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Coronary artery properties in
atherosclerosis: A deep learning
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In this work an Artificial Neural Network (ANN) was developed to help in
the diagnosis of plaque vulnerability by predicting the Young modulus of the
core (Ecore) and the plaque (Eplaque) of atherosclerotic coronary arteries. A
representative in silico database was constructed to train the ANN using Finite
Element simulations covering the ranges of mechanical properties present in
the bibliography. A statistical analysis to pre-process the data and determine
the most influential variables was performed to select the inputs of the ANN.
The ANN was based on Multilayer Perceptron architecture and trained using the
developed database, resulting in a Mean Squared Error (MSE) in the loss function
under 10–7, enabling accurate predictions on the test dataset for Ecore and Eplaque.
Finally, the ANN was applied to estimate the mechanical properties of 10,000
realistic plaques, resulting in relative errors lower than 3%.

KEYWORDS

cardiovascular diseases, atheroma plaque, in silico modeling, deep learning, artificial
neural network

1 Introduction

Cardiovascular diseases (CVDs) are the leading cause of death in the world. An
estimated 17.9 million people died from CVDs in 2019, representing 32% of all global
deaths. Atherosclerosis is one of the most common CVDs, causing more than 50%
of the sudden deaths (Wilkins et al., 2017; Roth et al., 2020; World Health Organization,
2021). This pathology may start at a premature age (Napoli et al., 1997; Napoli et al., 1999;
Pederiva et al., 2021), but, over time, it can result in acute events such as strokes and heart
attacks. One of the main causes that trigger atherosclerosis is endothelial damage. From a
mechanical point of view, a decrease in Wall Shear Stress (WSS) will eventually reshape
the endothelial cells into a more circular shape causing an increase in their permeability
(Malek et al., 1999; Esper et al., 2006).

An atherosclerotic coronary artery is usually divided into the following parts
(Figure 1): a necrotic lipid-rich core or fatty tissue; a fibrotic tissue, which is the
result of a thickening of the tunica intima due to a migration of synthetic smooth
muscle cells from the tunica media; the fibrous cap, which is the thin layer of fibrotic
tissue separating the lipid-rich core from the lumen; the tunica media and the tunica
adventitia (Falk et al., 1995; Lee and Libby, 1997; Virmani et al., 2000; Akyildiz et al.,
2018). The major risk of a plaque is when there is an evident risk that the fibrous
cap ruptures, releasing the necrotic content into the lumen, and causing a thrombus
that may result in a myocardial infarction (Finn et al., 2010; Stefanadis et al., 2017).
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The mechanical characterization of atherosclerotic arteries
has been shown to be valuable for diagnosing vulnerable
plaques. Additive manufacturing can leverage this mechanical
characterization to create replicas that can be useful in surgical
simulation (Henriques et al., 2023). In addition, other approaches,
such as the one proposed by Gold et al. (2019), highlight the
importance of mechanical characterization of each layer of the
artery in developing predictive models of vascular pathophysiology.

In order to make a diagnosis of this pathology, the gold
standard technique is intravascular ultrasound echography (IVUS)
(Moore et al., 1998; Nair et al., 2002; Nasu et al., 2006; Gogas et al.,
2011; Li et al., 2014). Using this procedure in combination with
endovascular elastography (EVE), it is possible to estimate artery
wall strains and, therefore, predict those areas more prone
to rupture (Maurice et al., 2004; Maurice et al., 2005; 2007). In
addition, several techniques exist to detect vulnerable plaques
(VPs) by predicting their morphology and the type of tissue
conforming the plaque, such as the intraluminal ultrasonic palpation
imaging technique (Gómez et al., 2019), which combines the
radio-frequency technique with Finite Element Analysis (FEA);
virtual histology, based on the spectral analysis of retro-dispersed
radio-frequency ultrasounds (Moore et al., 1998; Kovarnik et al.,
2011; Layland et al., 2011; De Graaf et al., 2013); or near-infrared
spectroscopy (NIRS), that quantifies the lipid content in the
atheroma plaque (Erlinge et al., 2021). However, an approach
performed with adult mini-pigs prone to atherosclerosis showed
that necrotic core sizes determined by virtual and real histology
were different, thus questioning the capacity of virtual histology
to detect prone plaques (Thim, 2010). Moreover, none of these
techniques have the capacity to quantify the mechanical properties
of the arterial wall, which is essential to estimate stress distribution
(Akyildiz et al., 2011; Wang et al., 2019). One promising approach
is the iMOD elastography (Le Floc’h et al., 2010), which developed
several computational algorithms to rebuild elasticity strain maps
inside the wall based on the prediction of the stress maps
using IVUS-derived techniques. Since 2009, some remarkable
improvements have been developed, such as two powerful stability
plaque bio-markers of the coronary artery based on radial strains
and its gradient, which allow Young’s modulus to be obtained
under linear isotropic elasticity, plane strain, and incompressibility
hypothesis (Le Floc’h et al., 2009; Tacheau et al., 2016; Gómez et al.,
2019).However, all thesemethods share a common issue: thewaiting
time between acquiring the image and obtaining the results from the
computational model is prolonged due to the need to optimize the
problem specific to the patient.

Recently, a newpromising study used a combination ofmagnetic
resonance imaging (MRI), FEA, and a Bayesian optimization
process for material property assessment under physiological
loading conditions (Torun et al., 2022).This study demonstrated the
feasibility of estimatingmaterial properties through an optimization
algorithm. However, its applicability is limited by the small number
of specimens tested and the fact that the specimens were ex-vivo.

In Wang et al. (2023), the mechanical properties were predicted
in-vivo starting from IVUS images, where a close link between
plaquemorphological characteristics andmechanical properties was
reported, but the statistical approach of this work was performed
with little data (n = 32).

FIGURE 1
Idealized atherosclerotic coronary artery including lipid-rich core,
fibrotic tissue, fibrous cap, tunica media, and tunica adventitia.

On the contrary, Deep Learning (DL) frameworks have been
trained using large databases to predict the mechanical properties
of living tissue. For instance, Ma et al. (2022) used DL to predict
the elastic modulus of 3D-printed lattice structures. Another
noteworthy study employed a 5-layer fully connected neural
network to extract tissue optical properties (Hokr and Bixler, 2021).

Therefore, the aim of this project is to propose an approach that
may help in the diagnosis of VPs by estimating the in-vivo patient-
specific mechanical properties (Ecore and Eplaque) of the plaque
constituents. For this reason, we developed a large in silico database
and explored the utility of Artificial Neural Networks (ANNs) in
elastic properties prediction of the atheroma plaque components.
Similar machine learning techniques have been previously used to
predict the maximum principal stress as one of the most common
mechanical predictors for plaque vulnerability (Cilla et al., 2012).
However their approach was based on the geometry, but artery
mechanical properties were not considered.

2 Methods

Figure 2 shows the workflow used to develop a computational
framework for the estimation of Ecore and Eplaque of a patient-
specific atheroma plaque. Based on the information taken from
the IVUS images previously published (Le Floc’h et al., 2009) and
the anatomy of the atherosclerotic coronary artery, we performed
the Finite Element Method (FEM) on 540 different 2D idealized
geometries. As seen in other works (Nong et al., 2022; Shen et al.,
2022; Le Floc’h et al., 2009; Finet et al., 2004), 2D models are
commonly used when artery geometries are obtained from the
segmentation of IVUS images. One of the key advantages of
using 2D models for studying the mechanical properties of
atherosclerotic coronary arteries is that the IVUS images provide
2D cross-sectional information of the coronary artery geometry.
Furthermore, 2D models are favored over 3D models as they offer
a more streamlined and efficient analysis process, requiring fewer
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FIGURE 2
The workflow is divided into building the database, generating the ANN, and applying it to realistic geometries: 1) Building the idealized database and
performing the FEA simulations; 2) Selecting the outputs of the FEA (ϵ1, ϵ2, ϵcore, ϵplaque, ϵtheta, and SR); 3) Statistical analysis of the FEA output variables and
selection of the inputs of the ANN (ϵ2core, ϵ

2
plaque, ϵ

2
theta, and SR); 4) Selecting MLP structure; 5) Training and validating the ANN; 6) Testing the ANN by

computing the relative error in the prediction of Ecore and Eplaque; 7) Building the realistic database; 8) Application of the ANN to the realistic database; 9)
Application of transfer-learning technique; 10) Application of the transfer-learned ANN to the realistic database and computation of the relative errors.

computational resources and yielding quicker results. Subsequently,
a statistical analysis was carried out on the outputs of the FEA
(strains), in order to select the most influential variables on Ecore and
Eplaque as the inputs of theANN.We then trained and tested theANN
by minimizing a loss function (MSE), and computed the relative
error in the prediction of the mechanical properties of the training
and testing datasets. Finally, we applied the ANN to estimate the
mechanical properties of 10,000 plaque geometries and computed
the relative error.

2.1 Database generation

The idealized 2Dgeometry of the atherosclerotic coronary artery
was divided into four main parts: a lipid-rich core; a thickened
tunica intima, which is considered as a fibrotic tissue (where the
fibrous cap is themost critical area); the tunicamedia; and the tunica
adventitia (Figure 1). The main geometrical characteristics of the
base geometry were: the diameter of the lumen (ϕlum = 3.6 mm), the
diameter of the intima layer (ϕint = 5.596 mm), the diameter of the
media layer (ϕmed = 6.05 mm), the diameter of the adventitia layer
(ϕadv = 6.5 mm), the thickness of the fibrous cap (capthk = 65 μm),
the angle of the lipid-rich core (αlipid = 60o), and the stenosis ratio
(SR = 70%) (Equation 1).

SR =
Aplaque

Aplaque +Alumen
⋅ 100 (1)

TABLE 1 Proposed ranges for each variable of themodel composing the
database. Mechanical properties (Ecore and Eplaque) in kPa. Geometrical
variables (SR, capthk and corethk) in % and μm respectively.

Variable Range N° param Step

Ecore(kPa) 1–100 300 logarithmic variation

Eplaque(kPa) 390–1,200 10 fixed (90)

SR(%) 40–80 9 fixed (5)

capthk(μm) 65–300 10 variable (user-selected)

corethk(μm) 300–800 6 fixed (10)

where Aplaque and Alumen are the area of the plaque and the lumen
respectively.

In order to build a solid database, 540 distinct idealized
geometries were generated by varying the following parameters
(Table 1): nine variations of stenosis ratio (SR = 40%–80%)
(Finn et al., 2010), ten variations of the thickness of the fibrous
cap (capthk = 65 μm− 300 μm) (Loree et al., 1992) and six variations
of the thickness of the lipid-rich core (corethk = 300 μm− 800 μm)
(Virmani et al., 2000).

Due to the high variability found in experimental studies
on the coronary artery, setting the mechanical properties of
each area in the model was a challenging task. Therefore,
in this study, we established the range of Young’s modulus
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TABLE 2 Material parameters used in the FEA for themedia and adventitia
layers where the GOH strain energy was considered.

μ(kPa) k1(kPa) k2(−) k(−)

Media 1.4 206.16 58.55 0.29

Adventitia 8.44 547.67 568.01 0.26

for the lipid-rich core (Ecore = 1–100 kPa) and the fibrotic
tissue (Eplaque = 390–1,200 kPa) after conducting a thorough
analysis of the mechanical properties reported by different
authors (Akyildiz et al., 2018; Baldewsing et al., 2004; Cheng et al.,
1993; Finet et al., 2004; Le Floc’h et al., 2009; Peña et al., 2021;
Gómez et al., 2019). We proposed the ranges of material properties
with the aim of covering all possible variability (Table 1). In
addition, given the greater variability found in the Ecore range,
we performed 300 variations with a variable step that followed a
logarithmic function, in order to obtain a higher density of data in
the lower part of the range. On the other hand, only 10 variations
of Eplaque were accomplished with a fixed step of 90 kPa, as the
variability found in this tissue was lower.

As our objective was to predict the Young’s modulus for both
the lipid-rich core and fibrotic tissue, which were assumed to be
isotropic, we selected the widely-used and simple neo-Hookean
hyperelastic material model. This model is known to provide a good
approximation of the true material behavior when working with low
strains. Its energy function for incompressible materials in 3D is
described in Equation 2:

WNH = C10 (I1 − 3) (2)

where I1 is the first invariant of the right Cauchy-Green deformation
tensor and C10 is a material parameter representing the slope of
the stress-strain curve that can be written as a function of Young’s
modulus (E) (Equation 3).

C10 =
E
6

(3)

On the contrary, we did not predict the mechanical properties
of the media and adventitia layers because of the limitations of the
IVUS imaging technique in accurately identifying them. As a result,
the material model selected for these layers was the GOH model
(Gasser et al., 2006), and their mechanical properties were selected
from the literature (Latorre et al., 2022) (Table 2).

Ψ = μ (I1 − 3) +
k1

2k2
∑
i=4,6
(exp(k2(k (I1 − 3) + (1− 3k) (Ii − 1))

2) − 1)

(4)

All models were subject to the same boundary conditions,
loading, and mesh size. In order to avoid rigid solid displacements
and rotations, the model was constrained in y direction in a
peripheral point. Due to symmetry, only half of the model
was considered. A load of 18.66 kPa was applied, representing
the high blood pressure (140 mmHg) of a hypertensive
patient (Banegas, 2005). However, since IVUS images catch
the geometrical information in an increment of 5 mmHg
(Maurice et al., 2004), results were obtained in the last increment
of 5 mmHg (135–140 mmHg). The database was generated with a

full factorial approach where all the possible combinations were
considered, resulting in a total of 1,782,000 cases.

From each model, several potential input variables for the
ANN were obtained such as the maximum (ϵ1) and minimum
(ϵ2) principal strains, the variation of the thickness of the core
(ϵcore) and the fibrous cap (ϵcap), the lumen diameter variation
(ϵtheta) (Equation 5), and the SR (%). A statistical analysis was then
performed to identify the most relevant variables, their significance,
and multicollinearity.

ϵtheta =
ϕendlum −ϕ

init
lum

ϕinitlum

(5)

where ϕend
lum and ϕinit

lum represent the lumen diameter at the end and
beginning of the simulation, respectively.

2.2 Statistical analysis

It is widely known that Artificial Intelligence (AI) relies its
predictive capacity on statistics (Gardner and Dorling, 1998).
Therefore, both descriptive and inferential statistical analyses were
carried out. The descriptive statistical analysis allows to detect if
there is any pattern or trend followed by the candidate variables
against the response variables. Complementary, the inferential
statistical analysis helps in identifying those variables that most
influence the response. The objective of analyzing the statistics
from these two points of view is to have a better criterion to
select the inputs of the ANN. For this purpose, we performed a
regression analysis of each candidate variable against each response
variable separately. After that, a multivariate regression analysis was
executed to detect which were the most influential variables when
predicting the two response variables (Ecore,Eplaque) simultaneously.
The inferential analysis was accomplished using the step-wise
methodwith a significance of p < 0.05. Additionally, in order to keep
the model as simple as possible, we paid special attention to the
multicollinearity of the variables, using the most common method:
VIF (Variable Inflation Factor). If two variables were significant
but the multicollinearity factor was high, we repeated the analysis
without one of the variables (Siotani et al., 1985).

2.3 Artificial neural network

AI is believed to be capable of giving quick responses to patient-
specific clinical problems. Since our start point is the geometrical
data available from the IVUS, we used a multi-layer perceptron
(MLP) (Gardner and Dorling, 1998) based on supervised learning
(Kotsiantis et al., 2007) to develop our Artificial Neural Network
(ANN). An MLP has to extract a relation solely from the presented
examples, which together are assumed to implicitly contain the
necessary information for this relation (Park and Lek, 2016). The
structure of an ANN consists of a collection of neurons grouped
in layers, connected through weights, and activated by activation
functions (Agatonovic-Kustrin and Beresford, 2000).

To develop the ANN the open-source software library for
machine learning PyTorch (version 1.13.1) was used.
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2.3.1 Learning algorithm
The learning algorithm of the ANN starts with the division of

the database into training data (80%), internal validation (10%),
and testing data (10%). Next, in order to avoid one variable could
predominate over the others (SR takes values of 40%–80% while
strains take values of 0.5%) the data was normalized using a z-score
scaler (Equation 6):

xscaled =
x− μ
σ

(6)

where x is the sample, μ is the mean and σ is the standard deviation.
Then, a forward propagation step followed by a backward

propagation step is conducted (LeCun et al., 1988). In the forward
propagation step, the information of each neuron (xi) passes to
each neuron of the following layers (hidden layers) according to a
weight (wi) previously assigned. The information passes through an
activation function (ψ) providing the non-linearity to the network,
and then, it is transferred to the following layer. Each neuron
receives the sum of information from all the connected neurons
activated in the previous layer. This process is summed up in
Equation 7:

y = ψ(
n

∑
i=1

wixi +wbias) (7)

where y is the output signal, ψ is the activation function and wbias is
the bias.

When the flowof information arrives at the last layer, it generates
the outputs of the ANN, which in this study are Ecore and Eplaque. The
weights and biases are randomly assigned in the first iteration and
will be adjusted in the following iterations in order to minimize a
loss function, which for the current study is theMean Squared Error
(MSE) (Equation 8).

MSE = 1
m

m

∑
i=1
(yi − ̂yi)

2 (8)

where ̂yi shows the predicted value and yi shows true value where
i = 1,2,… ,m.

After that, the backward propagation starts. This process
relies on assigning a level of responsibility for the error to
each neuron. Those neurons with a major influence in the
error will have to change their weights more than those whose
error’s responsibility is lower. This iterative process is the training
step.

Once the training step finishes, the validation step begins.
In this step, the ANN checks its capacity for predicting new
values of the response variables out of the training dataset. The
loss function values obtained in training and validation steps are
compared in order to analyze how different they are and if the
ANN suffers overfitting (Dietterich, 1995). In case they are similar
and low enough, we could say the ANN has good prediction
quality. In addition, in order to better quantify the error in the
predictions, we computed and compared the relative error in the
prediction of Ecore and Eplaque for both training and testing datasets
(Equation 9).

error =
| ̂yi − yi|

yi
·100. (9)

FIGURE 3
Construction of realistic database using 20 cases with varied fibrous
cap thickness, based on a real geometry (65μm–300 μm).

2.3.2 Application to real cases
Once the ANN was trained and tested, we applied it to 10,000

realistic geometries generated from the four real IVUS images
previously published in Le Floc’h et al. (2009). The realistic in silico
database was obtained by creating 20 different geometries varying
the fibrous cap thickness from 65 μm to 300 μm, and assigning 500
different material combinations. According to this, 50 variations of
Ecore in a range of 1 kPa–100 kPa and 10 variations of Eplaque in a
range of 390 kPa–1,200 kPa were conducted (see Figure 3).

When analyzing the predictions of themechanical properties for
the realistic geometries, the ANN predictions were not accurate (see
Section 3.2). Therefore, the ANN was improved by fine-tuning the
parameters using the transfer-learning technique (Tan et al., 2018;
Yu et al., 2022).

Other studies have used this technique in a hybrid model based
on a convolutional neural network (CNN) and a long short-term
memory recurrent neural network (LSTM RNN) to classify benign
and malignant breast cancer subtypes (Ikemoto et al., 2023).

2.3.3 Transfer learning
Transfer learning is a machine learning technique that involves

the transfer of knowledge learned in one task to improve the
performance of another related task. This technique can be used
to improve the prediction of the realistic dataset by leveraging
the knowledge learned from a more extensive idealized dataset,
improving the model’s ability to generalize to new data.

The initial layers of an MLP are responsible for identifying and
extracting the fundamental and more generalized features within
a dataset, whilst the later layers are supposed to learn the most
specific patterns within the dataset. This is where the transfer-
learning technique, known as fine-tuning, comes into play. The
majority of the ANN’s weights are preserved, but the weights of the
later layers are updated by re-training them with the new realistic
dataset. Specifically, the last four layers of our proposed ANN were
fine-tuned using the 50% of our realistic dataset, while the remaining
layers were kept frozen. The other 50% of the realistic dataset was
reserved for testing the ANN.
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FIGURE 4
Descriptive statistical analysis of the candidate variables against the response variables. (A) Maximum Principal Strain ϵ1 vs. Young’s modulus of the lipid
core Ecore. (B) Minimum Principal Strain ϵ2 vs. Young’s modulus of the lipid core Ecore. (C) Maximum Principal Strain ϵ1 vs. Young’s modulus of the lipid
core Eplaque. (D) Minimum Principal Strain ϵ2 vs. Young’s modulus of the lipid core Eplaque.

3 Results

3.1 Statistical analysis

Hereby, we report the results of the statistical analysis (Figure 4).
In order to avoid repetitions, we showonly the results of the variables
ϵ1 and ϵ2 vs Ecore and Eplaque, since all presented a similar behavior
and the conclusions drawn from them were the same. Besides,
to preserve image legibility, a representative sample of the data
population is reported in each plot.

As mentioned in Section 2.2, the inferential statistical analysis
for the study of the most influential variables in the response was
divided into: a single-output regression analysis for the prediction of
Ecore and Eplaque separately; and, amultivariate regression analysis for
the prediction of Ecore and Eplaque simultaneously. The single-output
regression analysis started considering the nine candidate variables
(ϵ1, ϵ2, ϵcore, ϵcap, ϵtheta, ϵ2core, ϵ2cap, ϵ2theta and SR). For Ecore the step-wise
method considered all of them but ϵ2 as significant, with R2

adjusted =
99.65%, but with VIF values very high in each variable. The same
was performed for Eplaque obtaining R

2
adjusted = 99.56% also with very

high VIF values. After several trials, we obtained a balance between
R2
adjusted and VIF values. According to this, Table 3 shows the most

influential variables over Ecore and Eplaque. Specifically, SR (%) and
the squared variation of the thickness of the fibrous cap (ϵ2cap) were
selected for Ecore, with a R2

adjusted of 90.04%, while SR (%) and the
squared variation of the thickness of the lipid-rich core (ϵ2core) were
selected for Eplaque, with a R2

adjusted of 97.65%. Following this line,
the multivariate regression analysis (Table 4) showed that the most
influential variables over the two response variables simultaneously
were SR (%), ϵ2core and ϵ2cap, with a R2

adjusted of 92.80%.
According to these results, the inputs of the ANN were: ϵ2core,

ϵ2cap, and SR. In addition, in order to expand the number of input
parameters, we also decided to introduce ϵ2theta.

3.2 Artificial neural network

In this study, a 14-layer ANN was employed, with rectified
linear unit (ReLU) activation function applied to each hidden
layer (Equation 10). The Adam optimization algorithm (Kingma
and Ba, 2014) was used for training the model, and the training
process was conducted over 7,000 epochs. The learning rate was
dynamically adjusted along the training process, starting from 1e-
3 and decreasing sequentially one order of magnitude at epochs 500,
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TABLE 3 Summary of the best model for prediction of Ecore and Eplaque
separately.

Ecore

Coef p-value VIF

Constant −161.3 0.022 -

SR(%) −30.98 0.000 1.57

ϵ2core 2321.6 0.000 1.57

R2
adjusted(%) 90.04

Eplaque

Coef p-value VIF

 Constant −4658.4 0.000 -

 SR(%) 124.32 0.000 1.57

 ϵ2core −1,144.16 0.000 1.57

 R2
adjusted(%) 97.65

TABLE 4 Summary of the best model for prediction of Ecore and Eplaque
simultaneously.

Coef p-value

Constant 2540 0.000

SR(%) −53.62 0.000

ϵ2core −2978 0.000

ϵ2plaque 4109 0.000

R2
adjusted(%) 92.80

FIGURE 5
Loss function for training and validation step evaluated with the MSE.

1,000, 1,500, 2000, 3,500, and 5,000. As can be seen in Figure 5, the
loss function (MSE) of this ANN achieves values under 10–7.

Relu (z) =max (0,z) (10)

FIGURE 6
Relative error in the prediction of Ecore (blue) and Eplaque (green) in the
training and testing steps of the ANN.

FIGURE 7
Relative error in the prediction of Ecore (blue) and Eplaque (green) using
the transfer-learned ANN with the realistic database.

To evaluate the performance of theANN, the relative error in the
prediction of Ecore and Eplaque was computed in three different cases.

• First case: Original ANN tested with the idealized dataset
• Second case: Original ANN tested with the realistic dataset
• Third case: Transfer-learned ANN tested with the realistic

dataset

The results of the first case showed a low relative error
(eEcoretrain = 1.5%,e

Eplaque
train = 1.7%,e

Ecore
test = 0.2%,e

Eplaque
test = 0.2%), indicating

that the ANN was able to accurately predict the mechanical
properties of the coronary artery based on the idealized geometries
in the training dataset (Figure 6). The results of the second case
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revealed a very high relative error (eEcoretest = 10
5%,e

Eplaque
test = 10

3%),
indicating that the ANN may not perform well when applied
to realistic geometries. That highlighted the need for further
development of theANN to improve its ability to predictmechanical
properties on real plaques. The results of the third case revealed
a relative error of less than 4% for both Ecore and Eplaque when
predicting realistic geometries, indicating that the ANN has been
successfully fine-tuned using a small realistic dataset (Figure 7).

4 Discussion

In this study, we investigated the potential of artificial
neural networks (ANN) for accurately estimating the mechanical
properties of the atherosclerotic coronary artery. We employed a
methodology that involved analyzing the statistics of the candidate
variables prior to developing the ANN, which allowed us to establish
a more informed criterion for selecting the inputs for the model.
It is important to note that while these statistics provided useful
guidance, they were not considered definitive. Given the scarcity
of real-world data, our database was initially constructed using
idealized geometries. To assess the ANN’s ability to generalize to
more realistic scenarios, we applied it to a sample of 10,000 realistic
geometries, providing a thorough evaluation of its performance.

The inferential statistical analysis was an interactive process
(data not shown) where all the candidate variables were first
included. In a preliminary model, almost all the candidate variables
and their interactions were included as significant by the step-wise
method. The model showed problems of multicollinearity, so, due
to the non-linear behavior previously observed, all the linear strains
were removed. Now, the step-wise method selected the SR (%), ϵ2core
and ϵ2cap as significant. However, in this case, the step-wise method
excluded the variable ϵ2theta. The VIF decreased remarkably but it was
still high.Therefore, in order to studywhich one of themulticollineal
variables would better explain the response, we removed one of the
variables each time. When the variable removed was ϵ2cap the R2

adjusted
was 83.60% while if ϵ2core was removed, the R2

adjusted was 90.04%. In
both cases, the VIF decreased to normal multicollinearity values.

The same methodology was followed for the analysis of the
candidate variables over Eplaque. The analysis with all the candidate
variables and their interactions with each other and themselves
considered the following variables as significant: ϵ1, ϵtheta, SR (%),
ϵ2core and ϵ2theta. The R2

adjusted was 99.56% but the VIF factor was very
high, so a tuning of the model was performed. Then we considered
only the squared strains and the SR (%). The result was a R2

adjusted
of 97.88% and a remarkable decrease of VIF. Since the VIF was still
high, we studied the impact of removing one of the squared strains
on themodel, but in this case, it was not relevant because theR2

adjusted
was 97.65% and 97.24% on removing ϵ2cap or ϵ2core respectively.

Based on the statistical analysis, it was determined that the
most influential input parameters for the prediction of Ecore and
Eplaque were ϵ2core, ϵ2cap, and SR. Additionally, to further improve
the performance of the ANN, ϵ2theta was also included as an input
parameter.

The proposedANN trainedwith the large and idealized database
presented low relative errors in the prediction of Ecore and Eplaque
both during the training and the testing step. However, when applied
to a realistic dataset, the ANN struggled to accurately predict the

mechanical properties. To improve its performance, a fine-tuning
process was applied, utilizing 50% of the realistic dataset to update
the weights of the last four layers of the ANN. The result was
a significant improvement in accuracy, as evidenced by a relative
error lower than 3% when predicting the remaining 50% of the
realistic dataset. Our results align with recent studies in the field
(Torun et al., 2022), further confirming the effectiveness of using
ANNs for predicting mechanical properties in the atherosclerotic
coronary artery.

Other studies have also accomplished a mechanical
characterization of the plaque constituents. Specifically,
Akyildiz et al. (2011) studied the effects of the intima stiffness
and the plaque morphology on the stress of the fibrous cap
using idealized geometries based on histology images of human
coronary arteries; O’Reilly et al. (2020) carried out an investigation
of morphological and mechanical properties of iliofemoral and
carotid atherosclerotic plaque constituents starting from μCT
images; Maher et al. (2009) characterized the mechanical behavior
by performing tensile and compressive tests on fresh human carotid
plaques removed from endarterectomy; Davis et al. (2016) studied
the fracture behavior of human atherosclerotic fibrous cap using a
miniature single edge notched tensile test; and, Teng et al. (2009)
determined the uniaxial tensile strength of the adventitia and media
of human carotid artery throughout an experimental study.

However, our novel perspective is based on the estimation of the
material properties throughout a large and representative database
that takes into account different lipid-rich core sizes, fibrous cap
thicknesses, and stenosis ratio values.

This project is an initial step in the development of
neural networks for the prediction of mechanical properties
of atherosclerotic coronary arteries. There are some limitations
associated. 1) The geometry used for training the ANN is an
idealized geometry that only includes one lipid-rich core, which
may not fully capture the complex and variable nature of real-
world arterial morphology. 2) The database has been generated
completely in silico, starting from the before mentioned idealized
geometries. However, it does not exist a database of real images
with mechanical properties. Therefore, we tried to overcome this
limitation by applying a wide variety of mechanical properties as
they can be found in the published literature. In our opinion, a
possible solution for this limitation could be to develop an image-
driven database. This would allow the neural network to learn
directly from real cases. 3) The use of a neo-Hookean material
model may be a limitation as it may not accurately capture the non-
linear behavior of the plaque constituents. However, the assumption
of linear material behavior is a good approximation for low ΔP,
and in this work ΔP was assumed as 5 mmHg. 4) The study only
characterized the mechanical behavior of the fibrous cap and the
lipid-rich core, and did not take into account the contribution of
other plaque constituents such as calcified regions.

The estimation of the mechanical properties may provide rich
information to identify plaque vulnerability, such as whether an
atherosclerotic coronary artery suffers from a reduced collagen
synthesis, local overexpression of collagenase, or smooth muscle
cell apoptosis (Libby, 2001; Akyildiz et al., 2011; Davis et al., 2016;
Wang et al., 2019; O’Reilly et al., 2020). This information can also
be used to evaluate the impact of different drugs in treating
atherosclerosis.
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As future steps, we suggest the use of 3D geometries, more
complex material models for the lipid-rich core and the fibrotic
tissue and if possible, a large database of images to build a neural
network with different suitable architectures such as convolutional
neural networks (LeCun and Bengio, 1995; Lawrence et al., 1997;
Gu et al., 2018).

5 Conclusion

The proposed ANN model was able to accurately predict
the mechanical properties of the atherosclerotic coronary artery
using input parameters of ϵ2core, ϵ2cap, ϵ2theta, and SR. The fine-tuning
process applied to the ANN using a realistic dataset resulted in a
significant improvement in accuracy, with a relative error lower than
3%. This work provides a novel perspective on the estimation of
material properties in the atherosclerotic coronary artery through
a large and representative database that takes into account different
lipid-rich core sizes, fibrous cap thicknesses, and stenosis ratio
values. The obtained results align with recent studies in the field,
further confirming the effectiveness of using ANNs for predicting
mechanical properties in atherosclerotic coronary arteries.
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