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Introduction: Autonomic nervous system (ANS) plays an important role in the
exchange of metabolic information between organs and regulation on peripheral
metabolism with obvious circadian rhythm in a healthy state. Sleep, a vital brain
phenomenon, significantly affects both ANS and metabolic function.

Objectives: This study investigated the relationships among sleep, ANS and
metabolic function in type 2 diabetes mellitus (T2DM), to support the
evaluation of ANS function through heart rate variability (HRV) metrics, and the
determination of the correlated underlying autonomic pathways, and help
optimize the early prevention, post-diagnosis and management of T2DM and
its complications.

Materials and methods: A total of 64 volunteered inpatients with T2DM took part
in this study. 24-h electrocardiogram (ECG), clinical indicators of metabolic
function, sleep quality and sleep staging results of T2DM patients weremonitored.

Results: The associations between sleep quality, 24-h/awake/sleep/sleep staging
HRV and clinical indicators of metabolic function were analyzed. Significant
correlations were found between sleep quality and metabolic function (|r| =
0.386 ± 0.062, p < 0.05); HRV derived ANS function showed strengthened
correlations with metabolic function during sleep period (|r| = 0.474 ± 0.100, p
< 0.05); HRV metrics during sleep stages coupled more tightly with clinical
indicators of metabolic function [in unstable sleep: |r| = 0.453 ± 0.095, p <
0.05; in stable sleep: |r| = 0.463 ± 0.100, p < 0.05; in rapid eye movement
(REM) sleep: |r| = 0.453 ± 0.082, p < 0.05], and showed significant associations
with glycemic control in non-linear analysis [fasting blood glucose within 24 h of
admission (admission FBG), |r| = 0.420 ± 0.064, p < 0.05; glycated hemoglobin
(HbA1c), |r| = 0.417 ± 0.016, p < 0.05].

Conclusions: HRV metrics during sleep period play more distinct role than during
awake period in investigating ANS dysfunction and metabolism in T2DM patients,
and sleep rhythm based HRV analysis should perform better in ANS andmetabolic
function assessment, especially for glycemic control in non-linear analysis among
T2DM patients.
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1 Introduction

Type 2 diabetes mellitus (T2DM) is a chronic hyperglycemia
that causes physiological dysfunction and failure of various organs.
Autonomic neuropathy is one of the most common complications of
diabetes mellitus, which seriously affects the patients’ life quality and
brings about significant morbidity and mortality (Maser et al., 2003;
Vinik et al., 2003; Ziegler et al., 2008). The dysfunction of autonomic
nervous system (ANS) usually manifests first in vagal nerve (the
longest parasympathetic nerve in the body, responsible for nearly
three-quarters of parasympathetic activity), and damage to vagal
nerve leads to resting tachycardia and an overall decrease in
parasympathetic tone (Balcıoğlu and Müderrisoğlu, 2015).

Dysfunction of ANS, caused by T2DM, happens in any part of
ANS from early stages of diabetes, which damages the
cardiovascular, gastrointestinal, genitourinary and neurovascular
systems (Pfeifer et al., 1982; Singh et al., 2000; Goit et al., 2012).
The function of healthy ANS has obvious circadian rhythm (Cui
et al., 2020), and the dysfunction of ANS can result in the loss of
circadian rhythm to varying degrees (Liu et al., 2020). Consequently,
diabetes is often followed by sleep disorders (Barone and Menna-
Barreto, 2011). Meanwhile, sleep disorders accelerate the
development of T2DM by worsening the metabolic control,
which forms into a vicious spiral (Barone and Menna-Barreto,
2011). Researchers have found that poor sleep quality (Martyn-
Nemeth et al., 2018), insufficient or excessive sleep duration,
changes of sleep structure (Koren et al., 2011), decreasing sleep
efficiency (Hur et al., 2020), increasing OSA severity (Kent et al.,
2014), etc. are associated with poor diabetic control. Also, sleep
disorders are strongly related to ANS function of T2DM patients
(Jordan et al., 2014). The activation of the sympathetic nervous
system (SNS) and the unbalance of ANS in patients with T2DM
could be mediated through sleep impairments, including nocturnal
breathing disturbances (Punjabi and Polotsky, 2005; López-Cano
et al., 2019) and sleep curtailment (Leproult et al., 1997; Spiegel et al.,
1999).

Heart rate variability (HRV) is considered to be an effective
measure of heart-brain interaction and tension of ANS (Montano
et al., 2009), and is widely used as a standard method for assessing
autonomic function. Studies have found that T2DM patients’ HRV
differs significantly from normal people in time-domain, frequency-
domain and non-linear analysis (Barone and Menna-Barreto, 2011;
Faust et al., 2012; Martyn-Nemeth et al., 2018; Liu et al., 2020).
Therefore, HRV analysis is considered an effective, non-invasive
auxiliary detection method for T2DM patients’ autonomic
dysfunction. Cardiologists tend to analyze 24-h HRV, whereas
internists tend to detect whether HRV is abnormal in different
physiological states, known as Ewing test (Gerritsen et al., 2001).

Despite the full utilization in clinical fields, HRV analysis in
current researches mainly focused on linear analysis of 24-h or
5–15 min electrocardiogram (ECG) collected in different
physiological states, which fails to effectively extract the
information in long-term signals and neglects the space-time
complexity and fractal properties of heart rate time series.
Meanwhile, it was a general problem that HRV metrics were
accepted as measures of autonomic function without examination
of the underlying physiological patterns (Stein and Pu, 2012) and
autonomic pathways. Hence, controversial research results were

presented. For example, researchers have found that low-
frequency component of HRV was not predominantly influenced
by SNS, but vagal nerve system (Reyes del Paso et al., 2013), and
reflected multiple sources of variability (Martelli et al., 2014), which
also challenged the usefulness of the ratio of low-frequency
component to high-frequency component (LF/HF); higher HRV
were related to disturbed sleep, such as in sleep disorders as negative
feature (Stein and Pu, 2012); imparity of HRV metrics reflecting
parasympathetic nervous system (PNS), such as high-frequency
power (HF) and root mean square of successive of RR interval
differences (RMSSD), occurred during different sleep stages (Glos
et al., 2014; Zhang et al., 2020).

Therefore, based on the complex associations among sleep, ANS
and T2DM, we monitored 24-h ECG, clinical metabolic indicators,
sleep quality as well as sleep staging results of T2DM patients. Our
objective was to help optimize the early prevention, post-diagnosis
and management of T2DM and its complications. Our hypothesis
included: 1) HRV derived ANS function is more associated with
T2DM patients’ metabolic function during sleep than during awake
or the whole 24-h; 2) ANS function alters during sleep cycles, leading
to changes on its interaction with metabolic system, thus we
analyzed interaction between HRV derived ANS function with
metabolic function in each sleep stage; finally, 3) non-linear HRV
analysis during sleep cycles may discover more features of ANS
function than conventionally used linear HRV analysis, leading to
more extensive association with metabolic function and glycemic
control.

2 Materials and methods

2.1 Patients

The study was conducted form July 2019 to January 2021. A total of
64 volunteered inpatients with T2DM from Suzhou Science &
Technology Town Hospital took part in this study. Exclusion
criteria were: type 1 diabetes mellitus, history of stroke, subacute
myocardial infarction, kidney or liver transplant, other systemic
disorders, current recreational drug or alcohol abuse and morbid
obesity (body mass index >40). Because of the small number of
female inpatients in the study (only 4), and considering that women
in the same age groupmay be affectedmetabolically by perimenopausal
syndrome, and decreasing the bias brought by sex (Nunan et al., 2010),
data from only 60 male inpatients were included in the follow-up
studies. This study was approved by the Institutional Review Board of
Suzhou Science & Technology Town Hospital (No. IRB2019045). Prior
to the study, all subjects were informed of the experimental protocol and
precautions, and signed the written informed consent. Demographic
characteristics of the subjects are demonstrated in Table 1. The
Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) guidelines for cross-sectional studies were
followed for study reporting (Cuschieri, 2019).

2.2 Clinical indicators of metabolic function

During hospitalization, subjects underwent clinical
examinations to obtain their metabolic function and assess their
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health status. Upon admission, a fasting blood draw and urinary
sample were obtained the next morning for routine glucose, lipid
and renal panels. Subjects were also involved in investigation for
diabetic complications. Clinical indicators of metabolic function
analyzed in this study and diabetic complications statistics are
demonstrated in Table 1.

Subsequently, clinical indicator outlier rejection was
performed where box plot was utilized. The data were
rearranged from largest to smallest, with the difference between
the upper quartile U and the lower quartile L defined as IQR. The
upper bound was set to U+1.5*IQR and the lower bound was set to
L-1.5*IQR, and data exceeding the upper and lower bounds can be
considered as outliers. Nevertheless, some data that did not appear
to be gross errors, i.e., that were outside the range of normal values
but might appear in patients who are in dysfunction states, were

retained with the aim of reserving more information underneath
the pathological data.

An HbA1c level greater than 9.0% indicates poor control of
diabetes, which corresponds to a greater risk of complications and
the need for more stringent treatment strategies (Inzucchi et al.,
2015; Mosenzon et al., 2016; Ye et al., 2016; Garber et al., 2020).
Subjects could be assigned to two groups according to the HbA1c
level: one group had poor control of diabetes (HbA1c ≥ 9.0%) and
the other did not (HbA1c < 9.0%).

2.3 ECG data recording

ECG recordings were collected by an FDA (U.S. Food and Drug
Administration) approved ambulatory electrocardiogram monitor

TABLE 1 Characteristics of the study cohort. Data are presented as mean ± standard deviation (SD) if the variable is normally distributed, otherwise presented as
median (p25, p75).

Parameters (Unit) Data Sample size

Demographics

Age (years) 50 ± 16 60

Weight (kg) 77.5 ± 13.9 60

Height (cm) 172 ± 6 60

Clinical Indicators of Metabolic Function

Admission FBG (mmol/L) 9.1 ± 3.1 52

Discharge FBG (mmol/L) 6.5 (5.2, 6.8) 37

HbA1c (%) 8.2 ± 1.7 40

SBP (mmHg) 136 ± 14 58

DBP (mmHg) 85 ± 11 58

WBC (×109/L) 5.5 (5.0, 6.4) 56

N% (%) 62.8 ± 10.9 56

Hb (g/L) 146 ± 17 56

PLT (×109/L) 203 ± 56 56

CRP (mg/L) 3 (1, 4) 51

ALT (U/L) 22 (11, 45) 56

AST (U/L) 19 (13, 23) 55

AST/ALT 0.867 (0.613, 1.188) 55

GGT (U/L) 25 (14, 49) 56

BUN (mmol/L) 5.6 ± 1.7 50

UA (μmol/L) 340 ± 102 51

TG (mmol/L) 1.14 (0.86, 1.64) 52

HDL-C (mmol/L) 1.02 ± 0.24 51

LDL-C (mmol/L) 2.50 ± 0.77 51

UMA (mg) 15.90 (6.05, 22.10) 49

UCr (g) 10.38 ± 5.90 47

UACR (mg/g) 1.097 (0.751, 1.853) 47

Diabetic Complications (n/total, n%)

Diabetic nephropathy 6/58, 10.34%

Diabetic retinopathy and cataract 16/58, 27.59%

Diabetic peripheral neuropathy 4/58, 6.90%

Coronary artery disease and cardiac insufficiency 3/58, 5.17%

Lower extremity atherosclerosis or stenosis 4/58, 6.90%

Carotid plaque 10/58, 17.24%

Any of above complications 29/58, 50.00%

Admission FBG, fasting blood glucose within 24 h of admission; Discharge FBG, fasting blood glucose within 24 h before discharge; HbA1c, glycated hemoglobin; SBP, systolic blood pressure;

DBP, diastolic blood pressure;WBC, white blood cell; N%, percent of the number of neutrophils in the number of white blood cells; Hb, hemoglobin; PLT, platelet; CRP, c-reactive protein; ALT,

alanine aminotransferase; AST, aspartate aminotransferase; AST/ALT, ratio of AST to ALT; GGT, gamma glutamyltransferase; BUN, blood urea nitrogen; UA, uric acid; TG, triglycerides; HDL-

C, high-density lipoprotein-cholesterol; LDL-C, low-density lipoprotein-cholesterol; UMA, urine micro-albumin; UCr, urine creatinine; UACR, urine albumin-creatinine ratio.

Frontiers in Physiology frontiersin.org03

Cheng et al. 10.3389/fphys.2023.1157270

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1157270


(DynaDx Corporation, Mountainview, CA, United States) with a
computer-based data-acquisition system. The ECG recording
equipment was a single-lead Holter device that can record ECG
for over 24 h. Sampling frequency of ECG monitoring was set to
250 Hz. All subjects were monitored in hospital for 24-h, starting at
10 p.m. on the second day of hospitalization. The 24-h ECG data was
analyzed for HRV, which will be reported elsewhere. All ECG
recordings were carefully checked with noise level, artifacts, and
ectopic beats. Seventeen ECG recordings were discarded due to low
data quality, too short recording time, or the fact that the inpatients
had atrial fibrillation or server arrhythmia.

2.4 ECG data preprocessing

The band-pass Butterworth filter and zero-phase shift filter with
a cut-off frequency of 5 Hz–35 Hz were first used to eliminate the
baseline drift, power frequency interference, myoelectric
interference, motion artifacts and equipment noise.

At present, plenty of R-peak detection methods have been
proposed on ECG signal analysis. However, when applying these
detectors on ECG signals collected in long-term recordings
especially via wearable single-lead ECG devices, the R-peak
detection accuracies were usually unsatisfying. To guarantee the
accuracy of R-peak detection, a method for extracting high-quality
RR intervals proposed in our previous study (Cui et al., 2020) was
applied, which combing five commonly used R-peak detection
methods including “Pan-Tompkins” (Pan and Tompkins, 1985;
Hamilton and Tompkins, 1986), “jqrs” (Johnson et al., 2015),
“mteo” (Solnik et al., 2008), “nqrs” (Li and Yang, 2013), and
“sixth power” (Dohare et al., 2014). Outlier rejection for RR
interval time series was performed, and box plot was utilized to
find and reject outliers.

2.5 HRV analysis and metrics

In this study, we evaluated HRV based on the widely-used linear
and non-linear HRV metrics (Task Force of the European Society
of Cardiology the North American Society of Pacing
Electrophysiology, 1996; Sassi et al., 2015).

2.5.1 Linear HRV analysis
Linear HRV metrics include time-domain metrics and

frequency-domain metrics. Time-domain metrics quantify the
amount of variability of the time period between successive
heartbeats (RR intervals), and include HR-mean (mean of heart
rate), SDNN (standard deviation of RR intervals), RMSSD (root
mean square of successive RR intervals differences), SDSD (standard
deviation of successive RR interval differences), SDANN (the
standard deviation of the average value every 5 min in the RR
interval) and pNN50 (the percentage of successive RR intervals
that differ bymore than 50 ms). Frequency-domain metrics estimate
the distribution of absolute or relative power at different frequency
bands. Generally, the whole frequency band (whose absolute power
is noted as TP) is divided into three frequency bands: high-frequency
band (0.15–0.40 Hz, whose absolute power is noted as HF), low-
frequency band (0.04–0.15 Hz, whose absolute power is noted as LF)

and very-low-frequency band (0.00–0.04 Hz, whose absolute power
is noted as VLF). Other frequency-domain metrics include LFP
(percentage of LF in TP), HFP (percentage of HF in TP) and LF/HF
(ratio of LF-to-HF power). The widely used HRV analysis model for
assessing ANS homeostasis includes three core statements (Pagani
et al., 1986; Malliani et al., 1991; Montano et al., 2009): 1) the power
of the high-frequency component reflects cardiac parasympathetic
activity; 2) the power of low-frequency component reflects cardiac
sympathetic activity; and 3) the LF-HF-ratio reflects sympathetic
parasympathetic balance.

2.5.2 Non-linear HRV analysis
Non-linear analysis utilized in this study includes approximate

entropy (ApEn) (Pincus, 1991), sample entropy (SampEn) (Chen
et al., 2009), fuzzy entropy (FuzzyEn) (Richman and Moorman,
2000; Azami and Escudero, 2016), detrended fluctuation analysis
(DFA, alpha1 and alpha2) (Peng et al., 1994), multi-scale entropy
(MSE) (Costa et al., 2002) and multi-scale fuzzy entropy (MFE).
Calculation steps are introduced in the supplementary material.

ApEn is a rather conventional measure to quantify irregularity
and complexity and reflects the probability of new subsequences,
and the more complex time series corresponds to larger ApEn.
SampEn is a modification of ApEn, and is more accurate than ApEn
in the case of less data. FuzzyEn is improved on the basis of SampEn,
which is the entropy of a fuzzy set that contains vagueness and
ambiguity uncertainties. When calculating ApEn, the embedding
dimension m was set to 2, and the similar tolerance r was set to
0.25 times the SD of the sequence in order to find significant
difference more clearly; in SampEn and FuzzyEn, r was set to
0.15 times the SD of the sequence.

MSE analyzes the complexity of time series from multiple time
scales. The 25 coarse-grained time series are contracted from the
original RR time series, in which we obtained 28 indices, including
the SampEn value at each coarse-graining scale and 3 complexity
metrics, MSEsum5, MSEsum10 and MSEsum20 (defined as the area
of the MSE curve at scales 1–5, 1–10 and 1–20 respectively). The
MSE curve usually rises rapidly at lower scales, peaks at scale 5, and
then declines slowly, reaching a plateau after scale 20, therefore
calculating the area of the MSE curve at scales 1–5 and 1–20 can
portray the complexity characteristics of this curve at high and low
resolutions. Similarly, MFE were calculated based on FuzzyEn.

DFA is a non-linear fractal analysis tool to discover potential
self-similarity in the series and quantify the fractal scale of the time
series. The α1 and α2 portray the short- and long-range correlation
respectively.

2.6 Sleep quality assessment

Subjective sleep quality was assessed by Pittsburgh Sleep Quality
Index (PSQI) and a brief sleep log was used to record sleep duration
for the studied night. PSQI includes multiple sleep-related variables
over the preceding month, using Likert and open-ended response
formats (Spira et al., 2011). The PSQI yields seven component
scores: subjective sleep quality, sleep latency, sleep duration,
habitual sleep efficiency, sleep disturbances, sleep medication, and
daytime dysfunction. Component scores range from 0 to 3 and are
summed to obtain a global score, which ranges from 0 to 21. Higher
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scores suggest greater sleep disturbance (Buysse et al., 1989). During
24-h ECG monitoring, 53 subjects filled in PSQI questionnaire.

Objective sleep quality and sleep staging were assessed by ECG-
based cardiopulmonary coupling (CPC) analysis (Thomas et al.,
2005), which has been cited in more than 260 publications (Yeh
et al., 2008; Schramm et al., 2009; Thomas et al., 2010), and was
introduced in the famous international sleep monograph “Principle
and Practice of Medicine” (the sixth edition). The ECG recordings
during sleep at night were extracted for sleep analysis in this study.
CPC analysis is based on mathematical analysis of the coupling
between HRV and the respiratory modulation of QRS waveform on
a beat-to-beat basis. Major physiological sleep states derived from
CPC analysis include stable sleep (indicated by high-frequency
coupling, or HFC), unstable sleep (indicated by low frequency
coupling, or LFC), and rapid eye movement (REM) or wakeful
states (indicated by very low frequency coupling, or VLFC) (Thomas
et al., 2005). In this study, 38 CPC sleep reports were available. Sleep
quality metrics analyzed in this study are demonstrated in Table 2.

2.7 Statistical analysis

The data were analyzed by SPSS version 27.0 for Windows. The
statistical analysis included significance analysis and correlation
analysis. The normality of distribution of continuous variables
was firstly tested by the Shaprio-Wilk test (significance level α =
0.05). For two normally distributed continuous variables, the
Pearson correlation analysis was utilized to estimate the level of
correlation, otherwise the Spearman analysis. Partial correlation
analysis was also involved in the assessment of correlations
between variables. For normally distributed variables, group
differences were compared by independent sample t-test
(2 groups) and one-way ANOVA (3 or more groups), otherwise

Mann-Whitney U test (2 groups) or Kruskal-Wallis test (3 or more
groups) were used. A value of p < 0.05 was considered significant.
Missing data was completely at random, and pairwise deletion was
conducted during the statistical analyses.

There are 25 scales and 3 complexity metrics for MSE and MFE
respectively, and in order to demonstrate their overall correlations
with clinical indicators in a straightforward way, we define the
correlations between MSE and clinical indicators as mean ± SD of
the correlations between SampEn at specific scales and clinical
indicators. The coefficients of the same significant level (p <
0.05 or p < 0.01) between SampEn at certain scale and clinical
indicators were selected to calculate the mean and SD. Similarly, the
correlations between MFE and clinical indicators can be calculated.
As for complexity metrics, the correlations betweenMSE complexity
and clinical indicators are defined as mean ± SD of the correlations
between specific complexity metrics (MSEsum5, MSEsum10 and
MSEsum20) of the same significant level and clinical indicators, and
similarly the correlations between MFE complexity and clinical
indicators could be calculated.

3 Results

3.1 Correlations between sleep quality
metrics and clinical indicators

Table 3 demonstrates the correlation coefficients between sleep
quality metrics and clinical indicators. PSQI correlated rather
weakly with DBP (r = −0.296, p = 0.035), Hb (r = −0.291, p =
0.042) and LDL-C (r = −0.334, p = 0.023), while sleep quality metrics
calculated by CPC analysis were more significantly correlated with
clinical indicators that were related to metabolic functions of T2DM
patients. For example, liver function indicators AST/ALT was

TABLE 2 Sleep quality metrics analyzed in this study. Data are presented as mean ± SD if the variable is normally distributed, otherwise presented as median
(p25, p75).

Metrics (Unit) Data Sample size

PSQI 6 ± 3 53

AHI (event per hour) 21.2 (12.5, 38.8) 38

TST (hour) 7.8 ± 1.5 38

UST (hour) 3.8 ± 1.6 38

SST (hour) 2.5 ± 1.2 38

RST (hour) 1.6 ± 0.7 38

ALUS (min) 8.4 (6.4, 12.8) 38

ALSS (min) 11.2 ± 4.2 38

ALRS (min) 4.7 ± 1.1 38

USP (%) 47.53 ± 17.45 38

SSP (%) 32.22 ± 15.38 38

RSP (%) 20.45 ± 7.81 38

PSQI, Pittsburgh sleep quality index; AHI, apnea-hypopnea index; TST, total sleep time; UST, unstable sleep time; SST, stable sleep time; RST, rapid eye movement sleep time; ALUS, average

length of unstable sleep segments; ALSS, average length of stable sleep segments; ALRS, average length of rapid eye movement sleep segments; USP, percentage of unstable sleep time in total

sleep time; SSP, percentage of stable sleep time in total sleep time; RSP, percentage of rapid eye movement sleep time in total sleep time.
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associated with TST (r = −0.575, p < 0.001) and UST (r = 0.424, p =
0.009), renal function indicator BUN was associated with TST (r =
0.488, p = 0.005), UST (r = 0.479, p = 0.006), ALUS (r = 0.442, p =
0.011) and USP (r = 0.392, p = 0.027). Moreover, TST and UST were
significantly correlated with many clinical indicators, including
admission FBG, Hb, ALT, AST/ALT, BUN, TG, HDL-C and
LDL-C (e.g., TST & admission FBG, r = −0.383, p = 0.025; TST
& TG, r = −0.405, p = 0.019; UST & LDL-C, r = −0.400, p = 0.017).

3.2 Significance of HRV metrics during sleep

Table 4 demonstrates the mean values of HRV metrics for
40 T2DM patients, which showed significant differences between
sleep and awake periods, especially non-linear HRVmetrics. During
sleep period, subjects had smaller values of HR-mean, SDANN, TP,
LF/HF and LFP, while their RMSSD, SDSD, SampEn, FuzzyEn,
MSEsum5, MSEsum10, MSEsum20, MFEsum5, MFEsum10 and
MFEsum20 were higher than those during awake period.

Table 5 demonstrates correlation coefficients between HRV
metrics in 24-h/sleep/awake periods and clinical indicators.
During 24-h period, significant correlations could be observed
between liver function indicators ALT, AST/ALT and HRV
metrics (e.g., ALT & HF, r = 0.688, p < 0.001; AST/ALT & LF,
r = −0.707, p < 0.001; AST/ALT & HF, r = −0.721, p < 0.001), and
between renal function indicator BUN and HRV metrics (e.g.,
RMSSD, r = −0.482, p = 0.006; pNN50, r = −0.527, p = 0.002;
HF, r = −0.517, p = 0.003); as to HRVmetrics, HFP was significantly
correlated with many clinical indicators (ALT, r = 0.466, p = 0.004;
AST/ALT, r = −0.510, p = 0.001; BUN, r = −0.459, p = 0.007), and
since HF component mainly reflects PNS activity (Pagani et al.,
1986; Malliani et al., 1991; Montano et al., 2009), it might suggest
that PNS function is closely linked to physiological status in T2DM
patients. During sleep period, significant correlations could be

observed between many HRV metrics and DBP (e.g., SampEn,
r = 0.540, p < 0.001; MSE complexity, r = 0.571 ± 0.054, p <
0.001), Hb (e.g., MSE complexity, r = 0.513 ± 0.031, p = 0.001 ±
0.001; DFA-α2, r = −0.524, p < 0.001), ALT (e.g., HF, r = 0.638, p <
0.001; SampEn, r = 0.645, p < 0.001), AST/ALT (e.g., FuzzyEn,
r = −0.693, p < 0.001; MFE complexity, r = −0.711 ± 0.021, p <
0.001), and BUN (e.g., pNN50, r = −0.556, p = 0.001; SampEn,
r = −0.541, p = 0.002); meanwhile, the significant correlations were
observed between many clinical indicators and non-linear HRV
metrics (e.g., ALT & SampEn, r = 0.645, p < 0.001; ALT & FuzzyEn,
r = 0.645, p < 0.001; AST/ALT & MFE complexity, r = −0.711 ±
0.021, p < 0.001). However, during awake period, the correlations
between HRV metrics and clinical indicators decreased observably,
and HRV metrics mainly correlated with liver function indicators
ALT (e.g., LF, r = 0.632, p < 0.001; HF, r = 0.628, p < 0.001) and AST/
ALT (e.g., LF, r = −0.592, p < 0.001; HF, r = −0.606, p < 0.001).

It could be seen that the overall level of correlation coefficients
was significantly higher during sleep period than 24-h and awake
periods. Correlations between variability-related HRV metrics
(RMSSD and pNN50) and clinical indicators, including liver
function (ALT, AST/ALT) and renal function (BUN), were more
significant in sleep period than in 24-h and in awake period;
significant correlations between complexity-related HRV metrics
(SampEn, FuzzyEn, MSE complexity, MFE complexity) and clinical
indicators were found mainly in sleep period.

3.3 HRV metrics in different sleep stages are
more associated with T2DM clinical
indicators

To investigate the relationship between HRV metrics (ANS
function) in different sleep stages and the clinical indicators
(metabolic function) of T2DM patients, the RR interval time

TABLE 3 Correlation coefficients between sleep quality metrics and clinical metabolic indicators.

Sleep

Metabolic

PSQI AHI TST UST RST ALUS ALSS ALRS USP SSP

Admission FBG −0.383*p

DBP −0.296*p

WBC 0.362*s

Hb −0.291*p −0.337*s −0.352*p −0.385*s −0.347*p

ALT −0.371*s −0.334*s

AST/ALT 0.575**s 0.424**s

BUN 0.488**s 0.479**s 0.442*s 0.392*s

UA −0.375*p

TG −0.405*s

HDL-C 0.386*p 0.348*p

LDL-C −0.334*p −0.402*p −0.363*p 0.357*p

UACR 0.423*s

Values in the table indicate the level of correlation, *p < 0.05, ** p < 0.01. s represents Spearman correlation coefficient, and p represents Pearson correlation coefficient.
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series during sleep period were segmented according to sleep stages,
including unstable sleep, stable sleep and REM sleep, and series from
the same sleep stage were stitched together as a whole. Significant
differences were observed among HRV metrics in different sleep
stages. For example, the LF/HF reached its maxima in unstable sleep
(4.04 ± 3.31), followed by REM sleep (3.36 ± 2.27) and its minima in
stable sleep (1.45 ± 0.98). More details are shown in Supplementary
Table S2.

The correlation coefficients between HRV metrics in different
sleep stages and clinical indicators are demonstrated in Table 6.
Linear HRV metrics, especially RMSSD, SDSD, pNN50, LF, HF and
HFP were correlated significantly with Hb, ALT, AST/ALT and
BUN (e.g., in unstable sleep: SDSD & ALT, r = 0.665, p < 0.001;
RMSSD & AST/ALT, r = −0.710, p < 0.001; HF & AST/ALT,
r = −0.716, p < 0.001; pNN50 & BUN, r = −0.533, p = 0.002; in
stable sleep: HFP & AST/ALT, r = −0.556, p < 0.001; in REM sleep:
LF & Hb, r = 0.510, p = 0.001). In non-linear HRV analysis, more
metrics were tightly associated with clinical indicators, and the

correlations were more significant with those in linear analysis
(63 correlations with |r|>0.5, compared with 44 correlations with
|r|>0.5 in linear analysis), especially the DFA metric α2 and the
complexity metrics MSE andMFE (e.g., in unstable sleep: DFA-α2 &
admission FBG, r = −0.584, p < 0.001; MFE & AST/ALT,
r = −0.614 ± 0.052, p < 0.001; MFE complexity & AST/ALT,
r = −0.680 ± 0.014, p < 0.001; in stable sleep: SampEn & ALT,
r = 0.786, p < 0.001; MSE complexity & ALT, r = 0.596 ± 0.076, p <
0.001; MSE & AST/ALT, r = −0.571 ± 0.132, p = 0.002 ± 0.003;
FuzzyEn & AST/ALT, r = −0.760, p < 0.001). Compared with the
correlation with linear HRV metrics, correlations between
admission FBG, DBP, Hb, ALT, AST, AST/ALT, GGT, BUN and
non-linear HRV metrics increased considerably (e.g., in unstable
sleep: DFA-α2 & admission FBG, r = −0.584, p < 0.001; in stable
sleep: SampEn & ALT, r = 0.786, p < 0.001; SampEn & AST, r =
0.630, p < 0.001; FuzzyEn & AST/ALT, r = −0.760, p < 0.001;
SampEn & BUN, r = −0.625, p < 0.001; in REM sleep: MSE
complexity & DBP, r = 0.560 ± 0.046, p < 0.001; DFA-α2 & Hb,

TABLE 4 HRV metrics for subjects during different recording period.

Metric (Unit) 24-h Sleep Awake p-value

HR-mean (bpm) 78.99 ± 8.71 68.72 ± 8.24 83.57 ± 9.92 <0.001†

SDNN (ms) 114.66 (85.14, 147.21) 86.44 ± 29.33 90.41 ± 24.53 0.524

RMSSD (ms) 22.68 (14.97, 31.94) 23.87 (15.98, 39.39) 18.29 (14.37, 25.93) 0.042†

SDSD (ms) 22.68 (14.97, 31.94) 23.87 (15.98, 39.39) 18.29 (14.37, 25.93) 0.042†

SDANN (ms) 107.67 ± 34.20 57.51 (43.63, 71.61) 79.71 ± 23.38 <0.001†

pNN50 (%) 2.30 (0.63, 7.55) 3.59 (0.63, 17.81) 1.36 (0.56, 4.41) 0.061

TP (×107 ms2) 4.49 ± 1.72 1.00 (0.71, 1.45) 1.38 (0.96, 1.87) 0.038†

VLF (×104 ms2) 14.58 (9.02, 27.16) 6.19 (3.76, 9.68) 5.19 (2.44, 10.10) 0.473

LF (×104 ms2) 3.92 (1.50, 6.97) 1.25 (0.61, 2.24) 1.51 (0.52, 2.71) 0.506

HF (×103 ms2) 10.62 (5.56, 37.84) 4.50 (2.14, 15.49) 3.39 (1.38, 12.39) 0.383

LF/HF 2.58 (1.76, 3.29) 2.16 (1.39, 3.84) 3.73 ± 1.68 0.006†

LFP (%) 32.53 (32.07, 33.50) 32.46 (31.61, 33.17) 33.28 (32.58, 34.01) <0.001†

HFP (%) 29.76 ± 1.55 29.53 ± 2.27 28.84 ± 1.42 0.117

DFA-α1 1.21 ± 0.18 1.20 ± 0.26 1.21 ± 0.17 0.848

DFA-α2 1.15 (1.10, 1.25) 1.20 ± 0.12 1.13 (1.06, 1.24) 0.071

ApEn 2.16 ± 0.31 2.21 (1.89, 2.31) 2.11 ± 0.31 0.771

SampEn 0.61 ± 0.23 1.14 ± 0.36 0.69 ± 0.23 <0.001†

FuzzyEn 1.41 ± 0.34 1.92 ± 0.47 1.43 ± 0.32 <0.001†

MSEsum5 3.43 ± 1.18 5.46 ± 1.55 3.99 ± 1.25 <0.001†

MSEsum10 7.75 ± 2.51 11.56 ± 3.00 9.08 ± 2.63 <0.001†

MSEsum20 16.88 ± 5.10 23.92 ± 5.75 19.95 ± 5.21 0.002†

MFEsum5 7.61 ± 1.85 9.55 ± 2.20 7.88 ± 1.83 0.001†

MFEsum10 16.52 ± 3.77 20.85 (18.06, 22.61) 17.23 ± 3.72 0.007†

MFEsum20 35.10 ± 7.25 42.22 (36.86, 46.05) 36.87 ± 7.06 0.012†

Data are presented as mean ± SD if the variable is normally distributed, otherwise presented as median (p25, p75). The bold font and † represent a significant difference between Sleep and

Awake, i.e., p < 0.05.
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r = −0.549, p < 0.001; MSE complexity & GGT, r = 0.494 ± 0.009, p =
0.002 ± 0.000), and significant association between HbA1c, N%,
PLT, HDL-C, LDL-C, UMA andHRVmetrics were mainly observed
in non-linear analysis (e.g., in unstable sleep: FuzzyEn & HbA1c, r =
0.506, p = 0.001; in stable sleep: MFE & N%, r = −0.474, p = 0.003; in
REM sleep: MFE & PLT, r = 0.515, p = 0.001; DFA-α2 & LDL-C,
r = −0.495, p = 0.003; MFE & UMA, r = −0.512 ± 0.008, p = 0.003 ±
0.001).

The findings hinted that HRV metrics in different sleep stages
were more associated with T2DM clinical indicators. During each
sleep stage, the correlation coefficients between HRV metrics and
clinical indicators demonstrated a higher overall level compared
with those during sleep period. Compared with linear HRV metrics,
non-linear HRV metrics significantly correlated with more clinical
indicators, including LDL-C and UACR.

3.4 Non-linear HRV metrics during sleep are
associated with glycemic control

Interestingly, non-linear HRV metrics in different sleep
stages were significantly associated with glycemic control,
while few weak correlations were found between HRV metrics
of 24-h and awake periods and glycemic control indicators.

Table 7 demonstrates correlation coefficients between non-
linear HRV metrics in three sleep stages and glycemic control
indicators including admission FBG, discharge FBG and HbA1c.
Most of non-linear HRV metrics were significantly correlated
with admission FBG (e.g., in unstable sleep: DFA-α2, r = −0.584,
p < 0.001; MSE, r = 0.466, p = 0.006; MSE complexity, r = 0.440,
p = 0.009), yet had no or only weak correlation with discharge
FBG. Both single- and multiple-scale sample entropies showed
significant correlations with HbA1c (in unstable sleep: SampEn,
r = 0.438, p = 0.025; MSE, r = 0.411 ± 0.016, p = 0.038 ± 0.008;
MSE complexity, r = 0.409 ± 0.017, p = 0.039 ± 0.009; in stable
sleep: MSE, r = 0.389, p = 0.050; in REM sleep: SampEn, r = 0.424,
p = 0.031; MSE, r = 0.418 ± 0.022, p = 0.035 ± 0.010; MSE
complexity, r = 0.442 ± 0.021, p = 0.024 ± 0.007).

Furthermore, the subjects were divided into two groups
according to whether the subject had poor control of diabetes
(HbA1c ≥ 9.0%, n = 10) or not (HbA1c < 9.0%, n = 16). Table 8
demonstrates between-group differences in non-linear HRV
metrics. Significant differences were observed in non-linear
metrics in unstable and stable sleep (in unstable sleep: DFA-
alpha2, p = 0.002; MSEsum5, p = 0.020; MSEsum10, p = 0.017;
MSEsum20, p = 0.037; in stable sleep: SampEn, p = 0.020; DFA-
alpha2, p = 0.026; MSEsum5, p = 0.002; MSEsum10, p = 0.004;
MSEsum20, p = 0.024).

TABLE 5 Correlation coefficients between HRV metrics during different recording period and clinical indicators.

HRV
Metabolic

RMSSD pNN50 LF HF HFP SampEn MSE
complexity

FuzzyEn MFE
complexity

DFA-
α2

24-h

Admission FBG 0.406*s −0.507**s

Hb 0.471**s 0.412*s −0.545**s

ALT 0.602**s 0.545**s 0.658**s 0.688**s 0.466**s −0.519**s

AST 0.457**s 0.488**s −0.436**s

AST/ALT −0.572**s −0.650**s −0.707**s −0.721**s −0.510**s 0.531**s

BUN −0.482**s −0.527**s −0.465**s −0.517**s −0.459**p 0.430**s

UACR −0.458*s −0.492 ± 0.005**s −0.361*s −0.478 ± 0.008**s

Sleep

Admission FBG 0.413 ± 0.034*p 0.414 ± 0.010*s −0.575**p

DBP 0.414**s 0.483**s 0.540**p 0.571 ± 0.054**p 0.528**p 0.537 ± 0.015**s −0.458**p

Hb 0.430**s 0.418**s 0.505**s 0.430**s 0.491**p 0.513 ± 0.031**p 0.495**p 0.472**s −0.524**p

ALT 0.629**s 0.573**s 0.624**s 0.638**s 0.449**s 0.645**s 0.574 ± 0.032**s 0.645**s 0.619 ± 0.028**s −0.435**s

AST 0.440**s 0.449**s 0.434**s 0.487**s 0.449 ± 0.019**s 0.449**s 0.447 ± 0.001*s

AST/ALT −0.692**s −0.657**s −0.660**s −0.691**s −0.496**s −0.641**s −0.593 ± 0.045**s −0.693**s −0.711 ± 0.021**s 0.500**s

GGT 0.489**s 0.492 ± 0.011**s 0.407*s 0.454 ± 0.021**s

BUN −0.535**s −0.556**s −0.436*s −0.522**s −0.409*p −0.541**p −0.525**p −0.521**p −0.533 ± 0.041**s

UACR −0.400 ± 0.013**s −0.512**s

Awake

Hb 0.438**s −0.662**s

ALT 0.522**s 0.498**s 0.632**s 0.628**s 0.523**s −0.540**s

AST 0.486**s 0.461**s −0.439*s

AST/ALT −0.579**s −0.583**s −0.592**s −0.606**s −0.539**s 0.554**s

BUN −0.441*s −0.491**s −0.455*s −0.466**s −0.431*p −0.403 ± 0.028*p −0.404 ± 0.029*s 0.496**s

Values in the table indicate the level of correlation, *p < 0.05, ** p < 0.01. s represents Spearman correlation coefficient, and p represents Pearson correlation coefficient. Onlymetrics or indicators

that had several significant correlations with others are selected, and only correlation coefficients whose absolute value were higher than 0.4 are presented here, while others are presented in

Supplementary Table S1.

Frontiers in Physiology frontiersin.org08

Cheng et al. 10.3389/fphys.2023.1157270

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1157270


TABLE 6 Correlation coefficients between HRV metrics in three sleep stages and clinical indicators.

(a) Correlation coefficients between linear HRV metrics and clinical indicators

Linear HRV
Metabolic

Time-domain Frequency-domain

RMSSD SDSD pNN50 VLF LF HF HFP

Unstable sleep

Hb 0.451**s 0.451**s 0.406*s 0.472**s 0.433**s

ALT 0.665**s 0.665**s 0.610**s 0.436**s 0.525**s 0.682**s 0.519**s

AST 0.477**s 0.477**s 0.423*s 0.410*s 0.508**s

AST/ALT −0.710**s −0.710**s −0.701**s −0.416*s −0.540**s −0.716**s −0.551**s

BUN −0.516**s −0.516**s −0.533**s −0.476**s

Stable Sleep

ALT 0.568**s 0.568**s 0.525**s 0.510**s 0.581**s 0.489**s

AST 0.403*s 0.403*s 0.410*s

AST/ALT −0.654**s −0.654**s −0.620**s −0.428**s −0.554**s −0.623**s −0.556**s

BUN −0.506**s −0.506**s −0.493**s −0.478**s −0.524**s −0.414*s

REM Sleep

Hb 0.410*s 0.410*s 0.510**s 0.478*s

ALT 0.586**s 0.586**s 0.552**s 0.475**s 0.490*s 0.430**s

AST/ALT −0.680**s −0.680**s −0.699**s −0.405*s −0.489**s −0.561**s −0.509**s

BUN −0.507**s −0.507**s −0.529**s −0.410*s −0.524**s −0.483**p

(b) Correlation coefficients between non-linear HRV metrics and clinical indicators

Non-linear HRV
Metabolic

DFA-α2 SampEn MSE MSE complexity FuzzyEn MFE MFE complexity

Unstable Sleep

Admission FBG −0.584**p 0.400*p 0.466**s 0.440**p 0.436*s 0.403 ± 0.003*p

HbA1c −0.412*p 0.438*p 0.411 ± 0.016*s 0.409 ± 0.017*p

DBP 0.523**p 0.488 ± 0.047**s 0.545 ± 0.060**p 0.457 ± 0.043**s 0.543 ± 0.039**p

Hb −0.496**p 0.483**p 0.424 ± 0.001**s 0.494 ± 0.031**p 0.500**p 0.435 ± 0.009**s 0.490 ± 0.051**p

ALT 0.572**s 0.472 ± 0.047**s 0.520 ± 0.029**p 0.615**s 0.538 ± 0.048**s 0.590 ± 0.012**s

AST 0.426**s 0.440**s 0.461 ± 0.043**s 0.439**s

AST/ALT 0.421*s −0.614**s −0.503 ± 0.063**s −0.583 ± 0.040**p −0.656**s −0.614 ± 0.052**s −0.680 ± 0.014**s

GGT 0.455 ± 0.034**s 0.452**p 0.478 ± 0.048**s 0.459**s

BUN −0.443*p −0.400 ± 0.035*s −0.408 ± 0.044*p −0.451*p −0.488 ± 0.032**s −0.463**p

LDL-C 0.460**p 0.428*s

Stable Sleep

DBP 0.458**s 0.463 ± 0.039**s 0.447**s 0.508**p 0.456 ± 0.033**s 0.474 ± 0.027**s

N% −0.462 ± 0.031**s −0.461 ± 0.035*s −0.474**s

Hb −0.535**p 0.498**s 0.469 ± 0.037**s 0.476 ± 0.070*s 0.475**p 0.431**s

ALT −0.419*s 0.786**s 0.553 ± 0.114**s 0.596 ± 0.076**s 0.721**s 0.580 ± 0.070**s 0.635 ± 0.042**s

AST −0.496**s 0.630**s 0.523 ± 0.058**s 0.555 ± 0.051**s 0.522**s 0.488 ± 0.054**s 0.491 ± 0.035**s

AST/ALT 0.376*s −0.728**s −0.571 ± 0.132**s −0.516 ± 0.095**s −0.760**s −0.585 ± 0.075**s −0.667 ± 0.055**s

GGT 0.441**s 0.434 ± 0.011**s 0.442*s 0.482 ± 0.060**s 0.447 ± 0.007*s

BUN −0.625*s −0.570 ± 0.078**s −0.576**p −0.545 ± 0.072**s −0.534 ± 0.047**s

REM Sleep

Admission FBG −0.524**p 0.403 ± 0.023*s

HbA1c 0.424*p 0.418 ± 0.022*s 0.442 ± 0.021*p

DBP −0.507**p 0.493**p 0.502 ± 0.070**s 0.560 ± 0.046**p 0.496**p 0.489 ± 0.049**s 0.533 ± 0.029**s

Hb −0.549**p 0.475**p 0.479 ± 0.037**s 0.524 ± 0.043**p 0.504**p 0.478 ± 0.054**s 0.464 ± 0.040**s

PLT 0.515**s

ALT −0.402*s 0.581**s 0.512 ± 0.041**s 0.552 ± 0.011**s 0.591**s 0.543 ± 0.061**s 0.590 ± 0.007**s

AST 0.416*s 0.437 ± 0.019**s 0.432 ± 0.003*s 0.416*s 0.476 ± 0.039**s 0.402 ± 0.008*s

AST/ALT 0.437**s −0.575**s −0.493 ± 0.042**s −0.518 ± 0.029**s −0.627**s −0.570 ± 0.070**s −0.649 ± 0.001**s

(Continued on following page)
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TABLE 6 (Continued) Correlation coefficients between HRV metrics in three sleep stages and clinical indicators.

(b) Correlation coefficients between non-linear HRV metrics and clinical indicators

Non-linear HRV
Metabolic

DFA-α2 SampEn MSE MSE complexity FuzzyEn MFE MFE complexity

GGT 0.478**s 0.462 ± 0.023**s 0.494 ± 0.009**s 0.400*s 0.468 ± 0.026**s 0.436**s

BUN −0.472**p −0.495 ± 0.030**s −0.486**p −0.496**p −0.535 ± 0.043**s −0.578 ± 0.010**s

LDL-C −0.495**p 0.422*p 0.400 ± 0.010*p 0.400*p 0.484 ± 0.036**s

UMA −0.466*s −0.512 ± 0.008**s

UACR −0.505 ± 0.027**s −0.488 ± 0.004**s −0.514 ± 0.046**s −0.404 ± 0.003*s

Values in the table indicate the level of correlation, *p < 0.05, ** p < 0.01. s represents Spearman correlation coefficient, and p represents Pearson correlation coefficient. Only metrics or indicators

that had several significant correlations with others are selected, and only correlation coefficients whose absolute value were higher than 0.4 are presented here, while others are presented in

Supplementary Table S3.

TABLE 7 Correlation coefficients between non-linear HRVmetrics in three sleep stages and clinical glycemic control indicators including admission FBG, discharge
FBG and HbA1c.

Non-linear HRV
Glycemic control

DFA-α2 SampEn MSE MSE complexity FuzzyEn MFE MFE complexity

Unstable Sleep

Admission FBG −0.584**p 0.400*p 0.466**s 0.440**p 0.378*p 0.436*s 0.403 ± 0.003*p

HbA1c −0.412*p 0.438*p 0.411 ± 0.016*s 0.409 ± 0.017*p

Stable Sleep

Admission FBG 0.362*s 0.353 ± 0.015*s 0.364*s 0.377*s

Discharge FBG −0.423*s

HbA1c 0.389*s

REM Sleep

Admission FBG −0.524**p 0.403 ± 0.023*s 0.394 ± 0.024*s

HbA1c 0.424*p 0.418 ± 0.022*s 0.442 ± 0.021*p

Values in the table indicate the level of correlation, *p < 0.05, ** p < 0.01. s represents Spearman correlation coefficient, and p represents Pearson correlation coefficient.

TABLE 8 Difference in non-linear HRV metrics between the group had poor control of diabetes (HbA1c ≥ 9.0%) or did not (HbA1c < 9.0%). Data are presented as
mean ± SD.

Sleep Stage Non-linear HRV metric HbA1c < 9.0% (n = 16) HbA1c ≥ 9.0% (n = 10) p-value

Unstable Sleep DFA-α2 1.28 ± 0.09 1.15 ± 0.09 0.002

MSEsum5 5.07 ± 1.20 6.19 ± 0.98 0.020

MSEsum10 11.24 ± 2.47 13.63 ± 2.04 0.017

MSEsum20 24.79 ± 5.03 29.03 ± 4.32 0.037

Stable Sleep SampEn 1.42 ± 0.31 1.69 ± 0.18 0.020

DFA-α2 1.11 ± 0.15 0.99 ± 0.08 0.026

MSEsum5 6.54 ± 1.59 8.14 ± 0.69 0.002

MSEsum10 13.33 ± 3.12 16.26 ± 1.48 0.004

MSEsum20 26.31 ± 6.02 31.29 ± 3.12 0.024
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3.5 Association among glycemic control,
non-linear HRV analysis and sleep

We also applied partial correlation analysis between HbA1c,
admission FBG and non-linear HRV metrics in sleep stages as
controlling the effect of sleep quality metrics, in order to briefly
discover the interaction among glycemic control, non-linear HRV
analysis and sleep.

Table 9 demonstrates partial correlations between HbA1c and
non-linear HRV metrics in unstable and REM sleep. When
nullifying the effect of SST, ALSS and SSP, the correlations
between HbA1c and non-linear HRV metrics significantly
strengthened (e.g., SampEn in REM sleep: zero order, r = 0.424,
p = 0.031; nullified by SST, r = 0.547, p = 0.005; nullified by ALSS, r =
0.549, p = 0.004; nullified by SSP, r = 0.569, p = 0.003). However, the
correlations between HbA1c and non-linear HRVmetrics decreased
and even were lost when corrected for TST (e.g., SampEn in REM
sleep: zero order, r = 0.424, p = 0.031; nullified by TST, r = 0.402, p =
0.046; MSEsum10 in REM sleep: zero order, r = 0.428, p = 0.029;
nullified by TST, r = 0.400, p = 0.048). The associations were mostly

retained when corrected for other sleep metrics (e.g., MSEsum5 in
unstable sleep: zero order, r = 0.421, p = 0.032; nullified by AHI, r =
0.428, p = 0.033; nullified by ALUS, r = 0.417, p = 0.038; nullified by
USP, r = 0.424, p = 0.035).

Table 10 demonstrates partial correlations between admission
FBG and non-linear HRV metrics in 3 sleep stages. When nullifying
the effect of SST, the correlations between HbA1c and non-linear
HRVmetrics at sleep stages significantly strengthened (e.g., SampEn
in unstable sleep: zero order, r = 0.400, p = 0.019; nullified by SST, r =
0.464, p = 0.007; FuzzyEn in unstable sleep: zero order, r = 0.378, p =
0.027; nullified by SST, r = 0.466, p = 0.006). When nullifying the
effect of TST, the correlations between HbA1c and non-linear HRV
metrics decreased and even were lost (e.g., MSEsum5 in unstable
sleep: zero order, r = 0.440, p = 0.009; nullified by TST, r = 0.346, p =
0.049; DFA-α2 in REM sleep: zero order, r = −0.524, p = 0.001;
nullified by TST, r = −0.465, p = 0.006). The associations between
admission FBG and non-linear HRV metrics, especially DFA-α2,
were retained when corrected for other sleep metrics (e.g., DFA-α2
in unstable sleep: zero order, r = −0.584, p < 0.001; nullified by AHI,
r = −0.585, p < 0.001; nullified by USP, r = −0.582, p < 0.001; nullified

TABLE 9 Partial correlation analysis between HbA1c and non-linear HRV metrics in unstable and REM sleep.

Glycemic
control

Non-linear HRV

HbA1c

Zero
order

Nullified
by AHI

Nullified
by TST

Nullified
by SST

Nullified
by RST

Nullified
by ALUS

Nullified
by ALSS

Nullified
by USP

Nullified
by SSP

Unstable Sleep SampEn 0.438* 0.474* 0.489* 0.453* 0.442* 0.527** 0.465* 0.532**

MSEsum5 0.421* 0.428* 0.445* 0.457* 0.417* 0.469* 0.424* 0.468*

MSEsum10 0.397* 0.396* 0.405* 0.458* 0.398* 0.422* 0.421*

REM Sleep SampEn 0.424* 0.510** 0.402* 0.547** 0.411* 0.452* 0.549** 0.495* 0.569**

MSEsum5 0.457* 0.505** 0.431* 0.552** 0.455* 0.470* 0.561** 0.499* 0.573**

MSEsum10 0.428* 0.456* 0.400* 0.506** 0.438* 0.430* 0.534** 0.450* 0.524**

Values in the table indicate the level of correlation, *p < 0.05, ** p < 0.01.

TABLE 10 Partial correlation analysis between admission FBG and non-linear HRV metrics in 3 sleep stages.

Glycemic
control

Non-linear HRV

Admission FBG

Zero
order

Nullified
by AHI

Nullified
by TST

Nullified
by UST

Nullified
by SST

Nullified
by RST

Nullified
by ALUS

Nullified
by USP

Nullified
by SSP

Unstable Sleep DFA-α2 −0.584** −0.585** −0.549** −0.569** −0.595** −0.580* −0.594** −0.582** −0.586**

SampEn 0.400* 0.435* 0.345* 0.464** 0.396* 0.398* 0.416* 0.437*

MSEsum5 0.440** 0.448** 0.346* 0.397* 0.473** 0.433* 0.435* 0.440** 0.455**

MSEsum10 0.425* 0.425* 0.393* 0.437* 0.419* 0.426** 0.422* 0.429*

FuzzyEn 0.378* 0.413* 0.466** 0.375* 0.375* 0.403* 0.430*

MFEsum5 0.405* 0.419* 0.353* 0.467** 0.399* 0.399* 0.413* 0.435*

MFEsum10 0.401* 0.405* 0.353* 0.444** 0.393* 0.397* 0.400* 0.418*

Stable Sleep MSEsum5 0.354* 0.353* 0.369* 0.354* 0.349* 0.350* 0.354*

REM Sleep DFA-α2 −0.524** −0.561** −0.465** −0.496** −0.615** −0.537** −0.538** −0.571** −0.578**

Values in the table indicate the level of correlation, *p < 0.05, ** p < 0.01.
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by SSP, r = −0.586, p < 0.001; DFA-α2 in REM sleep: zero order,
r = −0.524, p = 0.001; nullified by RST, r = −0.537, p = 0.001; nullified
by ALUS, r = −0.538, p = 0.001).

4 Discussion

This study focused on the relationships among sleep, HRV
derived ANS function and metabolic function in T2DM, and the
main findings were: 1) metabolic function was significantly
correlated with sleep quality; 2) HRV derived ANS function was
different between sleep and awake, showing strengthened and
distinct distributions of correlations with metabolic function
compared to 24-h analysis; 3) HRV derived ANS function and its
correlation with clinical indicators of metabolic function altered
during sleep cycles; 4) HRV analysis during sleep was strongly
associated with clinical indicators of metabolic function, and this
also applied to the glycemic control in patients with T2DM in non-
linear analysis. These findings demonstrated that sleep rhythm
based HRV analysis should be emphasized in ANS and metabolic
function assessment and the rationality of non-linear HRV analysis
for further application among T2DM patients and investigation of
potential interactions among ANS, sleep and metabolic function
(Lombardi, 2011; Perkiömäki, 2011).

In sleep quality assessment, PSQI had few and weak correlations
with clinical indicators, while TST and UST correlated with more
clinical indicators. The results suggest limitations of PSQI from its
objectivity and indicate the important role of sleep in regulation of
metabolic function. Researchers have found that circadian rhythms
and sleep regulate hormones and lipids involved in energy
metabolism (VanCauter et al., 1997; Scheer et al., 2009; Nguyen
and Wright, 2010; Spiegel et al., 2011; Markwald et al., 2013), and
disruption of sleep and circadian rhythms is progressively apparent
as an influence factor to damaged physiological function, disease
processes and metabolic dysregulation (Spiegel et al., 2005; Turek
et al., 2005; Marcheva et al., 2010; Markwald and Wright, 2012).

The enhanced association between ANS and metabolic function
during sleep is consistent with previously published results.
Researchers have found that most of the biological functions
changes during sleep compared to wake, such as heart rate, arterial
blood pressure and etc., where ANS plays a vital role (Tobaldini et al.,
2017). Results in Table 5, 6 showed that HRV metrics during sleep
were associated with clinical indicators of metabolic function more
significantly and broadly, compared to 24-h HRV, and there were
significant differences between HRV metrics during sleep and awake.
Thus, sleep might be a good model to investigate ANS activity and the
fluctuation of ANS function caused by intrinsic factors, especially
circadian rhythm, without influence factors of daytime activities such
as eating behaviour, physical movement, etc. Meanwhile, studies have
shown that HRV metrics are significantly influenced by routine life
states and ECG recording time (morning, noon, evening), and the RR
values are rather stable during night sleeping (Cui et al., 2020), so we
analysed the RR interval time series during awake period (i.e., during
daytime) as a whole, and at the same time the time of waking and
sleeping of subjects was rather uniform, which may decrease bias
brought by recording time.

Significant differences observed in many HRV metrics among
different sleep stages suggest the dominance of SNS in unstable sleep

and the dominance of PNS in stable sleep (Pagani et al., 1986;
Malliani et al., 1991; Montano et al., 2009). Researchers have found
that ANS tone and modulation are profoundly influenced by sleep
related mechanisms (Somers et al., 1993; Trinder et al., 2001;
Tobaldini et al., 2014; de Zambotti et al., 2018), while
cardiovascular function within each sleep stage tends not to vary
across the night (Silvani and Dampney, 2013). For ANS impose
regulatory control over the cardiovascular system by SNS and PNS,
which leads to HRV, the changes of HRV metrics in different sleep
stages and their correlations with clinical indicators may associate
more closely with the variability of ANS function during sleep cycles.
Researchers have conducted HRV analysis during sleep to confirm
different ANS function patterns at sleep stages (Scholz et al., 1997;
Brandenberger et al., 2001; Trinder et al., 2001; Stein and Pu, 2012).
Studies have shown that, since most of HRV metrics applied in this
study were based on the assumption of stationary series (Akselrod
et al., 1981; Pagani et al., 1986; Pincus et al., 1993; Task Force of the
European Society of Cardiology the North American Society of
Pacing Electrophysiology, 1996; Voss et al., 1996; Cooke et al., 1999;
Porta et al., 2000b; Cysarz et al., 2000; Richman andMoorman, 2000;
Wessel et al., 2000; Porta et al., 2001), non-stationarities of HRV
sequences could have a great influence on the assessment of the
balance of ANS by producing a bias toward a higher sympathetic
modulation and a lower vagal modulation (Magagnin et al., 2011).
We applied Augmented Dickey-Fuller test to all the HRV sequences
for stationarity test, and found sequences during 24-h, daytime and
sleep were mostly stationary. However, during sleep cycles, the
sequences were mostly non-stationary. Hence, the distinct
distribution pattern presented in analysis during sleep cycles may
demonstrate the shift of sympathovagal balance toward sympathetic
predominance since non-stationarities of the HRV sequences will
highlight the shift (Magagnin et al., 2011). With enhanced and
clarified interaction between ANS function and HRV analysis in
each sleep stage, the underlying autonomic pathways (Stein and Pu,
2012) of different HRVmetrics may be better distinguished from the
remarkably strengthened correlations between clinical indicator of
metabolic function and HRV metrics with distinct distribution
patterns compared to traditional analysis of sleep quality and
HRV, which is crucial to reveal the interaction among sleep,
ANS and HRV.

Compared to linear analysis, non-linear HRV metrics in different
sleep stages were associated with more T2DM clinical indicators.
According to the development of chaotic theory and non-linear
dynamics, it is now generally recognized that heart beat intervals
(RR intervals) are non-linear and non-stationary time series, caused
by complex interactions between physiological systems (Peng et al.,
1995; Cerutti et al., 2007). Traditional methods in time- and
frequency-domain may not be able to detect subtle but important
changes in RR series (Costa et al., 2005). Currently, HRV frequency-
domain metrics are extensively used to assess the function of ANS
components, leading to controversial results (Stein and Pu, 2012;
Reyes del Paso et al., 2013; Martelli et al., 2014). In this study, most
comprehensive and strong correlations between HRV derived ANS
function and metabolic function with distinct distribution patterns
were observed in non-linear analysis, demonstrating the rationality of
non-linear analysis in assessing ANS function.

However, a part of non-linear HRV metrics we chose are
somehow influenced by some biases. ApEn is a biased statistic,
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and the bias arises from two separate sources. First, in the calculation
of the correlation integral Cm

i (r), the vector X(i) counts itself to
ensure that the logarithms remain finite, which is defined as “self-
matching,” underestimating the calculation of conditional
probabilities as a consequence of it and producing a bias towards
regularity. If the number of matches between templates is low, the
bias can be as high as 20% or 30%. Second, the concavity of the
logarithm implies a bias in all the regularity statistics (Pincus and
Huang, 1992; Delgado-Bonal and Marshak, 2019). On some
occasions, ApEn failed to capture the sympathovagal balance
(Porta et al., 2007a). The MSE method also has shortcomings.
The course of the entropy-based complexity as a function of the
time scale is partially linked to the reduction of variance inherent to
the procedure for the elimination of the fast temporal scales, which
confines more andmore patterns inside phase space cells of constant
dimension (Nikulin and Brismar, 2004). As a consequence, more
and more patterns become indistinguishable, thus artificially
reducing complexity with the scale factor τ. Obviously, this effect
is more evident at large time scales when variance is importantly
reduced, thus producing biased MSE courses especially at large time
scales. Meanwhile, the procedure devised to eliminate fast time
scales is suboptimal, thus producing uncontrolled effects on the
assessment of complexity at any scale (Valencia et al., 2009).

It is likewise not negligible that the impact of the data length on
the ability to predict the health status of ANS (Laborde et al., 2017).
Long-term 24-h HRV recordings are acknowledged as the “gold
standard” for clinical HRV assessment (Shaffer et al., 2014) and
achieve greater predictive power than short-term measurements
(Bigger et al., 1989; Fei et al., 1996; Nolan et al., 1998; Kleiger et al.,
2005). However, increased HRV may correspond to longer
recordings instead of the change of ANS function, and it is
inappropriate to compare metrics like SDNN when they are
calculated from epochs of different length (Saul et al., 1988; Task
Force of the European Society of Cardiology the North American
Society of Pacing Electrophysiology, 1996). Meanwhile, since
mechanisms responsible for heart period modulations of a
certain frequency, especially LF and HF power components, may
not remain unchanged during long-term recording (Furlan et al.,
1990), the interpretation of the results of frequency analysis is less
well defined, and they may obscure the detailed information about
autonomic modulation of RR intervals that is available in shorter
recordings (Task Force of the European Society of Cardiology the
North American Society of Pacing Electrophysiology, 1996).

In this study, surrogate tests (Porta et al., 2000a) was applied to
all the HRV sequences analysed. The percentages of non-linear
dynamics were: 1) 86.05% in 24-h HRV sequences; 2) 90.70% during
awake period, and 39.53% during sleep period; 3) 52.63% during
stable sleep, 55.26% during unstable sleep, and 68.42% during REM
sleep. Therefore, non-linear dynamics in HRV sequences decreased
during sleep, possibly due to the suppression of regulation of
respiratory rhythm (Mador and Tobin, 1991; González et al.,
2000; Francis et al., 2002; Jo et al., 2005), leading to stable
patterns. And when HRV sequences were segmented based on
sleep stages, the percentage of non-linear dynamics elevated,
suggesting better manifestation of the non-linear components in
HRV sequences during sleep cycles and demonstrating the
effectiveness of non-linear analysis. Additionally, the distribution
of non-linear features during different sleep stages, that the

maximum of non-linear dynamics appeared during REM sleep,
was consistent with non-linear respiratory dynamics (Sako et al.,
2001).

However, researchers have found that in the analysis of short-
term, stationary and successive HRV sequences, non-linear model-
free and linear model-based conditional entropy correlate closely
and have similar performance in the assessment of cardiac control
(Porta et al., 2017). The conflicting conclusions may be a
consequence of differences in stationary and non-linear features
of HRV sequences utilized in analysis (Magagnin et al., 2011).
Previous study has shown that short-term HRV in healthy young
adults at rest is mainly linear (Porta et al., 2007b), while in this study
HRV sequences during sleep cycles were mainly non-stationary and
had non-linear features, demonstrating that the performance of
non-linear analysis is related to the feature of HRV sequences.

Sleep rhythm based HRV analysis presents us significant
correlations between ANS and metabolic function of T2DM
patients covered by limitations of traditional measures,
demonstrating its efficiency on distinguishing potential dynamic
characteristics of ANS function and its correlation with metabolic
function in different sleep stages. Hence, by analysing the correlation
between ANS function patterns and metabolic function of T2DM
patients, our findings propose a promising strategy for the
evaluation of T2DM patients’ metabolic function and physical
condition to improve the early prevention, post-diagnosis and
management of T2DM and its complications based on HRV
analysis during sleep cycles.

Significant correlations were found among DBP and HRV
metrics during sleep (see Table 5), and non-linear HRV metrics
during sleep cycles significantly correlated with DBP with distinct
distribution patterns (see Table 6), suggesting strong association
between cardiac baroreflex control and the fluctuation of HRV
metrics, especially non-linear ones, in T2DM patients. According
to the SBP (136 ± 14 mmHg) and DBP (85 ± 11 mmHg) of the study
cohort shown in Table 1 and “Clinical practice guidelines for the
management of hypertension in China” (National Center for
Cardiovascular Diseases et al., 2022), plenty of the subjects had
hypertension of varying degrees, suggesting impairment of cardiac
baroreflex control, associated with impairment of ANS and the
presence of other neuropathies (Frattola et al., 1997; Tank et al.,
2001; Ruiz et al., 2005; Vinik and Ziegler, 2007), which may be the
effect of T2DM on baroreflex control through an impairment of
vagal control (de Moura-Tonello et al., 2016), and the significant
correlations support the finding that cardiovascular variability
indexes are sensitive to autonomic dysfunction in T2DM patients
in early stages (de Moura-Tonello et al., 2016). These findings
demonstrate the effectiveness of non-linear HRV analysis and
promising strategies for the early detection of autonomic
dysfunction.

ANS plays an important role in the exchange of metabolic
information between organs and regulation on peripheral
metabolism (Yamada and Katagiri, 2007). In addition to
affecting the activity of ANS, sleep also exerts a significant
regulatory effect on glycemic control by influencing the balance
and levels of hormones including leptin, growth hormone-
releasing peptide, insulin and cortisol (Balbo et al., 2010), which
enhances the association between HRV metrics during sleep and
glycemic control of T2DM patients. Researchers have found that
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24-h HRV metrics in time- and frequency-domain significantly
decrease in T2DM patients with good glycemic control (HbA1c <
7.0%) and poor glycemic control (HbA1c > 7.0%), compared to
healthy controls (Yu et al., 2020).

In this study, significant associations were only found between
MSE complexity during sleep period and HbA1c, and significant
group differences between subjects that had poor control of diabetes
(HbA1c ≥ 9.0%, n = 10) and did not (HbA1c < 9.0%, n = 16) were
observed in many non-linear metrics during unstable and stable
sleep. Moreover, non-linear HRV metrics during sleep were
significantly associated with FBG level, which is one of the
important indicators for glycemic compliance (Association,
2013). The results indicates that non-linear HRV metrics during
sleep may better manifest neuronal dysfunction caused by
hyperglycemia, which induces oxidative stress and toxic
glycosylation products (Pop-Busui, 2010), highlighting the
importance of non-linear analysis during sleep.

Interestingly, higher HbA1c level was associated with higher
entropy related metrics (see Table 8), the elevation of complexity
may indicate worse metabolic function due to poor diabetic control
(Costa et al., 2005). Additionally, in each sleep stage, the correlations
between non-linear HRV metrics and FBG changed significantly
before and after hospitalization, possibly due to the immediate
impact of hospitalization on blood glucose control, reflecting the
sensitivity of non-linear HRV assessment on glycemic control.

Due to the complex interaction among sleep, diabetic control
and ANS function that sleep have a significant effect on both ANS
and metabolic function, especially glycemic control of T2DM
patients (Koren et al., 2011; Jordan et al., 2014; Kent et al., 2014;
Martyn-Nemeth et al., 2018; Hur et al., 2020), partial correlation
analysis was required to manifest the association between non-linear
HRV metrics in sleep stages and glycemic control indicators clearly.
With the nullification of sleep quality metrics, most of the
correlations retained, which supported the significant correlations
acquired by simple correlation analysis. Whereas the association
significantly decreased or even vanished when TST was corrected,
indicating the significant role of sleep quality in adjusting ANS and
glycemic function of T2DM patients (Jordan et al., 2014; Martyn-
Nemeth et al., 2018). Additionally, when stable sleep related metrics,
especially SST, were nullified, the correlation between non-linear
HRV metrics in sleep stages and glycemic control indicators
significantly strengthened, demonstrating the functional
significance of stable sleep stage. As well as stable sleep stage
(slow wave sleep) is widely recognized as the most restorative of
all sleep stages (Van Cauter et al., 2008) and when several important
physiological activities occur specifically (Somers et al., 1993),
researchers have found that stable sleep associates with brain
glucose metabolism (Zoccoli et al., 2002) and suppression of
stable sleep without any reduction in TST associates with poor
diabetic control and increased risk of T2DM (Tasali et al., 2008).

In our original study, we also used RR interval time series from
four time periods (late night, 3:00–4:00; dawn, 6:00–7:00; after
lunch, 13:00–14:00; after dinner, 19:00–20:00) to perform HRV
analysis and correlation analysis with metabolic indicators (see
Supplementary Table S4–S7). Although distinct correlations were
found between HRVmetrics andmetabolic functions during specific
time periods, such as correlations between HRV and BUN, DBP or
Hb at dawn, between HRV and HDL-C or LDL-C after lunch, and

between metabolic indicators and LF/HF or LFP after dinner, the
overall results were not satisfactory and systematic enough to be
included in the main text. This may be due to the different
physiological states of individuals at specific time periods and is
influenced by meals and daytime activities.

To the best of our knowledge, few studies have applied time-,
frequency-domain and non-linear analysis on HRV sequences in
each sleep stage to inquire the association among ANS function,
sleep cycle and metabolic function. We compared our results with
those of using traditional methods in all-night sleep analysis and
short-term linear HRV analysis. Representative results are shown
in Table 11 in summary. In comparison with studies of correlations
between all-night sleep and metabolic function, conducted among
subjects without T2DM (Koren et al., 2011; Martyn-Nemeth et al.,
2018; Feng et al., 2021), correlations found in this study were
extensively stronger and broadened with a similar or notably
smaller sample size. In comparison with studies of correlations
between short-term linear HRV analysis and metabolic function,
conducted among T2DM patients (Bhati et al., 2019), correlations
found in this study were extensively stronger and broadened with a
similar sample size, suggesting the potential of HRV analysis
during sleep cycles in T2DM patients. However, when
compared with a study with larger sample size (Balikai et al.,
2022), correlations found in this study were more comprehensive
but slightly weaker, which may be due to the limited sample size,
exclusion of female subjects, differences in the physiological status
of the subjects including duration and severity of diabetes since our
subjects were all patients during hospitalization, the bias
introduced by non-linear metrics including ApEn and MSE via
the contamination of variance and suboptimal filtering procedure
(Pincus and Huang, 1992; Nikulin and Brismar, 2004; Porta et al.,
2007a; Valencia et al., 2009; Delgado-Bonal and Marshak, 2019)
and the selection of long-term HRV sequences since metrics
including LF, HF and SDNN would be affected by length of the
sequences (Saul et al., 1988; Furlan et al., 1990; Task Force of the
European Society of Cardiology the North American Society of
Pacing Electrophysiology, 1996).

Therefore, this study provides new insights into research on the
interaction among sleep, ANS and metabolic function, for T2DM
patients, especially for diabetic control. Researchers have found that
the dysfunction of T2DM patients’ ANS manifests first in decreased
parasympathetic activity (Pfeifer et al., 1982; Singh et al., 2000; Goit
et al., 2012), even before clinical symptoms. The effective use of HRV
analysis during sleep cycles to extract dynamic features of PNS and
SNS in each sleep stage provides support for early detection of
autonomic neuropathy. In addition, the extensively strong
correlations between non-linear HRV metrics and glycemic
control indicators including FBG and HbA1c demonstrates the
validity of HRV analysis in each sleep stage, which can be
another promising strategy for diabetic control and early
diagnose of T2DM with less computational costs.

For further research, this study proposed to select HRV
sequences based on physiological rhythms can locally reveal the
dynamic features of HRV and magnify the potential biological
origins and kinetic mechanisms of HRV under the influence of
many external factors, such as respiration, circadian rhythm,
sympathetic and vagal activity, as well as intrinsic factors, such as
ion channel fluctuations and other molecular fluctuations, while
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TABLE 11 Comparison of related studies on the interactions among sleep, HRV and metabolic function: subjects, methods, results and conclusion.

Subjects Method Results Conclusion

Martyn-Nemeth
et al., (2018)

48 T1DM patients. Group difference analysis on glycemic
control according to the PSQI score

(≤5 for good sleep quality and > 5 for poor
sleep quality).

Poor sleep quality associated with
greater nocturnal glycemic variability

(p = 0.02). HbA1c did not vary
between sleep quality groups.

Nocturnal glycemic variability associated
with poor sleep quality.

Koren et al. (2011) 62 obese pubertal
adolescents.

Analysis on the correlations between sleep
architecture through overnight

polysomnography, glucose and insulin
homeostasis.

Significant associations between sleep
duration and HbA1c (TST, r = −0.36,
p < 0.01; REM duration, r = −0.35, p <

0.01) and fasting plasma glucose
(N3 duration, r = −0.33, p < 0.01; REM

duration, r = −0,31, p < 0.017).

There were significant relationships
between sleep architecture and measures

of glucose homeostasis and insulin
secretion.

Feng et al. (2021) 2,308 suspected
OSA patients.

Analysis on the correlations between sleep
architecture through overnight

polysomnography andclinical indicators
(glucose, insulin, blood pressure, TG,

HDL-C and LDL-C).

Significant weak correlations were
found between SWS/TST ratio and
BMI (r = −0.12, p < 0.01); between
sleep efficiency and BMI (r = 0.11, p <
0.01); between MAI and BMI (r = 0.23,
p < 0.01), glucose (r = 0.15, p < 0.01),
insulin (r = 0.23, p < 0.01), DBP (r =
0.14, p < 0.01), TC (r = 0.13, p < 0.01),
TG (r = 0.15, p < 0.01), LDL (r = 0.18,

p < 0.01).

Only weak associations were observed
between sleep and clinical indicators.

Bhati et al. (2019) 50 T2DM patients. Analysis on the correlations between
cardiac autonomic control evaluated by
time-frequency domain HRV of 5-min
ECG recorded after a rest period in the
supine position and clinical indicators of
inflammatory (IL-6, IL-18 and hsCRP)

and endothelial function (NO, eNOS and
ET-1).

Significant associations were found
between IL-6 and TP (r = −0.34, p =
0.01), LF (r = −0.36, p < 0.01); between
IL-18 and pNN50 (r = −0.53, p < 0.01),
HF (r = −0.34, p < 0.05); between
hsCRP and RMSSD (r = −0.40, p <
0.01), TP (r = −0.35, p = 0.01), LF

(r = −0.31, p < 0.05), HF (r = −0.42, p <
0.01); between NO and RMSSD (r =
0.65, p < 0.001), TP (r = 0.30, p < 0.05),
HF(r = 0.32, p < 0.05); between eNOS
and RMSSD (r = 0.43, p < 0.01).

Whereas, ET-1 is not associated with
any HRV indices.

Clinical indicators of inflammation and
endothelial function are associated with

global HRV, suggesting
pathophysiological link between

subclinical inflammation, endothelial
dysfunction and cardiac autonomic

dysfunction in T2DM.

Balikai et al. (2022) 120 T2DM
patients.

Analysis on the correlations between one-
minute HRV time-frequency domain

indices during forced deep breathing and
fasting serum HDL levels.

Significant correlations were observed
between HDL and Mean HR (r = 0.74,
p < 0.001), LFnu (relative power in
normal units, r = −0.62, p < 0.001) and
ratio of LF/HF (r = 0.53, p < 0.001);
between HDL and HFnu (relative

power in normal units, r = 0.64, p <
0.001), SDNN (r = 0.75, p < 0.001),
RMSSD (r = 0.63, p < 0.001) and
pNN50 (r = 0.82, p < 0.001).

HDL-C level and all other HRV indices
are dependent on each other in patients
with T2DM. And most of the patients

with low HDL-C level might be associated
with autonomic imbalance.

Our study 64 T2DM patients Analysis on the correlations between sleep
quality, 24-h/awake/sleep/sleep staging

HRV and clinical indicators of metabolic
function.

Significant correlations were found
between sleep quality and metabolic
function (admission FBG, DBP, WBC,
Hb, ALT, AST/ALT, BUN, UA, TG,
HDL-C, LDL-C, UACR, |r| = 0.386 ±
0.062, p < 0.05); HRV derived ANS

function showed strengthened
correlations with metabolic function
during sleep period (admission FBG,
DBP, Hb, ALT, AST/ALT, GGT, BUN,
UACR, |r| = 0.474 ± 0.100, p < 0.05);
non-linear HRV metrics during sleep
stages coupled more tightly with
clinical indicators of metabolic

function than linear analysis (HbA1c,
DBP, N%, Hb, ALT, AST, AST/ALT,
GGT, BUN, LDL-C, UMA, UACR, |
r| = 0.462 ± 0.086, p < 0.05), and
showed significant association with

glycemic control.

HRV metrics during sleep period plays
more distinct role than during awake

period in investigating ANS dysfunction
and metabolism in T2DM patients, and
sleep rhythm based HRV analysis should
perform better in ANS and metabolic
function assessment, especially for

glycemic control in non-linear analysis
among T2DM patients.
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reducing the computational cost and elevating local resolution of
long term signals, providing new insights into long term
physiological signal processing.

There are several potential limitations of this study. Mainly middle-
agedmale inpatients were included in the analysis, who do not represent
the whole spectrum of T2DM patients, to eliminate the influence of
climacterium on metabolic function. Although we did a further outlier
rejection to reduce the influences of specific situations, there are still
diversities between people with different physiological factors (age,
gender, health status, course of disease, etc.) that were not included
in this study, requiring further studies. Despite of the non-linear
dynamics in HRV sequences appeared in our study, researchers
have found that short-term heart period variability in healthy young
adults at rest is mainly linear (Porta et al., 2007b). Since there weren’t
thorough restrictions on subjects’ daily behaviour during
hospitalization, further studies are required to investigate the
production of non-linear components in long-term HRV sequences
by applying forcing input to subjects. Lastly, due to the limited sample
size, we did not build more accurate statistical models of HRV, ANS,
sleep and metabolic function to further investigate their potential
biological origins and kinetic mechanisms.
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