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Freshwater crayfish are considered as aquatic products of high quality and high
nutritional value. The increasing demand has led to populations reduction in
several locations throughout their range. Thus, the development of appropriate
rearing conditions is considered necessary, among which, optimization of their
diet is a basic part. Towards this direction, in the present study, a 98-day feeding
trial was carried out to evaluate the impact of dietary fishmeal substitution by
Hermetia illucens meal on Pontastacus leptodactylus juveniles kept under
laboratory conditions. Insect meals represent an environmentally friendly
alternative solution, considered as a high-value feed source, rich in nutrients
such as protein and fat. Three dietary regimenswere utilizedwith a fishmeal-based
without Hermetia meal (HM) defined as the control diet (HM0), and two diets, the
first with 50% (HM50) and the second with 100% (HM100) of fishmeal substitution
by HM, respectively. Growth performance, whole-body composition, and fatty
acid profiles of individuals were studied in the different treatments. At the end of
the feeding trial, statistically significant differences were observed in the mean
survival rate (SR), specific growth rate (SGR), feed conversion ratio (FCR) and
weight gain (WG) values. More specifically, animals fed with HM-based diets had
higher mean SR, while the control group performed better regarding FCR and
SGR. The HM inclusion in the diet significantly altered the whole-body chemical
composition of the crayfish signifying a different metabolic utilization compared
to fishmeal (FM). The fatty acid analysis revealed that 16:0 (palmitic acid) was the
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predominant saturated fatty acid (SFA), 18:1ω9 (oleic acid) was found to be themain
monounsaturated fatty acid (MUFA), while 18:2ω6 (linoleic acid) represented the
major polyunsaturated fatty acid (PUFA) followed by C20:3 cis ω3 (cis-11-14-17-
eicosatrienoate) and C22:6 cis ω3 (cis-4,7,10,13,16,19-Docosahexaenoic) fatty
acids. The inclusion of dietary HM significantly reduced the contents of ∑SFAs,
∑PUFAs and ∑ω6 fatty acids, as well as those of C22:6 cis ω3 and increased the ω6/
ω3 and hypocholesterolemic to hypercholesterolemic ratios in the body. In parallel
with improvements in balanced diets and in culture conditions that need to be
optimised for rearing of freshwater crayfish, our study provides new data that
enlighten the suitability of insect meals in the nutrition of P. leptodactylus.
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1 Introduction

Apart from being keystone species and ecosystem scavengers
(Usio and Townsend, 2008) freshwater crayfish possess a high
economic and cultural value since ancient times (Koutrakis et al.,
2009) and nowadays crayfish catches reach high prices (Ackefors,
1998; Jussila et al., 2015). Also, more recently, in Northern Greece
crayfish festivals take place in an annual base (Alvanou et al., 2022),
reflecting its high economic importance at a local level. Its high value
in human diet is not only attributed to the high content and quality
of proteins and fats but also to its consumption during fasting
periods complying with religious guidelines (Jö, 2004; Patoka et al.,
2016).

Pontastacus leptodactylus is a native species in northeastern
Greece. However, due to its high economical value and its export
potential, which led to overfishing, its population in lake Vegoritida
and lake Polyphytou in Northern Greece seems to decline (Alvanou
et al., 2022). Freshwater crayfish populations’ declines have been
observed in several studies (Bolat, 2001; Harlioğlu and Harlioğlu,
2009; Souty-Grosset and Reynolds, 2009) and in most cases were
attributed to a combination of overfishing, pollution and habitat loss
or destruction (Edsman et al., 2010; Karimpour et al., 2011).
Generally, freshwater crayfish poses an essential role among
freshwater ecosystems as it is characterized by opportunistic
feeding behavior. They can consume algae, macrophytes, other
invertebrates, small fish, as well as remains of animal tissues and
detritus (Gutiérrez-Yurrita et al., 1998; Gherardi and Barbaresi,
2008; Twardochleb et al., 2013).

As the demand for decapod crustacean fisheries is growing
globally (Boenish et al., 2022), it is estimated that the fishing
rates will increase even more leading to overexploitation of wild
stocks and the devastation of the native populations. Hence, it is of
major importance to develop a rearing protocol for both restocking
purposes and coverage of global consumption demands for
crustaceans (Pantazis et al., 2015; Seemann et al., 2015; Alvanou
et al., 2022).

At the same time, the nutritional need for crayfish farming
requires large amounts of fishmeal which is the main protein source
used in crayfish feeds. However, the limited availability of fishmeals
has resulted in increased market price, reaching even double prices
in comparison to 10 years ago (Dalsgaard et al., 2009). Keeping this
in mind in combination with the environmental cost, the scientific

community provides efforts to find alternative protein sources for
aquaculture use, as fishmeals are included in 20%–50% in crayfish
diets leading to increased feed costs and production (Makkar et al.,
2014; Qian et al., 2021). Among them, insect meals represent an
important alternative solution mainly due to their high nutritional
value (Makkar et al., 2014; Henry et al., 2015; Nogales-Mérida et al.,
2018). Apart from their important nutrients, insect meals are
considered more environmentally friendly, as they are
characterized by lower environmental footprint in comparison to
conventional animal and plantfeed ingredients (Van Huis and
Oonincx, 2017). More specifically, the black soldier fly (Hermetia
illucens Linnaeus 1758) is a fly (Order: Diptera) within the
Stratiomyidae family. H. illucens larvae is considered as a high-
value feed source with a high percentage of protein and fat, as it can
contain up to 60% crude protein and up to 40% crude lipid (Makkar
et al., 2014; Henry et al., 2015; Nogales-Mérida et al., 2018). This
insect species is also rich in Ca (5%–8% dry matter) (Newton et al.,
1977; Arango et al., 2004; Newton et al., 2005), an element of high
importance for crayfish, as it is necessary to build their new
exoskeleton after molting (Aiken and Waddy, 1992).
Furthermore, H. illucens can grow while feeding on waste
residues resulting in the actual conversion of waste into high
nutritious feed ingredients (Diener et al., 2009).

Most of the published studies usingH. illucens meal for fishmeal
replacement have been conducted majorly in farmed fish species
such as rainbow trout (Stadtlander et al., 2017), Atlantic salmon (Li
et al., 2020), European sea bass (Magalhães et al., 2017), gilthead
seabream (Karapanagiotidis et al., 2023), African catfish (Fawole
et al., 2020), Nile tilapia (Tippayadara et al., 2021) and yellow catfish
(Xiao et al., 2018), and only few in crustaceans such as pacific white
shrimp (Cummins et al., 2017) and red claw crayfish (Wang et al.,
2022). For P. leptodactylus, Mazlum et al. (2021) evaluated the use of
Tenebrio molitor and reported that a dietary inclusion level of 13.5%,
representing 50% of fishmeal replacement, was successful in terms of
growth performance.

Previous studies revealed no harmful effects of HM insect meals
on both digestibility and growth performance of the organisms
farmed (Renna et al., 2017; Xiao et al., 2018). However, there are
conflicting results regarding the optimal substitution levels. The
study conducted on rainbow trout suggested that 40% ΗΜ

inclusion, may result at no negative effects on fish physiology or
meat quality, however a decrease in desirable polyunsaturated fats
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was observed (Renna et al., 2017) while a maximum level of 15%
inclusion was suggested for unaffected fish growth from a second
study (St-Hilaire et al., 2007). Additionally, Wang et al. (2022)
concluded that for Cherax quadricarinatus juveniles the optimal
dietary HM inclusion was determined to be 17.1%. From studies
conducted on Litopenaeus vannamei, it was found that 30% HM
inclusion negatively affected the growth performance and body
composition of the animals (Chen et al., 2022) while the best
growth performance was achieved at a substitution amount of
15% (Hu et al., 2019). In P. leptodactylus juveniles, it was
revealed that the addition of T. molitor was promising
regarding growth performance, suggesting that the optimal
substitution level of fishmeal with the insect meal was 50%
(Mazlum et al., 2021).

A few studies have been conducted to estimate the optimal
dietary requirements of crude proteins and fat of P. leptodactylus
(Ackefors et al., 1992; Carral et al., 2011; Ghiasvand et al., 2012;
Valipour et al., 2012). Furthermore, many dietary supplements
have been added to P. leptodactylusmeals for survival and growth
performance, body composition, immunity, and stress resistance
assessment (Zahmatkesh et al., 2005; Mazlum et al., 2011;
Valipour et al., 2011; Harlıoğlu et al., 2014; Bahadir Koca
et al., 2015; Safari et al., 2015; Sirin and Mazlum, 2017;
Nedaei et al., 2019; Jalili et al., 2020; Mazlum and Şirin, 2020;
Safari et al., 2021). Apart from growth performance, there are
also some dietary factors that affect the efficiency towards
reproduction of the species (Harlıoğlu and Farhadi, 2017).
More specifically, phospholipids, dietary lipids, unsaturated
fatty acids, vitamins, carotenoids, proteins, and amino acids,
seem to play a crucial role towards broodstock crayfish
reproduction (Harlıoğlu and Farhadi, 2017). From all the
above studies (Zahmatkesh et al., 2005; Mazlum et al., 2011;
Valipour et al., 2011; Harlıoğlu et al., 2014; Bahadir Koca et al.,
2015; Safari et al., 2015; Harlıoğlu and Farhadi, 2017; Sirin and
Mazlum, 2017; Nedaei et al., 2019; Jalili et al., 2020; Mazlum and
Şirin, 2020; Safari et al., 2021), it has been implied that the
recommended dietary protein level ranges between 30%-39%
while diet with higher protein percentage apart from having
higher cost has nothing to offer to overall crayfish
performance. Concerning lipid content, the optimal growth
has been observed in a diet lipid content among 10%–13%.
Additionally, many by-products and waste ingredients had
been added to crayfish diets such as olive mill wastewater
(Parrillo et al., 2017), pikeperch faeces (Roessler et al., 2020)
and shrimp waste meal (Bahadir Koca et al., 2011) exhibiting
ambiguous results on growth and health of crayfish. More
specifically, although olive mill wastewater and 10% shrimp
waste mill substitution had positive effects on final weight and
weight gain, pikeperch faeces failed to increase the growth
performance. However, apart from the investigation of a
nutrient balanced diet, the suitability of protein sources in the
diet is of high importance as well. Fishmeal is considered the
major protein source in aquaculture, but insects are gaining
increased attention due to their high nutritional value
(Makkar et al., 2014; Henry et al., 2015; Nogales-Mérida et al.,
2018), their low environmental footprint (Van Huis and
Oonincx, 2017) and their beneficial potential towards immune
system (Mousavi et al., 2020).

Therefore, the aim of the study was to assess the effects of
fishmeal replacement by HM. Although other researchers studied
insect meal substitutions, the results regarding crustaceans are
limited and contradictory. Hence, the main scope of the present
study was to investigate the growth performance, the survival rate,
and the whole-body chemical composition of P. leptodactylus
juveniles after the replacement of fishmeal with H. illuciens worm
meal in their diet, as a necessary step towards the optimization of
freshwater crayfish rearing protocol. Furthermore, the fatty acid
profile was analyzed and the effect of the different dietary sediments
on ∑SFAs, ∑PUFAs, ∑MUFAs, ∑ω3 and ∑ω6 fatty acids was
evaluated.

2 Materials and methods

2.1 Origin and collection of experimental
animals

Narrow-clawed crayfish (P. leptodactylus) individuals with eggs
(Figure 1) were collected from the lake Vegoritida located in the
borders of Florina and Pella Regional Units, Macedonia, north
Greece. On 21st of February 2022, the four collected specimens
were transferred to the laboratory of Animal physiology of the
School of Biology of Aristotle University of Thessaloniki, located in
Thessaloniki, Greece. The ovigerous crayfish were placed in aquaria
of 70 L capacity (40 cm long, 50 cm width, 35 cm height) all
equipped both with air pumps and PVC shelters (Figures 1, 2).
The water temperature was 17 ± 0.72°C (Farhadi and Jensen, 2016),
while a photoperiod 12:12 (Light: Dark) (Farhadi and Harlıoglu,
2018) was applied. Each individual kept separately in each

FIGURE 1
Ovigerous P. leptodactylus crayfish collected from the lake
Vegoritida and transferred to laboratory conditions.
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FIGURE 2
Aquaria (40 × 45 × 50, 90 L) where P. leptodactylus juveniles were reared.

FIGURE 3
P. leptodactylus before (A) and after (B) the 98-days feeding trial.
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aquarium, so the stocking density was 1 individual/0.2 m2. Female
individuals were fed a commercial feed (crude protein 45%, crude
lipid 17%) for Sparus aurata to develop and release eggs. The eggs
from the 4 ovigerous crayfish hatched on seventh of April. After
hatching the juveniles were grown until the first of July and used for
the needs of the present study.

2.2 Experimental protocol

The experiment was conducted in six independent aquaria
(90 L, 40 cm long, 50 cm width, 45 cm height) (Figure 2). The
aquaria were equipped with continuous aeration system to
maintain high oxygen levels and heaters to keep constant
water temperature at 20 ± 0.5°C. A 30% water exchange was
practiced daily in each tank, while a photoperiod 12:12 (Light:
Dark) was applied. P. leptodactylus juveniles with an average
initial body weight of 0.26 ± 0.04 g (Figure 3) were randomly
stocked into the six aquaria (two replicate aquaria per dietary
treatment with 20 crayfish per aquarium). The feed was supplied
two times daily at 11:00 and 19:00 by hand and by mechanical
feeders at 5% of total biomass for 98 days. Temperature, pH,
conductivity, dissolved oxygen, and mortality were recorded
daily with mean values of pH 8.2 ± 0.03, dissolved oxygen
7.4 ± 0.23 mg/L, salinity 656 ± 100 μS. Dead individuals were
recorded daily and removed. Any uneaten feed was siphoned the
next morning and then was filtered, dried and weighted to
calculate the amount of food that was consumed.

2.3 Experimental diets

Larvae ofH. illucens were reared in the University of Thessaly on a
mixture of wheat bran (90%) and egg layer hens feed (10%). Late-instar
larvae were collected, dried at 40°C for 12 h,milled and partially defatted
using petroleum ether at 40°C for 3 h in order to produce a H. illucens
meal (HM) containing 10.3% moisture, 48.5% crude protein, 10.0%
crude lipid, 9.3% ash and 19.9 KJ/g gross energy.

A fishmeal of 64.1% crude protein was used and included at
25% in the control diet. Three isonitrogenous (40% as fed),
isolipidic (16%) and isoenergetic (22 MJ/Kg) diets were
formulated (Table 1), where the fishmeal protein of the
control diet was replaced by HM at 50% (H50) and 100%

(H100), respectively. The HM diets were supplemented by
methionine to counterbalance their lower levels in this amino
acid compared to the HM0 control diet. In all diets, soybean
concentrate, sunflower and corn gluten were used as the major
plant protein sources, while wheat meal was used as the binder
and filler ingredient for the protein replacements. Fish oil was
used as the major lipid source and as a source of ω3 fatty acids,
while soybean oil was used as an extra lipid and energy source and
to counterbalance the isolipidic diets. All the diets had constant
inclusion levels of vitamins and minerals premix, monocalcium
phosphate and vitamin C (Table 2).

Diets were prepared in the University of Thessaly, Greece. All
dietary ingredients were ground in a grain feed mill (KoMo Fidibus,
PGS, Germany) and were mixed in a mixer (Bosch MaxxiMUM
MUMXL20G). The oils and boiling water were then added to
produce a homogenous stiff dough. Diets were pelletized by a
California Pellet Mill (CL-2, IRMECO GmbH, Netherlands) to
produce pellets of 2.5 mm diameter. The pellets were then dried
with forced air at room temperature for 24 h to reach a moisture
content of 8%–8.5% and then stored in air-sealed bags at 4°C until used.

2.4 Growth performance and feed utilization

At the end of the 98-days feeding experiment all live individuals
were collected after 48 h fasting. After collection, each individual was
dried carefully with a tissue paper to remove the excess water and
then weighted. Apart from weight, other parameters that were
measured included carapace, chelae, and abdomen lengths and
widths.

The following parameters were calculated for growth
performance and feed utilization:

• Survival rate (SR, %) = (Total number of crayfish harvested/
Total number of crayfish stocked) × 100

• Specific growth rate (SGR, %/day) = [In Final body weight- In
initial body weight/rearing duration (days)] × 100

• Weight Gain (WG, g) = final weight (g)—initial weight (g)
• Feed Conversion Ratio (FCR) = Dry feed intake (g)/wet weight
gain (g)

• Protein efficiency ratio (PER) = weight gain (g)/protein
intake (g)

2.5 Whole body composition including
exoskeleton

Samples were homogenized using liquid nitrogen and then were
freeze-dried using a HyperCOOL HC8080 freeze-dryer (Gyrozen
Co., LTD., Korea) (−80°C, 0.1 mbar). Moisture content was
determined by oven drying at 105°C for 24 h, crude protein
content (N x 6.25) by the Kjeldahl method using a Gerhardt
analytical apparatus (Association of Official Analytical
Chemists–AOAC, 2000), and crude ash content by incineration
at 550°C for 5 h using a muffle furnace (L 9/11/B180 L-090H1CN,
Nabertherm GmbH, Lilienthal/Bremen, Germany). Total lipids
were extracted using the Folch method (Folch et al., 1957). In
particular, 1 g of each freeze-dried and ground crayfish sample

TABLE 1 Proximate composition (% of wet weight) of the partially defatted H.
illucens meal and of fishmeal used in the experimental diets.

H. illucens meala Fishmealb

Moisture (%) 10.3 ± 0.3 7.8 ± 0.1

Crude protein (%) 48.5 ± 0.4 64.1 ± 0.3

Crude lipid (%) 10.0 ± 0.6 8.7 ± 0.2

Ash (%) 9.3 ± 0.4 16.1 ± 0.1

Gross energy (KJ/g) 19.9 ± 0.2 20.5 ± 0.2

Values represent means ± standard deviation (n = 3).
aH. illucens defatted meal produced by the University of Thessaly.
bFishmeal, sardine Köster Marine Proteins GmbH, Hamburg, Germany.
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was mixed with 20 mL of a solution of chloroform: methanol (2:1, v/
v) and were vigorously agitated for 45 min. The extraction was
repeated twice. After filtering, water was added for the phase
separation. The upper phase was removed and the lower
chloroform was collected, dehydrated with anhydrous Na2SO4

and rotary-evaporated to dryness.

2.6 Determination of total lipids and fatty
acids profile

After total lipids extraction that was carried out as described above,
transesterification was carried out to the samples for subsequent gas
chromatographic analysis. In particular, 0.1 g of the extracted lipids was

TABLE 2 Formulation (g/kg of diet), proximate composition (% in dry matter) and estimated amino acid content (% of protein) of the experimental diets.

Diets HM0 HM50 HM100

Ingredients (%)

Fishmeal 250 125 —

Hermetia illucens meal — 165.4 330.9

Soybean concentrate 180 186 192.1

Sunflower 100 100 100

Corn gluten 100 100 100

Wheat bran 180 139.6 98

Fish oil 70 70 70

Soybean oil 45 38 32

Methionine — 1 2

Vitamin and mineral, premixa 10 10 10

Monocalcium phosphate 60 60 60

Vitamin C 5 5 5

Proximate composition (% in DM)

Crude proteins 44.5 44.4 44.5

Crude lipids 16.2 15.8 15.8

Crude carbohydratesb 26.0 26.9 27.3

Ash 13.5 12.9 12.4

Gross energy (KJ/g) 22.3 22.2 22.2

Estimated amino acids (% of protein)c

Alanine 3.89 4.27 4.65

Arginine 4.00 4.06 4.10

Aspartic acid 5.74 6.28 6.80

Cysteine 1.05 0.88 0.69

Glutamic acid 13.40 12.58 11.65

Glycine 3.53 3.58 3.61

Histidine 1.64 1.77 1.89

Isoleucine 2.89 3.08 3.26

Leucine 5.76 5.94 6.09

Lysine 3.73 3.78 3.82

Methionine 1.47 1.48 1.48

Phenylalanine 3.29 3.50 3.68

Proline 4.51 4.76 4.97

Serine 3.17 3.07 2.94

Threonine 2.63 2.63 2.62

Tryptophane 0.79 0.69 0.59

Tyrosine 1.55 2.21 2.86

Valine 3.45 4.02 4.57

aVitamin andmineral premix (per kg of mixture): vitamins: E, 58.3 g; K3, 3.3 g; A, 1,500 IU/g; D3, 200 IU/g; B1, 3.3 g; B2, 6.6 g; B6, 3.3 mg; B12, 10 mg; folic acid, 3.3 g; biotin, 100 mg; inositol,

40 g; C, 33.3 g; nicotinic acid, 16.6 g; pantothenic acid, 13.3 g. Minerals: Co., 170 mg; I, 248 mg (Ca(IO3)2); Mn, 10 g (MnO); Zn, 33 g (ZnO); Ca 235 g; Se 2.5 mg (Na2SeO3); Na 247,5 mg

(Na2SeO3); Fe, 2 g; Mg, 121,3; Cu, 0.8 g.
bCalculated as 100 minus the sum of the percentages of crude protein, crude fat, moisture and ash.
cBased on the amino acid profiles of each ingredient given by the suppliers, while for H. illucens meal the average value of each amino acid from feedipedia.org were used.
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transferred in a test tube with a screw cap and 2 mL of n-hexane were
added, followed by 0.2 mL of a 2 M methanolic solution of potassium
hydroxide for the fatty acid methyl esters (FAMEs) preparation. The
mixture was vortexed for 1 min and was left to settle until the upper
phase that contained the FAMEs became transparent. The phase that
contained the methyl esters was collected, filtered (0.45 µm PTFE
hydrophobic filters) and analyzed by a gas chromatograph (TRACE
GC 2000 Series, ThermoQuest CE Instruments) with a flame ionization
detector (FID) equipped with an autosampler (TRIPLUS AS Thermo
Quest CE Instruments). FAMEs were analyzed on a BPX70 GC column
(30 m length, 0.32 mm i.d., 0.25 μm film thickness, SGE Analytical
Science). Helium was the carrier gas at a flow rate of 2.0 mL/min. The
injector port and detector temperature were maintained at 250°C.
The split ratio was 1:20. The column oven was initially set at 46°C
for 2 min, then increased to 130°C at a rate of 50°C/min for 10 min, then
increased to 175°C at 2°C/min and maintained at that temperature for
2 min, then increased to 200°C at 3°C/min and maintained at that
temperature for 3.5 min, before increasing to a plateau of 240°C at a rate
of 10°C/min for 5 min. The total run time was 60 min. The
identification of FAMEs was carried out by comparing the retention
times (RT) with those of a standard mixture (AccuStandard, New
Haven,United States) containing 37 fatty acids analyzed under the same
chromatographic conditions. Chromatograms were acquired and
processed with the aid of Chrom Quest 5.0 software (ver. 3.2.1,
Thermo Separation Products).

Parameters useful for evaluating the nutritional value of fats
were also determined. In particular, the sum of the saturated fatty
acids (∑SFA), monounsaturated fatty acids (∑MUFA),
polyunsaturated fatty acids (∑PUFA), ω3 fatty acids (∑ω3) and
ω6 fatty acids (∑ω6), as well as the ratios of ∑PUFA to ∑SFA
(∑PUFA/∑SFA), ∑ω6 to ∑ω3 fatty acids (∑ω3/∑ω6) and
hypocholesterolemic to hypercholesterolemic (H/H) fatty acid
ratio. The H/H ratio was determined as follows: H/H = sum (∑)
of 18:2ω9, 18 ω6, 20:4ω6, 18:3ω3, 20:3ω6, 20:5ω3, 22:6ω3/sum (∑)
of 14:0, 16:0 (Chen and Liu, 2020).

2.7 Statistical analysis

Parameters examined herein were tested for significance at the
5% level (p < 0.05) by using one way (GraphPad Instat 3.0) analysis
of variance (ANOVA). Values are presented as means ± S.D.
Friedman’s non-parametric test, followed by Dunn’s post-test,
was performed to re-analyse and cross-examine our data. Post-
hoc comparisons were performed using Bonferroni test. Principal
components analysis (PCA) in the FactoMineR package in R was
employed to assess patterns of possibly correlated variables, and
more specifically to detect how fatty acids’ levels varied between
treatments.

3 Results

3.1 Survival, growth performance and feed
utilization

Significant differences (p < 0.05) were observed among the
three dietary groups of crayfish at the end of the feeding trial

(Table 3). Survival rate was low (12.7%–27.6%) in all dietary
groups with both groups of crayfish feeding on the HM-based
diets (HM50, HM100) having significantly higher survival rate
compared to the control HM0 group, while the SR was similar
(p > 0.05) between the HM50 and HM100 groups. At the end of
the trial, a great variability of the final weight of crayfish was
observed in all dietary groups with the mean final weight of the
control group being significantly higher than both the HM50 and
HM100 groups. The mean final weight of HM50 and
HM100 were similar (p > 0.05). A similar trend was also
observed for the mean weight gain and SGR among groups.
Thus, the crayfish fed with the control diet had
significantly higher values compared to the HM groups, while
the HM50 and HM100 exhibited similar values. Furthermore, the
HM0 group had a significantly lower FCR compared to the HM
groups, while the HM50 and HM100 had a similar FCR
(Figures 4, 5).

3.2 Whole body composition

The whole-body composition of P. leptodactylus juveniles fed
with the HM-based diets and the control one (HM0) are shown in
Table 4. Although, the body moisture, protein, lipid and ash
contents were similar (p > 0.05) among the three dietary groups,
the diet seemed to have a statistically significant influence on the
body composition of the animals. In particular, the crayfish fed with
the HM-based diets had increased moisture, protein, and ash
contents, and decreased lipid contents in comparison with the
control group.

3.3 Fatty acids profiles

The fatty acid profiles of P. leptodactylus juveniles fed with
the HM-based diets and the control diet (HM0) are shown in
Table 5. Differences were observed among the three different
treatments regarding the classic indices such as ∑SFAs;
∑PUFAs; ∑MUFAs. In all dietary groups, the ∑MUFAs and
∑PUFAs were found to be higher than the ∑SFAs. In all dietary
groups C16:0 (palmitic acid) was the dominant SFA, C18:1 cis
ω9 (oleic acid) was the dominant MUFA, while C18:2 cis ω6
(linoleic acid) represented the major PUFA. More specifically, a
significant increase in the ∑SFA was observed, as the inclusion
level of Hermetia meal was increased in the diet. In particular,
C12:0, C14:0 and C16:0 followed the increase pattern, however
C18:0 was higher (p < 0.05) in the HM0 group compared to
HM50 and HM100 crayfish. A slight increase in the∑MUFA was
observed, as the inclusion level of Hermetia meal was increased
in the diet but it was not statistically significant. In contrast with
∑SFA and ∑MUFA, a statistically significant decrease was
observed in ∑PUFA as the inclusion level of Hermetia meal
was increased. Among them, in C20:3 cis ω3 no significant
differences were observed between the different groups
while C22:6 cis ω3, C18:2 cis ω6, C18:3 cis ω6, C18:1 cis
ω9 was higher (p < 0.05) in the HM0 group compared to
HM50 and HM100 crayfish. On the other hand, C20:4 cis
ω6 although found in low levels, a significant increase was
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observed in HM100 group in comparison with the other two
group, while a significant decrease was observed in
HM50 group again compared to the other two. The GC-FID
chromatograms of tree different dietary conditions are depicted
in the Figure 6.

3.4 Multivariate analysis

The PCA analysis (principal components as extraction
method) was applied to statistically define differences in the
levels of fatty acids under different dietary regimes (Figure 7).
PC1 explained 38.04% of the variance. Specifically, the fatty acids
that were positively correlated with scores on PC1 were C14:1 cis-
9 (myristoleic), C15:0 (pentadecanoic), C15:1 cis-10
(pentadecenoic), 20:1 cis ω9 (cis-11-eicosenoic), C18:3 trans
ω3 (linolenic), C20:2 cis ω6 (cis-11,14-eicosadienoic), C20:

4 cis ω6 (arachidonic), C20:4 cis ω6 (arachidonic) and C24:
1 cis ω9 (nervonic). In contrast to the above, C22:0 (behenic),
C22:1 cis ω9 (rucic) and C22:6 cis ω3 (cis-4,7,10,13,16,19-
docosahexaenoic) were negatively correlated with scores on
PC1. On the other hand, fatty acids positively correlated to
PC2 (which explained 32.44% of the variance) were: C17:1 cis-
10 (heptadecenoic cis), C18:0 (stearic), C18:2 cis ω6 (linoleic),
C18:3 cis ω6 (g-linolenic) and C20:3 cis ω6 (cis-8,11,14-
eicosatrienoate). In contrast, C12:0 (lauric), C14:0 (myristic),
palmitic (C16:0), C16:1 cis (palmitoleic), C17:0 (heptadecanoic),
C18:1 cis ω9 (oleic), C21:0 (heneicosanoic) and C20:3 cis ω3 (cis-
11-14-17-eicosatrienoate) were negatively correlated to PC2. The
cumulative value of PC1 and PC2 was 70.48%. Fatty acids
correlating to control group form light green clusters, the ones
correlating (positively or negatively) to HM50 form light green
clusters, while the ones correlating to HM100 form light grey
clusters.

TABLE 3 Growth performance and feed utilization efficiency of juvenile P. leptodactylus fed with three different diets with different substitution levels of H. illucens
meal.

Parameters Treatments

HM0 HM50 HM100

Survival rate (SR,%) 12.7 ± 0.21 27.6 ± 0.14* 27.1 ± 0.14*+

Initial weight (g) 0.26 ± 0.05 0.26 ± 0.05 0.26 ± 0.05

Final weight (g) 2.37 ± 1.50 1.25 ± 0.79 1.34 ± 0.86

Weight gain (WG, g) 2.11 ± 1.50 0.99 ± 0.80 1.10 ± 0.86

Specific growth rate (SGR, %/day) 2.22 ± 0.58 1.40 ± 0.71* 1.44 ± 0.64*

Feed conversion ratio (FCR) 6.55 ± 4.18 19.04 ± 12.64* 19.30 ± 10.29*

PER 39.20 ± 22.05 16.57 ± 11.98* 16.41 ± 12.80*

Feed intake (g) 13.44 ± 7.32 16.27 ± 3.22 16.68 ± 0.93

Values represent means ± st. deviation (n = all alive crayfish). Asterisk (*) depicts statistically significant differences (p < 0.05) between HM, treatments and HM0, while cross (+) depicts

statistically significant differences (p < 0.05) between HM50 and HM100 treatments.

FIGURE 4
(A) Survival rate % (SR), (B) specific growth rate % (SGR) and feed conversion rate (FCR) levels (mean ± stedv) between different dietary treatments
(HM0, HM50 and HM100) in P. leptodactylus juveniles. Asterisk (*) depicts statistically significant differences (p < 0.05) between HM treatments and HM0,
while cross (+) depicts statistically significant differences (p < 0.05) between HM50 and HM100 treatments. HM0 represents the control group while
HM50 and HM100 the groups with 50% and 100% HM inclusion respectively.
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4 Discussion

To the best of our knowledge, this is the first study regarding the
substitution of fishmeal with H. illucens meal in P. leptodactylus. In
the present study, P. leptodactylus juveniles were fed with three
isonitrogenous, isolipidic and isoenergetic diets where the fishmeal
protein of the control was replaced by 50% and 100%withH. illucens
meal. Therefore, the effects of dietary HM inclusion were assessed on
growth performance, whole body composition and fatty acid profiles
of crayfish.

4.1 Growth performance and feed utilization

The use of H. illucens meal in the diet significantly affected
the survival, growth performance and feed utilization of P.
leptodactylus. It is worth mentioning that the survival rates
observed in this study were similar (Ulikowski et al., 2006;
Erol et al., 2017) or lower with those reported in other studies
with the species (Mazlum et al., 2011; Hu et al., 2019). Certainly,
the fact that P. leptodactylus is not yet a conventional farmed

crustacean species, with rearing protocols and nutrient balanced
diets still being investigated, may partly explain the low survival
rates observed in the present study. In addition, the low survival
may be due to the long period (88 days in total) that the juveniles
were kept under laboratory conditions prior to the experiment
and/or to the longer experimental period practiced (98 days in
total) compared with that of Mazlum et al. (2021), which may
have enormously stressed the crayfish. This can be further
confirmed from the similar survival rates observed in the
studies from (Ulikowski et al., 2006) and (Wang and Chen,
2005) where the juveniles’ captivity lasted for 92 and 90 days
respectively. Moreover, the long period that the berried females
were kept under captivity conditions may have also been a
stressful factor for the progeny.

Nevertheless, the crayfish fed on the H. illucens diets exhibited a
significantly higher survival rate than those fed on the fishmeal diet.
The above observation could be attributed to the boost of the innate
immune system caused by the HM consumption (Mousavi et al.,
2020). Insect meals contain chitin that has been observed to regulate
immune system of both fish and shrimps (Esteban et al., 2000; Wang
and Chen, 2005). In addition, studies have shown that short fatty
acids such as lauric acid, which is included in HI meal in the highest
amount among IMs (up to 60%) (Spranghers et al., 2017; Borrelli
et al., 2021) and peptides (Jozefiak and Engberg, 2017), also
contained in IM, seem to exhibit antimicrobial activity and can
exert a positive effect on the wellbeing of the targeted animal. A
higher survival rate was observed in European seabass
(Dicentrarchus labrax) when H. illucens meal included in the diet
(Abdel-Latif et al., 2021) and was also observed in Pacific white
shrimp after the 50% inclusion of T. molitor meal (Motte et al.,
2019).

A great variability of the final weight of crayfish was observed
in all dietary groups and this might be attributed to differences in
the genetic backround of the individuals (Mills and McClaud,
1983; Gydemo et al., 1990; Curtis and Jones, 1995). Similarly, a
great variability of individual growth rate has been also observed
in another study with P. leptodactylus (Harlıoğlu, 2009) as well as
in other species, such as Astacus (Gydemo et al., 1990), C.
quadricarinatus (De Boulay et al., 1993; Curtis and Jones,
1995) Austropotamobius pallipes (Pratten, 1980). Fishmeal
replacement by H. illucens meal significantly impaired the
growth performance and feed utilization of P. leptodactylus at
both inclusion levels. This denotes that even an inclusion level
164 g/Kg of diet (as that practiced in HM50 diet) was not suitable
for the nutrition of the species and maybe a lower inclusion level

FIGURE 5
Initial, final weight, and weight gain (mean ± stedv) between
different dietary treatments (HM0, HM50 and HM100) in P.
leptodactylus juveniles. Hashtag (#) depicts statistically significant
differences (p < 0.05) between final weight or weight gain and
initial weight. HM0 represents the control group while HM50 and
HM100 the groups with 50% and 100% HM inclusion respectively.

TABLE 4 Whole body composition (g/100 g fresh material) of juvenile P. leptodactylus individuals fed with three different diets with H. illucensmeal substitution.

Chemical composition Treatments

HM0 HM50 HM100

Moisture (%) 39.56 ± 0.05 44.91 ± 0.01* 43.41 ± 0.01*+

Crude protein (%) 9.62 ± 0.03 12.52 ± 0.06* 12.22 ± 0.01*+

Crude lipid (%) 7.83 ± 0.03 6.63 ± 0.03* 5.87 ± 0.03*+

Ash (%) 28.93 ± 0.11 35.10 ± 0.10* 32.22 ± 0.10*+

Asterisk (*) depicts statistically significant differences (p < 0.05) between HM, treatments and HM0, while cross (+) depicts statistically significant differences (p < 0.05) between HM50 and

HM100 treatments. Mean value ± S.D. (n = 3).
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TABLE 5 The fatty acid profile analysis (g/100 g of total fatty acids) of P. leptodactylus juveniles fed with three different dietary regimes (HM0, HM50, HM100).

Fatty acid Treatment

HM0 HM50 HM100

Lauric (C12:0) 0.16 ± 0.00 1.32 ± 0.01* 3.78 ± 0.04*+

Myristic (C14:0) 1.62 ± 0.03 2.31 ± 0.01* 3.52 ± 0.01*+

Myristoleic (C14:1 cis-9) 0.37 ± 0.03 0.28 ± 0.01 0.42 ± 0.08+

Pentadecanoic (C15:0) 0.38 ± 0.04 0.36 ± 0.02 0.39 ± 0.02

Pentadecenoic (C15:1 cis-10) 0.14 ± 0.01 0.09 ± 0.01 0.17 ± 0.04+

Palmitic (C16:0) 17.28 ± 0.01 17.73 ± 0.08* 18.33 ± 0.04*+

Palmitoleic (C16:1 cis) 3.07 ± 0.00 3.43 ± 0.01* 3.39 ± 0.00*+

Heptadecanoic (C17:0) 0.25 ± 0.01 0.27 ± 0.00 0.36 ± 0.01*+

Heptadecenoic cis (C17:1 cis-10) 0.3 ± 0.07 0.26 ± 0.01 0.27 ± 0.01

Stearic (C18:0) 3.99 ± 0.24 3.26 ± 0.02* 3.68 ± 0.02+

Οleic (C18:1 cis ω9) 24.87 ± 0.16 26.31 ± 0.04* 25.9 ± 0.11*+

Linoleic (C18:2 cis ω6) 20.20 ± 0.18 18.61 ± 0.02* 14.95 ± 0.05*+

g-Linolenic (C18:3 cis ω6) 2.25 ± 0.01 2.14 ± 0.02* 1.64 ± 0.01*+

cis-11-Eicosenoic (20:1 cis ω9) 0.30 ± 0.03 0.22 ± 0.00* 0.42 ± 0.00*+

Linolenic (C18:3 trans ω3) 2.82 ± 0.05 2.76 ± 0.02 3.03 ± 0.02*+

Heneicosanoic (C21:0) 0.98 ± 0.01 1.02 ± 0.02* 0.99 ± 0.01

cis-11,14-Eicosadienoic (C20:2 cis ω6) 0.11 ± 0.00 0.02 ± 0.03* 0.09 ± 0.00+

Behenic (C22:0) 0.15 ± 0.03 1.34 ± 0.08* 0.11 ± 0.03+

cis-8,11,14-Eicosatrienoate (C20:3 cis ω6) 2.46 ± 0.05 0.14 ± 0.01* 1.71 ± 0.02*+

Erucic (C22:1 cis ω9) 0.17 ± 0.02 0.21 ± 0.03 0.15 ± 0.02

cis-11-14-17-Eicosatrienoate (C20:3 cis ω3) 10.56 ± 0.13 10.76 ± 0.03 10.78 ± 0.05

Arachidonic (C20:4 cis ω6) 0.16 ± 0.01 0.11 ± 0.00* 0.19 ± 0.00*+

cis-5,8,11,14,17-Eicosapentaenoic (C20:5 cis ω3) 0.17 ± 0.02 0.12 ± 0.03 0.16 ± 0.02

Nervonic (C24:1 cis ω9) 0.18 ± 0.04 0.14 ± 0.01 0.28 ± 0.01*+

cis-4,7,10,13,16,19-Docosahexaenoic (C22:6 cis ω3) 7.07 ± 0.07 6.82 ± 0.03* 5.28 ± 0.03*+

Saturated 24.45 ± 0.84 26.86 ± 1.32 30.63 ± 0.91*+

Monounsaturated 29.98 ± 0.84 30.08 ± 1.38 30.46 ± 0.95

Polyunsaturated 45.09 ± 0.94 40.37 ± 1.97* 37.18 ± 1.02*

Total ω3 20.33 ± 0.45 19.92 ± 0.98 18.91 ± 0.46

Total ω6 24.76 ± 0.50 20.46 ± 0.99* 18.26 ± 0.56*+

PUFA/SFA 1.85 ± 0.04 0.66 ± 0±0.00* 0.62 ± 0.01*

ω6/ω3 1.22 ± 0.00 4.9 ± 0.24* 5.48 ± 0.17*+

∑C18:1 ω9, C18:1 ω6, C20:4 ω6, C18:3 ω3, C20:3 ω6, C20:5 ω3, C22:6 62.61 ± 4.87 27.36 ± 1.33* 31.51 ± 0.90*

∑C14:0, C16:0 18.90 ± 0.02 3.71 ± 0.01* 3.81 ± 0.08*

Η/Η 3.31 ± 0.26 7.37 ± 0.38* 8.27 ± 0.20*+

Asterisk (*) depicts statistically significant differences (p < 0.05) between HM, treatments and HM0, while cross (+) depicts statistically significant differences (p < 0.05) between HM50 and

HM100 treatments. Mean value ± S.D. (n = 3).
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is needed. The lower growth and feed efficiency was not
attributed to a lower feed acceptance, as the HM-fed crayfish
exhibited a similar feed intake with the control group but may be
due to a lower digestibility and/or to lower dietary essential
amino acids. The digestibility of HM in fish is considered to
be high and close to that of fishmeal (Arango et al., 2004; Bosch
et al., 2016; Gasco et al., 2022), but its high chitin content may
also lower its nutrient digestibility (Kroeckel et al., 2012; Dumas
et al., 2018). Regarding amino acids, HM is known as a good
source of lysine, but it is limited in methionine (Makkar et al.,
2014). That was the reason for supplementing the present
experimental diets with methionine, while an estimation of the

levels of all essential amino acids (Table 2) revealed that not
major differences existed among the diets. However, as not any
amino acid analysis was performed, perhaps a lower digestibility
of certain amino acids could have impaired the growth of HM-fed
animals. Furthermore, its remains unknown if the added amino
acids have the same absorption and digestibility in comparison
with those are included naturally in the diets. For carnivorous or
opportunistic crayfish insects are part of their natural diet. Thus,
it is reasonable to exhibit a preference on this feed type (Henry
et al., 2015). From a sensory point of view, when
monounsaturated to polyunsaturated fats ration is low, they
lead to negative texture, odor and flavor. Thus, due to its

FIGURE 6
GC-FID chromatograms of the three different dietary conditions. With black color is depicted HM0 (control) condition, while red and blue color is for
HM50 and HM100, respectively. HM0 represents the control group while HM50 and HM100 the groups with 50% and 100% HM inclusion respectively.

FIGURE 7
(A) Variable correlationswith each of the first two principal components (PCs) in themultivariate analysis. The PCAwas generated from the complete
fatty acids dataset. Parameters with red vector arrows were included as predictors in constructing the PCA. (B) Analytical table of the contribution of fatty
acids according to factor loadings. HM0 represents the control group while HM50 and HM100 the groups with 50% and 100% HM inclusion respectively.
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chemical composition, BSFL may not be the optimal feed
regarding nutritional value but seems to be tastier than the
other insects (Wang and Shelomi, 2017). As a result, the
increased feed intake observed towards when HM was
included in the diet, may be attributed to better taste, rather
than nutrition factors.

Unfortunately, so far there is not any other study assessing the
use of H. illucens meal in the diet of P. leptodactylus. Mazlum et al.
(2021) used the mealworm meal (T. molitor) in the diet of P.
leptodactylus and found that the total fishmeal replacement by
this IM did not impair growth and feed efficiency. The authors
have also reported an even better performance of the crayfish when
T. molitor meal replaced fishmeal at 50%.

Concerning the effects of HM in the diet of other crustacean
and fish species, Wang et al. (2022) proposed that the optimum
inclusion of HM in the diet of C. quadricarinatus, was 17.1%,
probably implying that for better growth performance the
substitution level with HM should be lower than 50%.
Additionally, growth performance of juvenile Pacific white
shrimp L. vannamei was similar to the control group when
the fishmeal replacement with HM was restricted to less than
25% (Cummins et al., 2017) and decreased significantly with a
30% replacement (Chen et al., 2022). Significant reduction in the
growth, feed intake, and protein efficiency ratio was also observed
with 100% fishmeal replacement by HM in the diet of African
catfish (Clarias gariepinus) (Adeoye et al., 2020). In addition,
25% and 30% fishmeal replacement with black soldier fly larvae
meal caused a significant reduction in growth performance of
juvenile yellow catfish, Pelteobagrus fulvidraco (Hu et al., 2017).
Katya et al. (2017) reported an insignificant effect on WG and
SGR of juvenile barramundi, Lates calcarifer when fishmeal
replacement by HM was up to 50%, but growth was impaired
at a higher replacement level. Karapanagiotidis et al. (2023)
reported that the inclusion of a full-fat HM even at low levels
(95 g/kg replacing 9% of dietary fishmeal) significantly depressed
the growth performance of gilthead seabream (Sparus aurata),
while the defatted form of the HM is more readily accepted and
can be successfully included at 81–104 g/kg in the diet of this
species. Similarly, Kroeckel et al. (2012) also highlighted the
lower palatability of HM when included at high dietary levels that
in turn negatively affected the growth of juvenile turbot (Psetta
maxima). A reduced feed efficiency has been observed in yellow
catfish feeding on HM-based diets replacing fishmeal (Xiao et al.,
2018), as well as no harmful effects on both digestibility and
growth performance in Japanese seabass Lateolabrax japonicus
(Wang et al., 2019).

4.2 Effect of HM inclusion on body
composition and fatty acid profile

Regarding the whole-body composition, it was found that this
was significantly influenced with the inclusion of HM in the diet.
More specifically, the moisture, protein and ash contents were
lower, and lipid contents were higher in the animals fed the
control diet (HM0) in comparison to the other two dietary groups
(HM50 & HM100). In fact, the level of HM inclusion (HM50 vs.
HM100) had also exerted a significant effect on the nutrient

composition of the animals. These results denote that the HM
was metabolized at a different degree in the body of P.
leptodactylus compared to the fishmeal. This is confirmed by
the lower protein efficiency ratio (PER) that was found in the
HM-fed crayfish that in turn may has led to a higher protein
retention in the body instead of catabolizing this to growth.
Furthermore, the whole-body composition analysis revealed that
the crude lipid content was decreased by the increase of HM level
in the crayfish diet. It is possible this to be related with the high
chitin levels of HM that are known to reduce the lipid absorption
in the gastrointestinal tract of aquatic organisms (Tanaka et al.,
1997) and turn to result in lower in a lower lipid body deposition.
In line with the present study, dietary inclusion of IMs
(Spodoptera littoralis and H. illucens) were found to decrease
the carcass lipid content in Nile Tilapia (Muin et al., 2017; Amer
et al., 2021). Furthermore, the moisture content decrease
followed the increase in lipids. This relation type has been
studied and has been observed by many previous researchers
in fish (Ahmed et al., 2022). More specifically, the whole-body
moisture content seemed to be inversely dependent to whole
body lipid content as it increases or decreases as lipids are utilized
or stored (Shearer, 1994). The higher ash contents observed in the
bodies of HM-fed crayfish cannot be easily interpreted as the HM
(Table 1) and HM-based diets (Table 2) contained lower ash
levels compared to fishmeal diets. Certainly, a higher ash content
imply a higher mineral content, and this can be associated with
the processes of exoskeleton formation. In this life stage, it is
expected that juveniles undergo multiple ecdysis, which
indicating a fine welfare status (Aiken and Waddy, 1992).
Furthermore, the analysis included the whole body, which
means that exoskeleton was included, probably resulting in
increased ash content. It is worth mentioning that Mazlum
et al. (Mazlum et al., 2021) using dietary T. molitor did not
find significant alteration of the ash content of P. leptodactylus
juveniles.

Additionally, the fatty acid compositions of the three dietary
groups (HM0, H50, H100) were evaluated. A statistically
significant increase in the C12:0 (lauric acid) content was
observed along with the concomitant increase in HM meal
substitution in the diet. This observation could be explained
by the fatty acids composition of the HM diet that was found to be
rich in C12:0 (lauric acid), C18:1 cis ω9 (oleic acid) and C18:2 cis
ω6 (linoleic acid), but poor in C20:4 cis ω6 (arachidonic acid),
C22:6 cis ω3 (cis-4,7,10,13,16,19-Docosahexaenoic) and C20:
5 cis ω3 (cis-5,8,11,14,17-Eicosapentaenoic) content in
comparison to the control fishmeal (Esteban et al., 2000).
Furthermore, an increase in the ∑SFAs combined with a
decrease in ∑PUFAs and ∑ω6 fatty acids were observed
following the increase in HM meal substitution in the diet.
However, no statistically significant differences were observed
in∑MUFAs and∑ω3 fatty acids content. The PCA analysis in the
present study, confirmed with the cluster formation, the fact that
the three different dietary conditions, influenced the fatty acid
profile of the animals. From earlier (St-Hilaire et al., 2007; Sealey
et al., 2011) to latter studies (Borgogno et al., 2017; Belghit et al.,
2018; Belghit et al., 2019) in Atlantic salmon and rainbow trout it
is proposed that the partial or overall substitution of fishmeal
with HM meal may increase ∑SFAs, while may decrease the
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∑PUFAs content. The above observation could be attributed to
the higher HMmeal content in C12:0 (lauric acid), and as a result
a subsequent fillet increase in ∑SFAs was expected in fish fed HM
diet (Zarantoniello et al., 2022). Elevated lauric acid levels and a
decrease in ∑PUFAs was also found in the whole fish of zebrafish
(Danio rerio) after a feeding trial with black soldier fly prepupae
(Zarantoniello et al., 2018).

The demand for seafood production is under continuous
increase, a trend which is also followed by the fishmeal
production (FAO, 2016). It is therefore considered that
fishmeal is no longer sustainable (Tacon and Metian, 2008).
Therefore, the scientific community searches for potential
alternative protein sources for fishmeal substitution. Among
them, plant protein sources such as soybean meal (SBM),
rapeseed meal (RSM), groundnut oil cake (GNC), cottonseed
meal (CSM) and sunflower oil cake (SFC) are good
representatives (Jannathulla et al., 2019). SBM is probably the
best alternative plant protein source mainly due to its high
protein content and to its balanced amino acid profile.
However, its high demand led to an increase in its cost and a
decrease in its availability (Tacon et al., 2011). As a result, the
interest towards the other plant protein sources (RSM, GNC,
CSM and SFC) is increasing due to their wide availability,
desirable nutrient profile and their low cost (Jannathulla et al.,
2019). However, in organisms feeding on animal protein as well
the complete fishmeal substitution with plant protein sources
seems inevitable as it is associated with reduced overall
performance and health status (Oliva-Teles et al., 2015). Thus,
the use of other protein source alternatives in aquaculture feeds
such as poultry by-product meal (PBM); blood meal (BM) and
meat and bone meal (MBM) increased (Gasco et al., 2018). All the
above terrestrial processed animal proteins (PAP) are
characterized by a high content in useful amino acids such as
lysine, histidine, sulphur amino acids, and arginine plus they are
low-cost alternatives (Goda et al., 2007). However, there are some
inhibitory factors towards their wide use, such as low
digestibility, absence of some essential amino acids (Gasco
et al., 2018) and the prohibition of their use in the EU.
Another one potential solution towards sustainability are the
amphipods belonging to Gammarus genus. Studies showed that
they can substitute fishmeal at levels of 10%–20% without any
adverse effects on growth performance and survival rate of fish.
However, Gammarus meal cost is higher in comparison to
fishmeal and this phenomenon is mainly attributed to the
absence of a developed culture method (Harlıoğlu and
Farhadi, 2018). Although insect meals are gaining more and
more attention there are some obstacles towards their use in
aquaculture feeds. They are characterized by increased cost when
compared to conventional protein sources (Niyonsaba et al.,
2021) and they are characterized by high chitin content which
lower their digestibility (Gasco et al., 2016). Additionally, some
deficiencies in essential amino acids have been reported (Henry
et al., 2015). Although nutritional value of insect meals are
directly associated with the substrate and the treatment used
to culture them, their protein content seem to be relatively stable
(Henry et al., 2015). Furthermore, IM found to boost fish
immune system resulting iin improved overall health
performance (Mousavi et al., 2020).

To conclude, here we found that the dietary fishmeal
replacement by H. illucens meal either partially (at 50%) or
totally, negatively affected the growth performance and feed
utilization of P. leptodactylus, although improved the survival. In
addition, the HM inclusion in the diet significantly altered the
whole-body chemical composition of the crayfish signifying a
different metabolic utilization compared to fishmeal.
Furthermore, the inclusion of dietary HM significantly reduced
the contents of ∑SFAs, ∑PUFAs and ∑ω6 fatty acids, as well as
those of C22:6 cis ω3 and increased the ω6/ω3 andΗ/Η ratios in the
body. In parallel with improvements in balanced diets and in culture
conditions, further studies are also necessary on the use of lower HM
dietary levels and with other insect meals in order to enlighten the
suitability of insect meals in the nutrition of P. leptodactylus.

5 Conclusion

The present study provides a substantial contribution for future
experiments regarding the establishment of a standard diet composition
for the development of narrow clawed crayfish rearing protocol, as so
far existing data are extremely limited and contradictory. Further, our
data support the welfare and good performance of freshwater crayfishP.
leptodactylus under captivity. Fishmeal substitution with insect meals
and more specifically with H. illucens mealworm meal is still under
investigation. It seems that each organism should be evaluated
independently as the nutritional needs of each one differs. Another
key point is the determination of the optimal inclusion level of IM. The
above, is of major importance both for environmental issues and for
production cost reduction. However, when the replacement amount
exceeds this optimum level, the growth performance (i.e., in the present
study) and physiological conditions (Chen et al., 2022) of the organism
may be negatively affected. Here, we found that SR exhibit a statistically
significant increase in the diet groups with ΗΜ inclusion, while the
SGR, FCR and WG were decreased affected again statistically
significant. Furthermore, regarding the whole-body chemical
composition not big differences in absolute values were observed
however were statistically significant. Lastly, from the fatty acid
profile analysis was observed that ∑SFAs, ∑PUFAs and ∑ω6 fatty
acids were statistically significant reduced following the ΗΜ

substitution. Finally, to our knowledge this is the first study
evaluating the HM inclusion into freshwater crayfish diet, a
promising insect of high importance in animals’ nutrition.
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