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Introduction: The purpose of this study was to evaluate the effect of running-
induced fatigue on the characteristic asymmetry of running gait and to identify
non-linear differences in bilateral lower limbs and fatigued gait by building a
machine learning model.

Methods: Data on bilateral lower limb three-dimensional ground reaction forces
were collected from 14male amateur runners before and after a running-induced
fatigue experiment. The symmetry function (SF) was used to assess the degree of
symmetry of running gait. Statistical parameter mapping (Paired sample T-test)
algorithm was used to examine bilateral lower limb differences and asymmetry
changes pre- and post-fatigue of time series data. The support vector ma-chine
(SVM) algorithmwas used to recognize the gait characteristics of both lower limbs
before and after fatigue and to build the optimal algorithm model by setting
different kernel functions.

Results: The results showed that the ground reaction forces were asymmetrical
(SF > 0.5) both pre-and post-fatigue andmainly concentrated in themedial-lateral
direction. The asymmetry of the medial-lateral direction increased significantly
after fatigue (p < 0.05). In addition, we concluded that the polynomial kernel
function could make the SVMmodel the most accurate in classifying left and right
gait features (accuracy of 85.3%, 82.4%, and 82.4% in medial-lateral, anterior-
posterior and vertical directions, respectively). Gaussian radial basis kernel
function was the optimal kernel function of the SVM algorithm model for
fatigue gait recognition in the medial-lateral and vertical directions (accuracy
of 54.2% and 62.5%, respectively). Moreover, polynomial was the optimal kernel
function of the anterior-posterior di-rection (accuracy = 54.2%).

Discussion:We proved in this study that the SVM algorithm model depicted good
performance in identifying asymmetric and fatigue gaits. These findings can
provide implications for running injury prevention, movement monitoring, and
gait assessment.
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1 Introduction

Running biomechanics has received widespread attention from
runners, coaches and researchers for the past 30 years (Furlong and
Egginton, 2018; Gao, 2022; Xu et al., 2022). Typically, the mean
value of bilateral variables (Winter, 1984; Grabowski and Kram,
2008) or the default complete symmetry of both limbs (Kyröläinen
et al., 2005; Gao et al., 2020c) was widely used in running
biomechanical research. Bilateral limb asymmetry is not
considered in these studies since complete symmetry of gait is
assumed. Although these methods mentioned above can describe
the motion well, it also ignores the false claims and misleading
interpretations caused by the asymmetry of bilateral variables (Beck
et al., 2018). Neuromuscular asymmetry is a widespread
phenomenon occurred in functional tasks (Radzak et al., 2017).
Few previous studies have considered that the biomechanical
asymmetry of running gait (Beck et al., 2018; Gao et al., 2020b;
Mastalerz, 2021), even though this phenomenon is common among
healthy people (Furlong and Egginton, 2018; Gao et al., 2020c).
Quantitative gait characteristics (e.g., parameters of time and
parameters of space) and qualitative gait characteristics (e.g., gait
variability and gait asymmetry) are related to running-related
injuries, especially among amateur runners (Nakayama et al.,
2010; García-Pinillos et al., 2020). Similarly, the effects of gait
asymmetry are also an important consideration for motor
performance (Simoni et al., 2021). Previous studies have shown
that a 10% increase in asymmetry of vertical ground reaction force
(GRF) leads to a 3.5% increase in net metabolic power during
running (Beck et al., 2018). Another finding was that increased
foot contact time asymmetry was associated with increased
metabolic costs of running (Beck et al., 2018). Zifchock et al.
(2006) found that the asymmetry was 49.8% and 37.5% at the
running speed of 3.65 m/s by evaluating the peak lateral and
medial GRF of bilateral lower limbs in the running process of
healthy individuals, similarly by Williams et al. (1987) reported
that 13.8% and 20.2% asymmetry of peak lateral and medial GRF at
the speed of 5.36 m/s, suggesting that greater symmetry is associated
with faster running speeds. The same conclusion regarding walking
gait was reported by previous study (Goble et al., 2003).

Bilateral limb asymmetry may not be evident during the initial
stages of running but may arise as muscle fatigue and/or exercise
intensity changes (Arampatzis et al., 1999; Xiang et al., 2022a).
Mizrahi et al. (2000) demonstrated that running-induced lower limb
muscle fatigue increases the tibia’s vertical acceleration during heel
strike, suggesting that more load accumulates in the shank after
running fatigued. Research by Mastalerz (2021) reported that the
asymmetry of muscle activity on bilateral limbs was increased with
the occurrence of running fatigue, suggesting that bilateral lower
extremity muscles have different fatigue resistance. Typically, fatigue
in the lower limb muscles reduces the cushioning effect of the
muscles on the joint load. Therefore, the joint load tends to focus on
one limb during running-induced fatigue, and the risk of unilateral
lower limb injury increases (Furlong and Egginton, 2018). Radzak
and colleagues (Radzak et al., 2017) found an increase in knee
stiffness and internal rotation angle asymmetry after performing a
running-induced fatigue test. In addition, a recent systematic review
of the relationship between fatigue and symmetry shows that the
effect of running fatigue on bilateral lower limb symmetry is not

apparent, and the reasons may be related to experimental design,
quantitative indicators, and test protocol (Heil et al., 2020).
Running-induced fatigue may cause subtle or worsening existing
gait asymmetry (Gao et al., 2020a). The assessment of bilateral limb
asymmetry in functional movement is an essential measure of injury
prediction and screening (Kiesel et al., 2007). In addition, a recent
study demonstrates that reduced asymmetry in vertical impact peaks
was associated with running injuries (Ceyssens et al., 2019).
Therefore, a further factor that contributes to damage during
long-distant running tasks is the presence of asymmetry (Gao
et al., 2022b). It is particularly important to properly evaluate the
effects exercise-induced fatigue on interlimb asymmetry to
understand the underlying mechanisms of non-contact injury
and improve exercise efficiency (Smeets et al., 2019).

The evaluation approaches of running gait symmetry have been
widely utilized in biomechanical studies in past decades (Zifchock
et al., 2006; Nigg et al., 2013; Radzak et al., 2017). Typically, the
traditional classification theory of symmetry, such as symmetry
index (SI) (Herzog et al., 1989) and symmetry angle (SA), was
based on discrete variables like the mean peak GRF (Viteckova et al.,
2018). However, the time-series information may be lost in the
evaluation process of continuous data, such as a complete period of
gait stance (Tabor et al., 2021). Therefore, symmetry function (SF), a
novel symmetry checking method, was proposed by Nigg to evaluate
continuous data with time dimensions (Nigg et al., 2013). Moreover,
linear principal component analysis (PCA) has been used in the
previous study to extract the gait characteristics of bilateral lower
limbs and examine the degree of gait symmetry (Sadeghi, 2003).
However, the limitation of SF and PCA is that only linear features of
gait can be extracted, which reduces the model’s sensitivity in
evaluating the non-linear features of time series parameters
(Chau, 2001). The previous study demonstrated that the support
vector machine (SVM) has a high generalization ability for
dichotomous data (Figueiredo et al., 2018). The optimal
separating hyperplane was created by maximizes the distance of
separation in SVM model (Figueiredo et al., 2018). Moreover, it can
transform the matrix into a higher dimensional space for
classification by setting the different types of kernel functions
(Figueiredo et al., 2018; Zhang et al., 2023). SVM algorithms was
widely used in gait patterns recognition, such as differences of young
and elderly populations (Eskofier et al., 2013), competitive and
recreational runners (Clermont et al., 2017), barefoot and shod
populations (Gao et al., 2022a). Given the gait differences caused by
running fatigue, there is still a lack of understanding of the gait
characteristics of dominant and non-dominant limbs and how these
differences are attributed to limb injury prevention and function
performance. Furthermore, the automatic detection of asymmetric
gait and fatigue gait was lacking in the previous studies.
Consequently, the SVM based on the structural risk
minimization principle, were adopted to evaluate bilateral lower
limb non-linear differences in this study (Chau, 2001).

This study aims to examine the asymmetry changes of bilateral
gait characteristics before and after running fatigue and to develop a
SVM machine learning model for asymmetry and fatigue gait
recognition. It was hypothesized that the GRFs on both sides are
asymmetrical, increasing with fatigue intervention. The second
hypothesis is that non-linear kernels perform better than linear
kernels for SVMmodels that recognize asymmetric and fatigue gaits.
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2 Materials and methods

2.1 Participants

This study recruited fourteen male amateur runners who ran
at least twice a week for less than 45 min or less than 10 km. The
demographic information is given in Table 1. All subjects were
asked to complete a questionnaire to determine whether the
right limb was the dominant limb (the ball kicking leg) and had
not suffered any lower limb or pelvic injuries in the previous
6 months. In addition, individuals with a history of lower
extremity surgery were also excluded. The subjects have
agreed in writing all the experiment contents, and the Ethics
Committee of Ningbo University has approved this test
protocol.

2.2 Data collection

Before this experiment, subjects were fully familiarized with the
environment and processed a 10-min treadmill warm-up. The
complete experiment was divided into three parts: data collection
of GRFs of bilateral lower limbs before running fatigue, running-
induced fatigue experiment (on the treadmill), and collection of the
GRFs of bilateral lower limbs after running fatigue, as shown in
Figure 1. The same acquisition process was applied with two GRF
data collection experiences (pre- and post-fatigued).

As shown in Figure 1A1, a 3-dimensions force measuring plate
(Sampling rate: 1,000 Hz) was embedded on a 20-m runway (Kistler,
Winterthur, Switzerland). The force measuring plate was calibrated
before each subject performed the test task. The participants
determine the optimal distance from the force plate by familiarizing
runway to increase the likelihood of effective contact between bilateral
feet and the force plate during the runway trials.Whereafter, participants
were instructed to run across a runway at a comfortable speed after
familiarization and practices on the runway. During testing, the right
foot didn’t land in the middle of the plate and the participants has active
aiming force plate behavior were excluded (Figure 1A1). After a
successful running trial has been performed, the same running mode
was replaced with the left foot. until the three successful GRF data of the
left and right sides were respectively collected (Figure 1A2). The second
step was to implement the Running-induced Fatigue Protocol Test
developed by Koblbauer and their colleagues (Koblbauer et al., 2014).

TABLE 1 Descriptive characteristics of 14 participants.

Information Mean SD

Age (year) 22.93 1.07

Height (cm) 176.83 2.61

Weight (kg) 70.17 6.57

BMI (kg/m2) 23.19 0.96

FIGURE 1
Bilateral data collection execution process. (A1) Right GRF data collection process. (A2) Left GRF data collection process. (B) Running-induced
Fatigue Protocol Test implementation process.
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The specific execution procedures have been reported in the previous
study (Koblbauer et al., 2014). As shown in Figure 1A2, Heart rate (Polar
RS100, Polar Electro Oy, Woodbury, NY, USA) and RPE (Ratings of
Perceived Exertion, RPE, 6–20 Borg’s scale) were collected every 2 min
throughout the procedure. The running speed increases by 1 km/h every
2 min until RPE = 13. Continue running at a fixed speed for 2 min after
fatigue (HR>90%HRmax or RPE>17, HRmax = 200-age) (Gao et al.,
2020a). The GRF data collection process was repeated until three
successful data were collected on the left and right sides after the
running-induced fatigue protocol test (Figure 1A1).

2.3 Data processing

GRF time series data of one support period were determined by
vertical GRF = 30 N as the heel initial contact and toe-off phases
(Quan et al., 2021). The GRF data of the time series were normalized
to 101 frames by Cubic B-spline interpolation or extrapolation
function in MATLAB (Version: R2019a, The MathWorks,
Natick, MA, United States). All GRF data were standardized by
individual body weight (GRF (BW) is equal to GRF divided by
10 times the body weight of the individual).

SF developed by Nigg and colleagues (Nigg et al., 2013) has high
robustness for quantifying the symmetry of time series data, which

can effectively avoid the data loss caused by the symmetry evaluation
of discrete data. The symmetry time-varying information of 101-
time points in SF can reflect the supporting stage of gait (Eq. 1). The
degree of asymmetry is positively correlated with the value of SF,
where the closer SF is to 0, the more symmetric the parameters are
(Eq. 2). ±5% was set as an asymmetric threshold in the evaluation of
this study (Winiarski et al., 2021).

SF � ∫ t2

t�t1
A xr t( ) − xl t( )| |dt (1)

A � 2
range xr t( )( ) + range xl t( )( ) (2)

Where xr(t) and xl(t) were defined as the value of the GRF for the
right and left foot at the time t, respectively. The t1 is the time at heel
strike point during stance phase and t2 is the time at take-off point
during the stance phase.

2.4 Machine learning model building

SVM is a machine learning algorithm that realizes data
dichotomy through case learning (Teufl et al., 2019). It has
been widely used in biology and medicine (Noble, 2006). Such
as the automatic classification of DNA sequences, gene

FIGURE 2
Illustration of SF degree and SPM test of GRFx, GRFy, and GRFz during the whole gait stance phase before Running-induced Fatigue Protocol Test.
Note: The red dotted boxes represent asymmetrical degrees. The black dotted boxes represent a significant difference (p < 0.05). The red fill represents
the degree of asymmetry, and the darker the color, the more asymmetry. The green fill represents full symmetry. GRFx: medial-lateral direction of GRF,
GRFy: anterior-posterior direction of GRF, GRFz: vertical direction of GRF.
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expression profiles from tumor samples or peripheral fluids,
microarray expression profiles, and mass spectrometry (Golub
et al., 1999). Compared with other machine learning algorithms,
such as neural networks, the SVM algorithm based on supervised
learning has better robustness and generalization for gait
symmetry analysis (Wu and Wu, 2015). In this study, six
SVM models were constructed to evaluate the characteristic
differences of GRF in the medial-lateral (X), anterior-posterior
(Y) and vertical (Z) directions of left and right feet and before and
after fatigue. Among them, the left GRF and SF of Pre-fatigue
belong to feature 1 (X, Y, and Z directions, respectively). The
right GRF and SF of Post-fatigued belong to feature 2 (X, Y, and Z
directions, respectively). Optimal symmetric gait and fatigue gait
recognition model by adjusting the non-linear kernel function.
The kernel function K(xi, x) � ϕ(xi)ϕ(x) based on Mercer
theorem (Vapnik, 1999).

The difference of non-linear gait features between dominant and
non-dominant limbs was identified by the SVM algorithm in
MATLAB (Version: R2019a, The MathWorks, Natick, MA,
United States). The first step is to map the non-linear function ϕ:
Rb → F to high dimensional feature space W. In addition, the
optimal linear classification plane f in W was determined by
feedback learning. The training set data sample D is assumed by
Eq. 3.

D � xi, yi( ){ }ni�1 (3)

Where each raw output quantity is defined as xi ∈ Rb B and n
represent the original input data’s feature dimension and sample
size, respectively.

f : Rb → −1,+1{ } (4)
xi → yi (5)

In the training set data, two gait pattern data are mapped to the
corresponding class flag space yi ∈ −1,+1{ }, − 1 in each SVM model
in this study, the parameters in features 1 and + 1 are the parameters
in feature 2. In addition, the optimal linear classification surface f in
the model is obtained by Eq. 6

f x( ) � sgn ∑n

i�1βiyiK xi, x( ) + b( ) (6)

minW β( ) � −βTI + 1
2
βTDβ (7)

s.t. βTy � 0; βi ∈ 0,C[ ] (8)

where b and βi are defined as estimation bias and optimal
classification hyperplane coefficients for training set data,
respectively. C is the penalty factor, which determines the
distance between the support vector and the decision plane.
Parameter G is mainly used for height mapping of low-

FIGURE 3
Illustration of SF degree and SPM test of GRFx, GRFy, and GRFz during the whole gait stance phase after Running-induced Fatigue Protocol Test.
Note: The red dotted boxes represent asymmetrical intervals. The black dotted boxes represent a Significant difference. The red fill represents the degree
of asymmetry, and the darker the color, the more asymmetry. The green fill represents full symmetry. GRFx: medial-lateral direction of GRF, GRFy:
anterior-posterior direction of GRF, GRFz: vertical direction of GRF.
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dimensional samples, and the larger the value of g, the higher the
dimension of the mapping. Optimal classification hyperplane
coefficients can be obtained by solving quadratic programming
problems in Eqs 7, 8. In the SVM model with stable inseparable
linear data, the balance between the maximum interval and the
minimum training error is adjusted by setting the best C and best
G parameter.

In this study, the accuracy of the SVM model was evaluated by
the five-fold cross-validation method (Begg and Kamruzzaman,
2005). The optimal machine learning model was determined
based on different kernel function types and parameters by
adjustment. The following three commonly used kernel function
types were selected to evaluate the generalization ability of the SVM
model in this study.

Linear kernel function (LINEAR) is shown in Eq. 9:

K xi, x( ) � xix (9)
Gaussian radial basis kernel function (RBF) is shown in Eq. 10:

K xi, x( ) exp −‖ xi − x ‖2
2σ2

( ) (10)

The polynomial kernel function (POLY) is shown in Eq. 11:

K xi, x( ) � xix + 1( )d (11)
where the d is defined as the order of the POLY.

Classification Accuracy (ACC), Sensitivity (SEN), and
Specificity percentage (SEP) are used to evaluate the
performance of classification machine learning models (Begg
and Kamruzzaman, 2005). Thereinto, Ac (12) was used to
evaluate the model’s ability to strive for recognition of the two
features. Se (13) and Sp (14) were used to evaluate the model’s
ability to correctly identify the first feature and the second feature,
respectively.

ACC � T1 + T2

T1 + F1 + T2 + F2
× 100% (12)

SEN � T1

T1 + F2
× 100% (13)

SEP � T2

T2 + F1
× 100% (14)

where, T1 and T2 are the correct recognition formats of feature
1 and feature 2 by the SVMmodel, and F1 and F2 are the number of
feature 1 and feature 2 incorrectly recognized by the SVM model,
respectively.

2.5 Statistical analysis

In this study, The Shapiro-Wilks test was used to verify the
normality of the data prior to statistical analysis. SF was used to
evaluate the symmetry degree of bilateral GRF, and the paired
sample T-test in the statistical Parameter Mapping (SPM)
algorithm was used as the different test of bilateral gait
characteristics. In addition, the paired sample T-test in SPM
was also used to check SF of GRF changes in X, Y, and Z
directions before and after fatigue in MATLAB (Version:
R2019a, The MathWorks, Natick, MA, United States). The
significance level was set to 0.05.

3 Results

3.1 Pre-fatigue biomechanical variable

There are asymmetries in all three directions before Running-
induced Fatigue Protocol Test, as shown in Figure 2. Specifically, the
SF of GRFx rise steadily until the peak value of 1.2 at 3%–40% of the

FIGURE 4
Comparing themean values of SF of GRFx, GRFy, and GRFz from all participants between Pre-fatigue and Post-fatigue. Note: Pre-is Pre-fatigue, and
Post-is Post-fatigue. The black dotted boxes represent a significant difference (p < 0.05). GRFx: medial-lateral direction of GRF, GRFy: anterior-posterior
direction of GRF, GRFz: vertical direction of GRF.
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TABLE 2 Comparison of results from the different SVM classification algorithms designed for SVMmodels of GRFx, GRFy, and GRFz. Note: The best kernel type is highlighted in bold. GRFx: medial-lateral direction of GRF, GRFy:
anterior-posterior direction of GRF, GRFz: vertical direction of GRF.

Kernel Cross-validation results Model precision

Best C Best G CVAcc ACC SEN SEP

LINEAR 35.506 0.036 0.836 0.794 0.857 0.75

GRFx RBF 35.506 0.036 0.836 0.824 0.762 0.923

POLY 35.506 0.036 0.836 0.853 0.842 0.933

LINEAR 3.605 0.113 0.821 0.794 0.813 0.778

GRFy RBF 3.605 0.113 0.821 0.676 0.667 0.688

POLY 3.605 0.113 0.821 0.824 0.762 0.923

LINEAR 14.929 0.069 0.784 0.677 0.75 0.652

GRFz RBF 14.929 0.069 0.784 0.824 0.824 0.824

POLY 14.929 0.069 0.784 0.824 0.867 0.789
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gait stance phase, and then it declines to 0.05 at 95% of the gait
stance phase. In addition, the SPM results showed that the non-
dominant limb appears to have greater medial direction force on
7%–10% (p = 0.010, t = 3.515) and 58%–90% of the gait stance phase
(p < 0.001, t = 3.515). In addition, the SF of GRFy and GRFz were
more than 0.05 in 3%–85% and 4%–80% of the gait stance phase,
respectively.

3.2 Post-fatigued biomechanical variables

As shown in Figure 3, asymmetry of GRFx, GRFy, and GRFz
was observed on both sides after the Running-induced Fatigue
Protocol Test. The SF of GRFx exceeded 1.0 in 30%–55% of the
gait stance phase. the SPM results showed that the left GRFx
exhibited greater medial force on 8%–9% (p = 0.045, t = 3.545),
10%–12% (p = 0.042, t = 3.545), and 50%–60% (p < 0.001, t =
3.545) of the gait stance phase. Moreover, the SF of GRFy and
GRFz were more than 0.05 in 3%–80% and 5%–79% of the gait
stance phase, respectively.

3.3 Symmetry function of pre- and post-
fatigue

According to the SPM inspection results (Figure 4), Only SF of
GRFx changed significantly after the Running-induced Fatigue
Protocol Test. SF of post-fatigued was significantly higher than
that pre-fatigue at 86%–88% (p = 0.012, t = 3.592) and 90%–92%
(p = 0.047, t = 3.592) of the gait stance phase. GRFy and GRFz did
not change significantly after the Running-induced Fatigue
Protocol Test.

3.4 SVM model generalization ability

3.4.1 Left and right SVM models
It can be seen from Table 2 that the optimal kernel functions of

SVM models of GRFx, GRFy, and GRFz are all POLY. ACC, SEN,
and SEP of the SVM model of GRFx were achieved at 85.3%, 84.2%,
and 93.3%, respectively. Through model cross-validation, best C,
Best G, and CVAcc are 33.506, 0.036, and 0.836, respectively. The

FIGURE 5
The training set, test set, and cross-validation model accuracy visualization are based on optimal kernel function selection for SVMmodels of GRFx,
GRFy, and GRFz. GRFx: medial-lateral direction of GRF, GRFy: anterior-posterior direction of GRF, GRFz: vertical direction of GRF.
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prediction accuracy of the test set of GRFx reached 85.294%, as
shown in Table 2 and Figure 5. In addition, ACC, SEN, and SEP of
GRFy SVM model were achieved at 82.4%, 76.2%, and 92.3%,
respectively. The prediction accuracy of the test set of GRFy
reached 82.35%, as shown in Figure 4. Through model cross-
validation of the SVM model of GRFy, the Best C, Best G, and
CVAcc are 3.605, 0.113, and 0.821, respectively. Moreover, the SVM
Model of GRFz showed 82.35% prediction accuracy for the test set
(Figure 4). ACC, SEN, and SEP of the SVM model of GRFz were
achieved at 82.4%, 86.7%, and 78.9%, respectively, and the Best C,
Best G, and CVAcc are 14.929, 0.069, and 0.784, respectively.

3.4.2 SF of pre-fatigue and post-fatigued SVM
models

It can be seen from Table 3 that the optimal kernel functions of
SVMmodels of SFx, SFz are POLY, and the optimal kernel function
of SFy is POLY. ACC, SEN, and SEP of the SVM model of SFx were
achieved at 62.5%, 66.7%, and 60%, respectively. Through model
cross-validation, Best C, Best G, and CVAcc are 1.569, 0.043, and
0.75, respectively. The prediction accuracy of test set reached 62.5%,
as shown in Table 3 and Figure 5. In addition, ACC, SEN, and SEP
SVM models of SFy were achieved 54.2%, 100%, and 52.2%,
respectively. In addition, the prediction accuracy of the test set
reached 54.167%, as shown in Figure 5. Through model cross-
validation of the SVM model of SFy, the Best C, Best G, and CVAcc
are 20.393, 0.002, and 0.633, respectively. Moreover, the SVMmodel
of SFz showed 62.5% prediction accuracy of the test set (Figure 4).
ACC, SEN, and SEP of SVM model of SFz were achieved 62.5%,
74%, and 53%, respectively, and the Best C, Best G, and CVAcc are
0.001, 9.514, and 0.617, respectively.

4 Discussion

This study aimed to examine the effect of running fatigue on
bilateral GRF symmetry and develop SVM models to realize

asymmetric gait and fatigue gait automated recognition. We
found that GRF of bilateral lower limbs was asymmetric in all
three directions (medial-lateral, anterior-posterior and vertical) at
pre-fatigue states, especially a significantly worsened of asymmetry
with the occurrence of running fatigue in the medial-lateral
direction. In addition, the SVM model with POLY kernel has
demonstrated to have higher accuracy for feature extraction of
symmetric gait, while the SVM model with RBF kernel has
higher accuracy for fatigue gait automated recognition in
anterior-posterior and vertical directions. Furthermore, the POLY
kernel had highlighted to have relatively higher accuracy for fatigue
gait recognition in the vertical direction. In general, the results of this
study are consistent with the previous hypotheses.

Gait asymmetry in healthy individuals may be related to the
functional attributes of bilateral limbs (Sadeghi et al., 2000; Pan
et al., 2023). Previous study have emphasized that the dominant
limb usually plays a gait propulsion role while opposing limbs
contribute to gait support and control (Sadeghi et al., 2000). The
dominant limb during the gait cycle was associated with more
power generation, which was mainly reflected in the positive
anterior-posterior GRF impulse (Seeley et al., 2008). Therefore,
the non-dominant limb is subjected to significant negative
anterior-posterior GRF impulse (Potdevin et al., 2008).
Interestingly, this study found statistical differences in medial-
lateral direction of GRF during the push-off phase before the
fatigue intervention, suggesting the neuromuscular control
asymmetry in healthy individuals (Radzak et al., 2017). The
non-dominant limb maintains the stability of the gait stance
phase through the greater medial force (Sadeghi et al., 2000).
Similarly, the larger SF of medial-lateral direction of GRF
present in the stance phase of the entire stance phase can also
explain this idea. The only slight asymmetry of vertical direction of
GRF (SF < 18) and no significant difference before and after fatigue
were reported in the current study, which contradicted the
previous reports that vertical direction of GRF was a major
variable of symmetry in running gait (Gao et al., 2020b).

TABLE 3 Comparison of results from the different SVM classification algorithms designed for SVM models of SFx, SFy, and SFz before and after the Running-
induced Fatigue Protocol Test. Note: The best kernel type is highlighted in bold, SFx: medial-lateral direction of SF, SFy: anterior-posterior direction of SF, SFz:
vertical direction of SF.

Kernel Cross-validation results Model precision

Best C Best G CVAcc ACC SEN SEP

LINEAR 1.569 0.043 0.75 0.5 0.5 0.5

SFx RBF 1.569 0.043 0.75 0.625 0.667 0.6

POLY 1.569 0.043 0.75 0.625 0.636 0.615

LINEAR 20.393 0.002 0.633 0.542 0.556 0.533

SFy RBF 20.393 0.002 0.633 0.56 0.6 0.533

POLY 20.393 0.002 0.633 0.542 1 0.522

LINEAR 0.001 9.514 0.617 0.5 0 0.5

SFz RBF 0.001 9.514 0.617 0.625 0.75 0.63

POLY 0.001 9.514 0.617 0.5 0.5 0.5
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The kinematics and kinetics variables of bilateral lower limbs
may be changed due to the weakened central nervous control over
muscles during long-distance running (Quan et al., 2021). Our
findings are in line with a previous argument that gait
asymmetry increases with fatigue (Gao et al., 2020a). The current
study report that the asymmetry was mainly found in the medial-
lateral direction, and it was observed to occur in the heel contact
stage (8%–9% and 10%–12%) and the mid-foot forward transition
stage (50%–60%), suggesting that the more significant medial load
exist in the non-dominant foot during running gait after fatigue
intervention. This phenomenon may be the potential cause of ankle
pronation and arch collapse after long-distance running (Fourchet
et al., 2015). Moreover, The asymmetry of anterior-posterior and
vertical direction of GRF was observed to occur before the push-off
period, which was consistent with the performance before fatigue,
suggesting that fatigue did not affect the asymmetry of GRF in
anterior-posterior and vertical directions (Van Gheluwe and
Madsen, 1997). Moreover, it can be seen from Figure 6 that the
symmetry of medial-lateral direction of GRF deteriorates during the
push-off phase of gait (86%–88% and 90%–92%) after fatigue

intervention, suggesting that the more medial load was
concentrated in the metatarsal joint of non-dominant foot (Gao
et al., 2020a). The deterioration of this asymmetry may be related to
the risk of overuse injury to the unilateral metatarsal-toe joint,
possibly due to a higher susceptibility to fatigue in the lower limb
muscles of the non-dominant limb, but further research is needed to
verify if GRF measures could be used to infer foot neuromuscular
control.

Sensitivity and specificity were used to measure the ability of the
classifier to detect gait patterns of left and right limbs and before and
after fatigue, respectively (Chan et al., 2002). Earlier, Chan et al.
(Chan et al., 2002) reported 91% and 94% similarity success rates for
second-order POLY and linear nuclei in an SVM gender
classification task based on gait video sequence data. Our results
also show that the SVM model can map the underlying data
structures related to asymmetrical and fatigue gait (Atanassov
et al., 2021). Machine learning-based classifiers can automatically
recognize particular gait patterns according to their measurement
methods, which is expected to provide a basis for exploring the
potential biomechanical mechanism of running-fatigued. Early

FIGURE 6
Training set, test set and cross-validationmodel accuracy visualization are based on optimal kernel function selection for SVMmodels of SF for SVM
models of SFx, SFy and SFz before and after Running-induced Fatigue Protocol Test. SFx: medial-lateral direction of SF, SFy: anterior-posterior direction
of SF, SFz: vertical direction of SF.

Frontiers in Physiology frontiersin.org10

Gao et al. 10.3389/fphys.2023.1159668

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1159668


recognition of gait problems caused by symmetry changes by a
machine classifier can avoid fatigue through a motor intervention
program in advance, thus reducing the incidence of injuries caused
by fatigue and asymmetry gait. Compared with traditional
symmetry evaluation methods, the SVM algorithm based on
non-linear kernel function mapping data to high-dimensional
space classification has a more substantial symmetry quantization
ability (Wu and Wu, 2015).

In this study, it is observed that the adjustment of optimal
parameters is also crucial to the improvement of model accuracy,
especially the choice of penalty parameter C and kernel function.
The change of each kernel will lead to a change in the model.
Therefore, the optimal model is obtained through repeated testing of
a large number of experiments in this study (Begg and
Kamruzzaman, 2005). The selection of kernel function has an
important influence on the generalization ability of the SVM
model since the kernel function reflects the internal changes of
gait biomechanical characteristics by mapping the mutual non-
linear relationship between gait variables into the high-
dimensional feature space (Schölkopf et al., 2002). Therefore,
three kernel functions (RBF, POLY, and LINEAR) were selected
for gait data analysis, considering that all gait parameters may have
probability distributions in higher space. It can be seen from Tables
2, 3 that the generalization performance of non-linear kernel
functions such as POLY and RBF is better than that of LINEAR
in the SVM model of gait feature recognition. A recent study
reported by Xiang and his colleagues (Xiang et al., 2022b)
showed that the SVM model based on RBF had a prediction
accuracy of 93% to classify dynamic plantar pressure and foot
metrics of barefoot and shod people. This finding is consistent
with the results obtained in this study that the prediction accuracy of
SVM model is higher than that of the LINEAR. Specifically, the
POLY kernel can make the SVM model the most accurate in
classifying left and right gait features, with accuracy of 85.3%,
82.4%, and 82.4% in medial-lateral, anterior-posterior and
vertical directions, respectively. Similarly, RBF was the optimal
kernel function of the SVM model for fatigue gait recognition in
medial-lateral (54.2%) and vertical direction (62.5%). Furthermore,
POLY was the optimal kernel function of the anterior-posterior
direction (54.2%). Using these SVMmodel to achieve automatic gait
feature of bilateral lower limbs and of fatigue gait classification,
suggesting that early recognition runners gait asymmetry and fatigue
gait. As a final summary, SVM classifier within the healthy
individuals of this study provides a basis for further exploring
the automatic recognition methodology of gait asymmetry and of
fatigue gait.

There are also four limitations to this study. Firstly, in the
process of GRF data collection, we only used one force plate to
measure the left and right gait characteristics, respectively. secondly,
the participants in this study are all young groups, so the model may
not be applicable to older runners. Future studies should consider
the biomechanical data sets of all ages for model training. In
addition, although the running-induced fatigue experiment is a
classic fatigue method, it is performed on a treadmill and may
differ from long-distance running on the ground, such as a
marathon. Moreover, the only GRF data was considered as a
variable for gait recognition in this study, more variables that can
sensitively reflect asymmetric gait, such as joint Angle, should be

included in the further study. At last, this study selected participants’
comfortable running speed for ground data collection, thus ignoring
the possible effect of speed on GRF. Future studies should compare
the GRF differences between comfortable and standard running
speeds.

5 Conclusion

In this study, the asymmetry degree and changes of GRF in
both lower limbs of 14 amateur male runners were investigated
before and after a running-induced fatigue experiment. An SVM
machine learning model was established to mine and recognize
the characteristics of left and right gait and fatigue gait non-
linear. The findings of this study suggest that GRF asymmetry
existed in the medial-lateral, anterior-posterior and vertical
directions of bilateral lower limbs, especially in medial-lateral
direction. In addition, the asymmetry of GRF in the medial-
lateral direction was increased after fatigued. Moreover, the
POLY and RBF kernel contribute more to recognizing
asymmetric and fatigue gait characteristics in SVM machine
learning model, respectively.
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