidine correctly. On
the other hand, the adverse effect of the excessive removal of the
non-active molecules can be seen in the results of the [1, 40] μM
threshold. False prediction happens in both the blocker (quinidine)
and the decoy classes (epinastine and ofloxacin), suggesting that the
generalizability of the model is impaired by the removal. Focusing
on the undefined drugs that did not appear in the training dataset,
we notice that the mean IC50 values of the blocker and non-blocker

prediction with the [1, 30] μM scheme are 4.17 and 10.14 μM (t-test
p = 0.05), respectively. On the other side, those with the [1, 40] μM
scheme are 9.16 and 11.04 (t-test p = 0.57), respectively. It suggests
that the model with the [1, 30] μM scheme tends to draw a cleaner
boundary for the two classes. Piecing up the results of the hERG-DB
and this partially external dataset with FDA-approved drugs, a dual
threshold of [1, 30] μM is the most appropriate for cardiotoxicity
modeling.

For the nine external drugs in this dataset, the applicability
domain (AD) is used to visualize and identify the molecules that
need substantial extrapolation of the model. The latent features
(ℝD,D = 64) generated by the Graph convolution are used as the
molecular fingerprint to visualize the uniformity of the training
data and the external drugs (Figure 5) by using the t-distributed
stochastic neighbor embedding (t-SNE). Since the AD is used to
ensure confident model prediction, chemical leverage is defined by
the following equation:

hi = xi(XTX)−1xT
i . (11)

The xi∈𝔻 represents the latent features of an external molecule,
and the X ∈ ℝM×D represents the fingerprints (row vector) of
the training dataset (M the number of the molecules in the
training dataset, M = 3347). Based on the corresponding criterion,
a molecule with an h value that is larger than 3D/M is considered
chemically different from the training dataset. Based on this idea,
none of the nine drugs is identified and deemed far apart from the
training dataset.

3.2 Predefined domain subgraphs

The effect of predefined subgraphs is investigated by looking
into the learnable weights W(1) and W(2). Figure 6 shows a
direct comparison of different predefined subgraph combinations;
Figure 7 shows the performance of the models with a different
subgraph bias. 2T-GSTN is the model with all-atoms and Murcko
subgraphs; 3T-GSTN is with all-atoms, Murcko, and aromatic ring
subgraphs; and 4T-GSTN iswith all predefined subgraphs. Although
no significant improvement, a slight improvement over the graph
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FIGURE 5
Chemical space of the training and the nine external drugs using t-SNE based on the latent features of the proposed model. The uniformity of the
training and the external drugs can be seen.

transformer (1T-GSTN) in the accuracy and F1-score can be seen
in the 4T-GSTN model. In Figure 6, the learnable weights of
different subgraphs combinations are averaged over the 10-fold cross
validation, which suggests the necessity of importing the predefined
substructures.

Noteworthily, 2T-GSTN shows an inferior performance when
compared to others. It may be caused by the high similarity between
the scaffold and the molecule. On the other hand, the necessity of
the ring and heteroatom can be seen in Figure 6. The importance
of the heteroatom is consistent with the findings of previous studies
(Creanza et al. (2021); Moorthy et al. (2021); Kim and Nam (2020)).

3.3 Performance comparison

By applying the 10-fold cross validation to both theGSTNmodel
and the baseline models, a comparison with the baseline models
is summarized in Figure 8. Comparing the GSTN model with the
one based on MGCNN, the manipulation of the meta-path show its
superiority in representing the molecular graph as a heterogeneous
graph. The superiority of the GSTN model can be also seen in the
time duration of training. Because of the parallel processing in the
GT process, the training time is 40 s (100 epochs) in our model,
while that in the MGCNN model is 640 s using a MacBook Pro with
a 12-core CPU and an 18-core GPU.

With respect to the other baseline model, the SVM model input
with the ECFP, its inferior performance compared to that of the
GTSN model suggests that the global context of the substructures,
which is neglected by the ECFP, is beneficial for the cardiotoxicity
modeling.

Albeit with the same training dataset, the input of the model
proposed by Creanza et al. is more microscopic and deterministic.
Docking scores of the hERG central cavity and the protein–ligand
interaction fingerprint are integrated as the input. Although the
validation scheme is not clear in Creanza’s study, given that similar
dual-threshold schemes are used and the 10-fold cross validation in
our study is a standard way formodel evaluation, it is plausible to say

that the GTSN model has a better performance in terms of accuracy
and AUC values.

4 Discussion

4.1 On the activity cliff corner

The efficacy of the GSTN model in harnessing the activity cliff
problem, which is a nuisance in QSAR modeling, was investigated
in this section by comparing the proposed model with the baseline
models. The comparison centered on the common/unique Murcko
scaffold is conducted. The Murcko scaffold represents the union
of the rings and liners in a molecule (Bemis and Murcko, 1996).
Although it may be insufficient in highlighting all the important
features, the Murcko scaffold is generally used to find the structure
similarity of molecules. Therefore, the investigation is discussed in
the following three different directions.

4.1.1 Common Murcko scaffold with different
properties

Common Murcko scaffold with different properties means that,
albeit with the same Murcko scaffold, molecules can be either
blockers or non-blockers. We summarized six major groups in
Table 3, from which it can be confirmed that the GTSN model
handles the activity cliff better than the baseline models. For
example, albeit with balanced numbers of blockers and non-blockers
in group 1, the MGCNN and ECFP with SVM models fail at
recognizing the blocker in the test dataset. Intriguingly, although
being trained with the non-blockers only, the GSTN model is able to
pick up the subtle difference between blockers and non-blocker, for
which reason the GSTN model can recognize the blocker in group 2
while the other two models fail to do so.

Given that ECFP with the SVM model showed no high
sensitivity in predicting the molecules with the same Murcko but
different properties, it is safe to conclude that the GTSN model
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FIGURE 6
Pie plot of different combinations of subgraphs. Areas of the sectors correspond to the values of the weight of the predefined subgraphs. (A): 1T-GSTN
with all atoms predefined domain subgraph; (B): 2T-GSTN with all-atoms and Murcko subgraphs; (C): 3T-GSTN with all-atoms, Murcko, and aromatic
ring subgraphs; and (D): 4T-GSTN with all predefined subgraphs.

FIGURE 7
Performance of different combinations of subgraphs.

FIGURE 8
Comparison performance with baseline models.
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proposed in this work is more capable of picking up the decisive
structural features for the cardiotoxicity problem.

4.1.2 Common Murcko scaffold with the same
property

Contrarily, a model putting too much weight on the side chains
may lead to an over-fitting problem. In this regard, the molecules
with the same scaffold and the same cardiotoxicity properties are
extracted, as shown in Table 4. For the eight major groups shown
in Table 4, the GSTN recognizes the properties of the test molecules
in each group.

4.1.3 Unique Murcko scaffold
It is not unusual that some bioactivity can be largely decided

by the chemical scaffold. There is also a portion of molecules
in our dataset, whose cardiotoxicity properties can be decided
by their scaffolds. Hence, the question “does the local structure-
based algorithms (both ECFP and MGCNN) grasp the scaffold
information concretely or not?” has a direct impact on their
performance in this regard. We, therefore, further investigate the
models’ performances on the unique Murcko scaffold, which means
that no molecule with the same scaffold as the one of interest is used
in the training dataset.

From Table 5, it can be confirmed that the GSTN model
outperforms the two baseline models by a large margin. Of note, the
GSTN model also uses a GCN layer to extract and summarize the
features of the local structures of the final meta-graph. The superior
performance may come from the weighted attention manipulation
introduced by the predefined substructures.

4.2 Model interpretability

By visualization of the subgraphs and the resultant Qp, the
GSTN model provides additional information for the compound
design. Alongside the four subgraphs, the resultant Q1, Q2, and
the final Qp were extracted. As a newly generated weighted graph
for the subsequent graph convolution, the Qp is used for model
interpretation. Given the differences in the cardiotoxicity property,
the molecules of group 2 in Table 3 are used as an example, and the
no. 1, 2, and 3 molecules in Figure 9 correspond to the molecules
with the same group number, respectively.

In each predefined subgraph, different bonds are unified (see
the grids for each substructure in Figure 9), and the attention of
substructure-level heterogeneity is introduced by the multiplication
with weights, as can be seen in the Q1, Q2, and the resultant Qp.
Moreover, the no. 3 molecule (blocker) clearly shows a distinct
Qp from the other two non-blockers. Specifically, albeit with the
same scaffold, the resultant connectivity shows different patterns in
attention (especially in the connection marked with yellow color).

The grid diagram in Figure 9 provides a more intuitive view of
the model, where the scaffold is indicated by the light blue shadow.
Generally, the three molecules have highly similar structures. For
example, the sulfonamide functional group is connected to the 7th
position of the carbon atoms in the no. 1 and no. 2 molecules, as
well as to the 4th carbon atom of the no. 3 molecule. For all this,
the model is able to recognize the subtle difference, which is the
difference in the substituents of the 23rd carbon atoms, by devoting

sufficient attention to that carbon. In particular, the no. 3 molecule
features an alkynyl group located in the paraposition of the benzene
ring, while the other two are in the metaposition.

4.3 On the thresholding scheme

The necessity of the dual threshold is reconfirmed in our study.
Although a portion of the samples will become undefined, the
performance of the prediction is improved significantly. Specifically,
the sensitivity to the blocker (recall) is lifted from 0.71 to 0.86 by
introducing the [1, 10] μM dual-thresholding scheme and peaks at
0.90 with [1, 30] μM threshold. This improvement is desired in the
pre-screen step.

Another concern about the dataset is the data balance. Generally,
data balancing is beneficial to minor classes (the class with a
smaller number of samples) in deep learning. However, the results
of this study show that adverse influence from the mild data
imbalance is trivial, and excessive removal of the samples in the
decoy classes will impair the generalizability of the model. Based on
the aforestated discussion, the imbalanced dataset with the [1, 30]
μM is recommended. This thresholding scheme is consistent with
the previous study. In Carvalho’s study, it is suggested for a safety
margin, the IC50 of the non-toxic threshold should be at least 30-
fold of the toxic one (Carvalho et al., 2013). Given that the 1 μM is
usually used as the threshold of hERGblockers, 30 μM is appropriate
to be set as the safety threshold (Li et al., 2017).

The introduction of the predefined substructures shows its
advantage over the original graph transformer. Without significant
improvement, the GSTN model returns the results with slightly
higher median values and smaller variations for all metrics. Given
that the bias of the substructures is introduced by the learnable
weights, the model is with good scalability, based on which new
biochemical insight can be integrated into the model easily.

4.4 On the models

The insufficiency of the ECFP-based model in coping
with the unique Murcko scaffold (Table 5) can be understood
according to the theory of ECFP. By embedding the radius-wise
substructure into fixed-length bit strings, the order of the strings
is rearranged according to the order of the original identifiers for
substructures (Morgan, 1965), for which the long scaffold may not
be preserved appropriately, and the connection information between
substructures cannot be considered properly in its one-hot vector
(Rogers and Hahn, 2010).

The inferior performance of the MGCNN model suggests the
necessity of heterogeneity at a certain level. Noteworthily, the
heterogeneity is not expressed in the level of chemical bond but in
the level of predefined substructure, as explained above, which may
be more effective in the biochemical domain.

A computationmodel that is based on docking scores is regarded
as a highly efficient way to assess the hERG–drug interaction
(Koulgi et al., 2021). In the reference study, the docking score is
further integrated with the protein–ligand interaction fingerprints
to characterize the behavior of small molecules in the binding site of
target proteins and to elucidate fundamental biochemical processes.
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FIGURE 9
Visualization of the three molecules with the same scaffold but different cardiotoxicity properties. The meanings of Q1, Q2, and Qp can be found in the
description of the GSTN model. The area with blue shading represents the Murcko scaffold.

However, at the current stage, given the low resolution (3.7 Å)
and the absence of a ligand, it is difficult to construct an atomic-
level model of the protein that reflects the site conformational
rearrangement. In addition, the best structure-based model ends
with a 0.71 accuracy on 5VA1-IFD-4 conformations (with [1, 30]
μM threshold).

In our study, there is a portion of undefined weak blockers in
the dual-threshold setting. Further investigation around the weak
blockers using another scheme, such as the regression, can be very
interesting.

5 Conclusion

In this study, a new graph neural model was proposed by
introducing the substructure-aware bias to solve the cardiotoxicity
prediction problem. Based on domain knowledge, four types of
substructures were used to extract the key feature of cardiotoxic
molecules and to strengthen the robustness toward the active cliff
problem. Combined with the ≤1 μM,> 30 μM dual-thresholding
scheme, which is validated by a comprehensive comparison with the
hERG-DB and the partially external FDA-approved drugs dataset,
the best model attains performance with 90.5% accuracy, 90.4%
precision, 90.4% recall, 90.5% F1-score, and 90.4% AUC. Based

on comparisons with the baseline models, the improved pipeline
(GSTN model and thresholding scheme) has been validated in
terms of the activity cliff problem as well. As a final benefit, the
proposed pipeline enables medical researchers to visualize key
aspects of cardiotoxicity molecules in order to better understand
them.
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