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Acylation modifications play a central role in biological and physiological
processes. Across a range of biomolecules from phospholipids to triglycerides
to proteins, introduction of a hydrophobic acyl chain can dramatically alter the
biological function and cellular localization of these substrates. Amongst the
enzymes catalyzing these modifications, the membrane bound
O-acyltransferase (MBOAT) family occupies an intriguing position as the
combined substrate selectivities of the various family members span all three
classes of these biomolecules. MBOAT-dependent substrates are linked to a wide
range of health conditions including metabolic disease, cancer, and
neurodegenerative disease. Like many integral membrane proteins, these
enzymes have presented challenges to investigation due to their intractability
to solubilization and purification. However, over the last several years new
solubilization approaches coupled with computational modeling,
crystallography, and cryoelectron microscopy have brought an explosion of
structural information for multiple MBOAT family members. These studies
enable comparison of MBOAT structure and function across members
catalyzing modifications of all three substrate classes, revealing both conserved
features amongst all MBOATs and distinct architectural features that correlatewith
different acylation substrates ranging from lipids to proteins. We discuss the
methods that led to this renaissance of MBOAT structural investigations, our
new understanding of MBOAT structure and implications for catalytic function,
and the potential impact of these studies for development of new therapeutics
targeting MBOAT-dependent physiological processes.
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1 Introduction

1.1 Membrane bound O-acyltransferase
family—history and background

The membrane bound O-acyltransferase (MBOAT) family
comprises a group of enzymes characterized by multiple
transmembrane domains and a conserved histidine residue. The
first family member reported in the literature was acyl-coenzyme A:
cholesterol acyltransferase, also known as sterol O-acyltransferase
(ACAT1/SOAT1) (Mukherjee and Alfin-Slater, 1958; Goodman
et al., 1964). ACAT1/SOAT1 is responsible for the acylation of
the alcohol on cholesterol to form cholesterol esters. ACAT1/
SOAT1 was first extracted from rat liver homogenates and was
later identified as a membrane bound enzyme (Mukherjee and
Alfin-Slater, 1958; Goodman et al., 1964). Identification of the
gene encoding ACAT1/SOAT1, the ACAT/SOAT gene, led to
discovery of the homologous ACAT2/SOAT2 (Chang et al., 1993;
Yang et al., 1996; Yu et al., 1996; Cases et al., 1998a; Anderson et al.,
1998; Oelkers et al., 1998). In addition to ACAT2/SOAT2, a related
enzyme diacylglycerol O-acyltransferase 1 (DGAT1) was identified
by sequence similarity to ACAT1/SOAT1 (Cases et al., 1998b). This
enzyme performs similar acylation modifications on a distinct
substrate diacylglycerol with involvement in triglyceride
biosynthesis. Further sequence analysis led to yet another
enzyme, Porcupine (PORCN) (Hofmann, 2000). PORCN is an
acyltransferase in the Wnt signaling pathway, where it acylates
the secreted signaling protein Wnt in contrast to the lipid and
cholesterol substrates for ACAT1/SOAT1 and DGAT1. In 2000,
Hofmann identified PORCN as an additional acyltransferase and
named this enzyme family the membrane bound O-acyltransferases
(MBOAT) (Hofmann, 2000).

1.2 MBOAT family: acylation substrates lead
to subfamily classifications

The MBOAT family of enzymes can be classified by the
biochemical reaction each enzyme performs (Figure 1). MBOAT
enzymes were first classified as enzymes that perform lipid
biosynthesis. This group includes the ACAT/SOAT enzymes and
DGAT1 that acylates cholesterol and triglycerides. Another group of
MBOATs are lysophospholipid acyltransferases responsible for
acylating phospholipids. The last group is responsible for
acylating proteins and peptides. Below we describe the known
mammalian MBOATs and their major roles in the cell. In
section c we will describe their roles in signaling and disease.

1.2.1 Lipid Biosynthesis
As noted above, ACAT1/SOAT1 is responsible for the

acylation of cholesterol to cholesterol ester. Cholesterol
esters provide a storage option to prevent cholesterol build-
up in cell membranes. Consequently, ACAT1/SOAT1 is
expressed in multiple cell types in the body. Chang and co-
workers expressed and purified ACAT1/SOAT1 with full
biological activity in 1998 (Chang et al., 1998). ACAT1/
SOAT1 is a homotetrameric enzyme with 9 transmembrane
domains per monomer, with this multimeric nature posing
difficulties for enzyme studies (Yu et al., 1999). Two
conserved amino acids, His460 and Asn421, have been
implicated in its acylation activity (Guo et al., 2007).
ACAT1/SOAT1 will bind sterols and steroids and contains
multiple binding sites for these substrates.

ACAT2/SOAT2 is mainly found in the small intestine and liver
(Anderson et al., 1998). Its expression and cloning was also reported
in 1998 (Cases et al., 1998a). The predominant theory for the
existence of both enzymes is that ACAT1/SOAT1 acts to
maintain cholesterol levels throughout the body whereas ACAT2/
SOAT2 is coupled to lipoprotein particle assembly and secretion
(Joyce et al., 2000). Further analysis of acylation by these enzymes
has been pursued using the structure publication that will be
described below.

While ACAT/SOAT modifies cholesterol, acyl-CoA:
diacylglycerol acyltransferase (DGAT) acylates precursors to
create triglycerides. Triglycerides are used for energy storage and
membrane lipid formation. While triglycerides are important for
normal physiological behavior, an excess of these glycerol triesters
can lead to disease states such as obesity (Birch et al., 2010; Lee et al.,
2010). In 1956, it was reported that DGAT used fatty acyl-CoAs as
acyl donors (Weiss and Kennedy, 1956), and the connection to the
ACAT enzymes at the sequence level came in 1998 (Weiss et al.,
1960; Cases et al., 1998b). Knockout of both DGAT1 and DGAT2 in
mice lead to reduced triacylglyceride levels (Smith et al., 2000; Stone
et al., 2004). DGAT1 prefers monosaturated substrates where
DGAT2 did not show a saturation preference but a chain length
preference. DGAT2 prefers shorter chain acyl-CoAs and short/
medium chain fatty acyl moieties (Cases et al., 2001; Lardizabal
et al., 2001). DGAT2 is more efficient at triacylglycerol (TAG)
acylation, while DGAT1 has the potential to acylate multiple
substrates (Ross, 1982; Batten et al., 2004; Yen et al., 2005). This
is further believed to be true as their topologies are drastically
different with DGAT1 containing multiple transmembrane

FIGURE 1
Membrane bound O-acyltransferase (MBOAT) family of
enzymes. These integral membrane enzymes acylate cholesterol,
diacylglycerol, phospholipids, peptides, and proteins.
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domains and DGAT2 with significantly fewer domains (Cases
et al., 2001; Cheng et al., 2001; Lardizabal et al., 2001; Weselake
et al., 2006). For more detailed discussion of DGAT1 and
DGAT2 activity, expression, and topology, the authors direct
to the following excellent reviews on these topics by Yen et al., in
2008 and most recently by Chen et al., in 2022 (Yen et al., 2008;
Chen et al., 2022).

1.2.2 Lysophospholipid acyltransferases
MBOAT family members also play key roles in phospholipid

synthesis and recycling (Figure 2). Phosphatidylcholine (PC),
phosphatidylethanolamine (PE), and phosphatidylserine (PS) are
the major phospholipids in membranes and surfactants in
mammals. PC acyl chain remodeling is performed by
lysophosphatidylcholine acyltransferases (LPCATs). Only
LPCAT3 and LPCAT4 acylate lyso-PC with unsaturated acyl
chains at the sn-2 hydroxyl, with both of these enzymes
annotated as MBOAT family members (Hofmann, 2000;
Hishikawa et al., 2008). LPCAT3/MBOAT5 has seven
transmembrane domains and the conserved His and Asn residues
that typify MBOAT family members. LPCAT3/MBOAT5 favors
unsaturated fatty acyl-CoAs such as oleoyl-CoA, linoleoyl-CoA, and
arachidonyl-CoA as acyl donors and 1-myristoyl-lyso-PC and 1-
palmitoyl-lyso-PC as acyl acceptors/acylation substrates (Zhao et al.,
2008; Jain et al., 2009). LPCAT4/MBOAT2 and LPEAT1/
MBOAT1 both prefer oleoyl-CoA as their acyl donor and
catalyze reactions with lyso-PC, lyso-PE, and lyso-PS (Hishikawa
et al., 2008). The last lysophospholipid acyltransferase amongst the
MBOATs is lysophosphatidylinositol acyltransferase 1 (LPIAT1).

LPIAT1/MBOAT7 adds an arachidonic acid or an eicosapentaenoic
acid onto lyso-PI (Caddeo et al., 2019; Caddeo et al., 2021).
LPIAT1 catalyzes the transfer of an acyl chain to lyso-PI and
mutations to its conserved Asn321 and His356 resulted in a loss
of acyltransferase activity like most other MBOAT family members
(Caddeo et al., 2021). LPIAT1 prefers polyunsaturated fatty acids as
opposed to saturated or unsaturated fatty acids (Caddeo et al., 2021).
LPIAT1 has a predicted six transmembrane domains and is an
integral membrane enzyme tightly bound to endosomes (Caddeo
et al., 2019).

1.2.3 Acylation of proteins/peptides
There are three MBOATs that catalyze the acylation of

proteins or peptides, PORCN, Hedgehog acyltransferase
(HHAT), and ghrelin O-acyltransferase (GOAT/MBOAT4)
(Figure 3). PORCN, identified as the first protein acylating
MBOAT, acylates the signaling protein Wnt with a
palmitoleate (C16:1) group (Zhai et al., 2004; Rios-Esteves
et al., 2014). This modification occurs at a conserved serine
and is required for receptor (Frizzled) binding and signaling
(Takada et al., 2006; Janda et al., 2012). HHAT catalyzes the
acylation of Hedgehog proteins (Sonic, Indian, and Desert)
which bind and signal through the Patched receptor(Kong
et al., 2019). HHAT palmitoylates (C16:0) the N-terminal
cysteine on SHH (Pepinsky et al., 1998). GOAT octanoylates
ghrelin on the third serine, and like HHAT/hedgehog and
PORCN/Wnt this acylation modification is required for
ghrelin binding and signaling through its receptor GHS-R1a
(Kojima et al., 1999; Abizaid and Hougland, 2020).

FIGURE 2
Phospholipid remodeling MBOAT enzymes have multiple substrates and utilize multiple acyl-CoAs as acyl donors. Phospholipid remodeling
enzymes can acylate various substrates using a range of acyl donors. This figure shows a subset of these potential enzyme-acyl acceptor–acyl donor
combinations for acyl donors bearing unsaturated fatty acids. The hydroxyl group that becomes acylated in the acyl acceptor substrate is highlighted.
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1.3 Importance of MBOATs in signaling and
disease

1.3.1 ACAT/SOAT
Multiple studies show ACAT/SOAT to be an important

enzyme to facilitate improvement in human health and
disease. For example, inhibition of ACAT1/SOAT1 was shown
to lower the level of neurological disease in an Alzheimer’s mouse
model (Hutter-Paier et al., 2004; Bhattacharyya and Kovacs, 2010;
Bryleva et al., 2010). It has been shown that by inhibiting ACAT1/
SOAT1 cholesterol can be re-directed to repair other organelles
(Hutter-Paier et al., 2004; Bhattacharyya and Kovacs, 2010;
Bryleva et al., 2010). By way of modulating T-cell cholesterol
metabolism, ACAT1/SOAT1 has been shown to facilitate cancer
treatment (Yang et al., 2016). ACAT2/SOAT2 is only active in the
hepatocytes and intestinal cells, and when ACAT2/SOAT2 is not
functioning normally it can cause reduced assembly and
secretion of low-density lipoprotein (LDL). This eliminates
hypercholesterolemia and atherosclerosis (Buhman et al., 2000;
Willner et al., 2003; Rudel et al., 2005; Ohshiro et al., 2015).
Related to those diseases, a buildup of cholesterol and
lipids in circulation can lead to heart attacks. Inhibiting
ACAT2/SOAT2 has been suggested to be especially helpful
in preventing these cardiovascular risks (Goldstein and
Brown, 2009).

1.3.2 DGAT1
DGAT1 is expressed in multiple tissues throughout the body. It

has a major role in dietary fat absorption and protecting the body by
preventing fatty acid (FA)-induced toxicity (Yen et al., 2008).

Unesterified FAs promotes endoplasmic reticulum (ER) stress
leading insulin resistance and impaired (Chitraju et al., 2017).
DGAT1 performs the last step in TAG biosynthesis in the
Kennedy and monoacylglycerol (MG) pathways, and without
DGAT1 there was a severe loss in dietary fat absorption
(Buhman et al., 2002). Inhibition of DGAT1 would prevent the
absorption of TAG into the body, leading to reduced lipid storage in
the body (Smith et al., 2000; Chen et al., 2002). Consequently, DGAT
is a target for prevention of obesity, glucose metabolism, and insulin
secretion.

1.3.3 LPCAT3/MBOAT5
LPCAT3/MBOAT5 catalyzes a polyunsaturated acyl moiety (18:

2 and 20:4) onto lyso-PC, lyso-PE, and lyso-PS (Hishikawa et al.,
2008). This changes the composition of the cell membrane, and the
function of the proteins in the surrounding area. LPCAT3 is a key
component of the Kennedy pathway and the Lands’ Cycle (Kennedy
and Weiss, 1956; Lands, 1958; Lands, 2000). LPCAT3 is primarily
expressed in liver and is a key regulator of in phospholipid and
triglyceride metabolism (Zhao et al., 2008). Of the four LPCATs,
LPCAT3 is the major isoform in metabolic issues and has been
proposed as a drug target for atherosclerosis and hyperlipidemia
(Wang and Tontonoz, 2019; Liu et al., 2020). However, this
approach has the potential for off target effects on cholesterol
biosynthesis and fat accumulation (Rong et al., 2015; Wang et al.,
2018). LPCAT3 has been implicated in obesity induced skeletal
myopathy, with mice overexpressing LPCAT3 exhibiting worse
skeletal myopathy when fed a high-fat diet then those mice fed a
normal diet. LPCAT3 is consequently a therapeutic target for
treatment of obesity induced skeletal myopathy (Zhang et al.,

FIGURE 3
Protein and peptide acylating MBOATs. GOAT acylates the peptide hormone ghrelin and prefers octanoyl-CoA as the acyl donor. Hedgehog (PBD:
6RVD) first gets modified with a cholesterol moiety (green) then gets acylated by HHAT with a preference for palmitoyl-CoA. Wnt (PDB: 4F0A) is acylated
by PORCN using palmitoleoyl-CoA.
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2012). LPCAT3 also plays a role in diabetes. Mice overexpressing
LPCAT3 showed improved postprandial hyperglycemia and glucose
tolerance (Ferrara et al., 2021). However, in skeletal muscle the
opposite is observed with overexpression of LPCAT3 in skeletal
muscle leading to glucose intolerance (Labonté et al., 2006). For
more detailed discussion of recent progress in understanding
LPCAT3’s role in cancer and diseases, the authors direct your
attention to a recent review by Shao et al. (Shao et al., 2022).

1.3.4 LPCAT4/MBOAT2
Like LPCAT3, LPCAT4 is also a key component of the Kennedy

pathway and Lands’ Cycle (Kennedy and Weiss, 1956; Lands, 1958;
Lands, 2000). LPCAT4 is also referred to acyl-CoA:lyso-PE
(LPEAT2) due to its lyso-PE activity, but following the
publication by Hishikawa and co-workers it is now only called
LPCAT4 (Hishikawa et al., 2008). LPCAT4 is responsible for
acylating lyso- PC and lyso- PE that make up the cell membrane
(Hishikawa et al., 2008). LPCAT4 is expressed in the brain, testis,
epididymis, and ovary (Cao et al., 2008; Hishikawa et al., 2008).
LPCAT4’s expression is upregulated in colorectal cancer cells. The
ratio of PC to Lyso-PC has been implicated as a biomarker for
colorectal cancer, indicating LPCAT4 as a key factor for improving
standard of care for colorectal cancer (Kurabe et al., 2013).
LPCAT4 is known to regulate chondrogenic differentiation in
skeletal development (Tabe et al., 2017). Suppressing
LPCAT4 activity has recently been implicated to slow down
pancreatic tumor progression (Zhou et al., 2021; Li et al., 2022;
Xie et al., 2022).

1.3.5 LPEAT1/MBOAT1
Lysophosphatidylethanolamine acyltransferase 1 (LPEAT1)

acylates lyso-PE and lyso-PS with oleoyl-CoA (18:1) (Hishikawa
et al., 2008). LPEAT1 is also a contributor to the Lands Cycle and
Kennedy pathway (Kennedy and Weiss, 1956; Lands, 1958; Lands,
2000). The gene for LPEAT1 is located in chromosome 6 and when it
is disrupted leads to brachydactyly-syndactyly syndrome (Dauwerse
et al., 2007). Tabe et al. found that when LPEAT1 expression is
knocked down, the growth of neurites decreased leading the authors
to conclude that LPEAT is implicated in neurite outgrowth and
function (Tabe et al., 2016). An exome screen in infertile Chinese
male patients revealed two mtations in MBOAT1, the gene that
encodes LPEAT1. This mutation, Thr257Met, impedes the
translation of MBOAT1 and leads to a lower expression of
LPEAT1 (Wan et al., 2022). Similar evidence of infertility related
to low LPEAT1 expression has been reported in Drosophila
(Steinhauer et al., 2009).These authors are excited to see more
developments from those labs studying LPEAT1.

1.3.6 LPIAT1/MBOAT7
LPIAT1 is also one of the many acyltransferases in the Lands

cycle (Lands, 1958; Lands, 2000). In a global study of patients with
neurodevelopmental disorders, a significant number of patients had
biallelic or pathogenic variants in LPIAT1 or MBOAT7 (Johansen
et al., 2016). LPIAT1 was also shown to be required for correct brain
development in mice (Lee et al., 2012; Anderson et al., 2013). Loss of
lyso-PI acylation due to LPIAT1/MBOAT7 depletion resulted in a
large increase in triglycerides in hepatocytes (Tanaka et al., 2021).
Recently it has been suggested that LPIAT1 is a major contributor to

liver disease, with a loss-of-function variant near MBOAT7 gene
associated with various liver diseases such as metabolic-associated
fatty liver disease, nonalcoholic fatty liver disease, and alcohol-
associated liver disease (Varadharajan et al., 2022).

1.3.7 HHAT
Hedgehog signaling ligands were first discovered in Drosophila

patterning (Nüsslein-Volhard and Wieschaus, 1980). Hedgehog
acyltransferase (HHAT) catalyzes the lipidation of Hedgehog
proteins (Buglino and Resh, 2008). This lipidation is essential to
maintain Hedgehog signaling. Mutations to Hedgehog signaling
proteins can cause congenital diseases and holoprosencephaly
(Roessler et al., 1997; Briscoe and Thérond, 2013). Abnormal
signaling of this pathway in involved in various malignancies
including pancreatic, breast, and lung cancer (Konitsiotis et al.,
2014; Wu et al., 2017; Chahal et al., 2018). The acylation activity of
HHAT has been directly linked to pancreatic dual adenocarcinoma
(Petrova et al., 2015). Hedgehog proteins are specific substrates for
HHAT and this specificity makes HHAT a favorable pharmaceutical
target. Abnormal Hedgehog signaling can be blocked by HHAT
inhibitors. Multiple inhibitors have been designed to inhibit HHAT
acylation activity, with photochemical probes utilized to identify the
small molecule inhibitor binding site within HHAT (Lanyon-Hogg
et al., 2015a; Lanyon-Hogg et al., 2015b; Lanyon-Hogg et al., 2016;
Rodgers et al., 2016; Lanyon-Hogg et al., 2019; Lanyon-Hogg et al.,
2021). One such example is RU-SKI 43 which was able to inhibit
HHAT function in vitro and in cells with an IC50 of 850 nM (Petrova
et al., 2013). A subsequent study demonstrated off-target
cytotoxicity from RU-SKI 43 in cell studies and showed that a
related compound RU-SKI 201 specifically inhibits HHAT acylation
activity within cells with potencies in the range of 730–870 nM in
independent assays (Rodgers et al., 2016).

1.3.8 PORCN
For Wnt to be trafficked from the ER to the Golgi and bind to its

subsequent receptor Frizzled, it must undergo palmitoleoylation by
PORCN (Takada et al., 2006; Galli et al., 2016). This chemical
modification is required for proper Wnt signaling. Consequently,
PORCN has been implicated as an important target for inhibition in
the Wnt pathway (Chen et al., 2009; Dodge et al., 2012). Wnt signaling
is implicated in several cancers and orphan diseases. Inhibition of
PORCNwas shown to prevent the growth ofmammary tumors inmice
with little toxicity to the mouse (Proffitt et al., 2013). Another PORCN
inhibitor, LGK974, was found to prevent Wnt signaling in murine and
rat mechanistic breast cancer models and human head and neck cell
model (HN30) (Liu et al., 2013). PORCN inhibitors LGK974, ETC-159,
CGX1321, and RXC004 have reached Phase I clinical trials as treatment
for various cancers (Shah et al., 2021). In addition to developmental
cancers, Wnt signaling is also implicated in focal dermal hypoplasia
(FDH). Specifically, this disease is characterized by mutations to
PORCN itself that impact Wnt acylation and subsequent biological
activity (Wang et al., 2007; Barrott et al., 2011).

1.3.9 GOAT
GOAT is a key enzyme in the ghrelin signaling pathway. Ghrelin

signaling was first linked to growth hormone secretion and appetite
regulation (Müller et al., 2015). In addition it has implications in glucose
metabolism, energy homeostasis, and organismal response to starvation
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(Egido et al., 2002; Reimer et al., 2003; Zhao et al., 2010a; Zhao et al.,
2010b; Tong et al., 2010; Goldstein et al., 2011; Heppner et al., 2012; Li
et al., 2012; Yada et al., 2014; Gagnon et al., 2015). Less obviously ghrelin
signaling has also been implicated in cardio-protection, protection
against muscle atrophy, and bone metabolism (Nass et al., 2008;
Müller et al., 2015; Pearson et al., 2019; Tokudome and Kangawa,
2019; Agosti et al., 2020; Wu et al., 2020). Most recently ghrelin
acylation and signaling has been linked to addictive behavior and
alcoholism (Zallar et al., 2017; Farokhnia et al., 2019; Farokhnia
et al., 2020; Farokhnia et al., 2021). Several classes of GOAT
inhibitors that have been developed. The first are peptide-based
drugs that mimic the product and/or substrate of GOAT. These
molecules tend to be potent inhibitors, but have received little
pharmaceutical interest due to their likely limited oral bioavailability
(Iyer et al., 2020; Moose et al., 2020). Amongst small-molecule GOAT
inhibitors, LY3073084 is in clinical trials for treatment of several
metabolism-related disorders and BI 1356225 has been investigated
in Phase 1 trials for treatment of obesity (Bianzano et al., 2023). Several
more small molecule GOAT inhibitors have been reported, some with
picomolar IC50, but these have yet to reach clinical trials (Moose et al.,
2020).

2 Modeling MBOAT structure using
computational methods

Like many integral membrane proteins, MBOATs have proven
to be challenging to solubilize and purify for functional and

structural studies. While recent work has accomplished
significant advances in experimental structural determination of
MBOAT family members, several MBOAT structural models were
created using computational methods. These computational models
proved useful for interpreting and designing biochemical studies of
these enzymes, and comparison to more recently released structures
of MBOAT family members demonstrated the power of
computational methods to generate reasonable models for
MBOATs.

2.1 GOAT

GOAT was computationally modeled using coevolutionary contact
analysis combined with atomistic molecular dynamics (Figure 4)
(Campaña et al., 2019). Coevolutionary contacts analysis relies on
the hypothesis that amino acids that contact each other within a
folded protein will co-evolve to maintain their interaction to create
the most energetically favorable fold (Marks et al., 2012; Ovchinnikov
et al., 2017). Using multiple sequence alignments to identify probable
coevolutionary contacts, Campana and co-workers developed a set of
distance constraints for computationallymodeling humanGOATusing
standard protein folding approaches (Campaña et al., 2019). An array of
30,000 potential structures were created and evaluated for agreement
with coevolutionary contact and topological constraints, leading to a
best-fit structural model. This model was then embedded in a virtual
lipid membrane and energy minimized by molecular dynamics
(Campaña et al., 2019).

FIGURE 4
Computationalmodel of ghrelin O-acyltransferase (GOAT). GOAT has 11 transmembrane helices and a transmembrane catalytic channel containing
amino acids required for activity such as His 338 (green) and Asn 307 (blue) and residues implicated in acyl donor selectivity such as Trp351 and Phe331
(purple). The luminal pore for ghrelin binding and the catalytic channel can be seen in the top view from the luminal face of the membrane (right). Figure
created using Biorender.
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The structural model of human GOAT oriented the N-terminus
within the ER lumen and the C-terminus in the cytoplasm and
contained 11 transmembrane, consistent with a previously
published topology of mouse GOAT (Taylor et al., 2013).
Surprisingly, the GOAT model contains a channel through the
core the enzyme connecting the lumen to the cytoplasm. This
channel contains the conserved catalytically essential
His338 residue, and extensive mutagenesis confirmed the
functional requirement of this channel (Campaña et al., 2019).
This channel and the core transmembrane helices surrounding it
form what is now considered the MBOAT central core fold as
denoted by Ma and co-workers (Ma et al., 2018).

The acyl donor octanoyl-CoA was docked into the GOAT
model, illustrating the coenzyme A binding site on the cytosolic
exposed face of the enzyme. The acyl donor chain penetrates into the
core of GOAT and makes a turn to position it favorably for
interactions with His338 and Asn307 (Campaña et al., 2019).
Upon alanine mutagenesis of two aromatic residues contacting
the distal end of the octanoyl chain, Trp351 and Phe331, GOAT
lost the substrate preference for octanoyl-CoA and preferred longer-
chain fatty acid chains as acyl donors (Campaña et al., 2019). This
GOAT model and associated biochemical studies illustrated the
structural basis for the unique octanoyl acyl chain selectivity
exhibited by this enzyme in modifying ghrelin (Kojima et al.,
1999; Darling et al., 2015), and is particularly important as there
are no reported crystal or cryo-EM structures of GOAT.

2.2 HHAT

An HHAT homology model was published in 2021 by Lanyon-
Hogg and co-workers. The published crystal structure of DltB and
two published topology models for HHAT proved sufficient to
support construction of this homology model (Konitsiotis et al.,
2015; Matevossian and Resh, 2015; Ma et al., 2018). This model
contained the protein/peptide MBOAT central core containing the
catalytically essential His379 and Asp339 residues (Lanyon-Hogg
et al., 2021). In addition, residues Pro212, Val213, and
His215 involved in binding an HHAT inhibitor, (+)-6 IMP-1575,
also located in this central core. The model has 10 integral
membrane helices, with the N-terminus in the cytosol and the
C-terminus in the luminal (Lanyon-Hogg et al., 2021). The
overall shape of the HHAT model is consistent with the tent-like
structure of the other protein/peptide acylating MBOATs. This
model tends to be overlooked as experimental structures of
HHAT were also published in 2021 as described below.

2.3 PORCN

Two computationally-derived structural models for PORCN were
published in 2021. One model by Galli and co-workers was developed
using homologymodeling coupled with partial permeabilization studies
and N-linked glycosylation analysis to establish the PORCNmembrane
topology (Galli et al., 2021). In this study, six different algorithms were
applied to predict the PORCN membrane topology which yielded a
range of 8–11 transmembrane domains. To experimentally determine
the PORCN topology, introduction of antibody epitopes and N-linked

glycosylation sites were used to identify if those epitopes/sites were
exposed to the luminal space or the cytosol. Guided by these combined
analyses, a homology model was developed consisting of nine
transmembrane domains and two reentrant loops with the
N-terminus facing the lumen and C-terminus in the cytosol. This
model contains a funnel on the luminal side of the structure leading to a
transmembrane tunnel, with the conserved His341 residue located in
the center of the funnel (Galli et al., 2021).

A second PORCN computational model was created using
homology modeling guided by the published MBOAT structures
available at the time (Yu et al., 2021). Yu and co-workers used
multiple sequence analysis algorithms and MODELLER to create
their homology model for PORCN, which has ten transmembrane
domains and both the N-terminus and C-terminus located in the
cytoplasm. This model also contains a transmembrane tunnel with
the conserved His341 residue and depicts binding sites for both the
acyl donor and Wnt substrates. Several PORCN inhibitors were also
docked into the homology model, with these inhibitors binding into
the enzyme active site. These two PORCN structural models
provided important context for understanding how this enzyme
binds its substrates and catalyzesWnt acylation, and served as points
for comparison for the experimentally determined structure of
PORCN released the following year, as described below (Liu
et al., 2022).

3 Experimentally determined MBOAT
structures

3.1 DltB

In 2018, Ma and co-workers published the crystallographic
structure of bacterial D-alanyltransferase DltB, the first such
structure of an MBOAT family member (Ma et al., 2018). DltB is
essential for the D-alanylation of cell wall teichoic acids, using an acyl
carrier protein DltC as the acyl donor (Ma et al., 2018). The structure of
this bacterial MBOAT homolog facilitated homology modeling of
PORCN and provided a valuable reference to validate features of the
computational GOAT structural model (Campaña et al., 2019; Galli
et al., 2021; Yu et al., 2021). DltB was expressed in bacteria and
solubilized with n-decyl-β-D-maltopyranoside, with samples for
crystallization solubilized in n-decyl-nonyl-β-D-glucopyranoside (Ma
et al., 2018). The DltB structure contains 17 helices and both the
N-terminus and C-terminus are on the same side of the membrane. Of
the 17 helical domains, 11 are transmembrane domains that form a
ring-shaped cone with a conserved MBOAT structural core and a
transmembrane channel with a funnel on the extracellular interface. At
the time of publication, the DltB structure was described as a funnel
with a fold dissimilar to any available structures. As described below,
subsequent structures of additional MBOATs have revealed that DltB
contains most of the conserved features of this enzyme family.

3.2 hACAT/hSOAT

2020 brought the MBOAT community the first structures of
mammalian MBOATs, with two ACAT1/SOAT1 structures and
two DGAT1 structures published in the same issue of Nature
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followed shortly by a third ACAT1/SOAT1 (Guan et al., 2020;
Long et al., 2020; Qian et al., 2020; Sui et al., 2020; Wang
et al., 2020).

3.2.1 ACAT1/SOAT1
ACAT1/SOAT1 was purified as a tetrameric protein or dimer of

dimers in the three published structures (Figure 5) (Guan et al.,
2020; Long et al., 2020; Qian et al., 2020). The four monomers in the
ACAT1/SOAT1 complex provide sufficient size and mass to allow
cryo-EM analysis of the enzyme complex alone. Each ACAT1/
SOAT1 monomer contains nine transmembrane helices, where
the N-terminus “hugs” or folds into the other N-terminii of the
other monomers forming the tetrameric complex (Guan et al., 2020;
Long et al., 2020; Qian et al., 2020). The tetramer, dimer, and
monomer were tested for catalytic activity and it was found that only
the monomer lacked ACAT1/SOAT1 acylation activity consistent
with the dimer forming the catalytically active unit (Guan et al.,
2020; Qian et al., 2020).

In the structures by Long et al. and Qian et al., several amino
acids (His425, Tyr433, Lys445, Ser456) interact with acyl-CoA and
were annotated to either form the cytosolic interface or a cytosolic
tunnel where the acyl donor binds (Long et al., 2020; Qian et al.,
2020). However, Guan and co-workers did not identify an oleoyl-
CoA binding site as the other structures described. These authors
hypothesize that the inhibitor CI-976 bound in their preparation

leads to an ACAT1/SOAT1 conformation that does not effectively
bind the acyl-CoA donor.

In addition to the residues noted above in the acyl donor
binding site, Asn 421 was also shown to be required for ACAT1/
SOAT1 acylation activity (Long et al., 2020; Qian et al., 2020).
These residues all reside in the catalytic core and have contacts
with acyl-CoA. The structures also reveal two cholesterol binding
sites, with one serving as the substrate binding site for this
cholesterol acyltransferase and the other proposed to serve an
allosteric role (Long et al., 2020). Qian et al. and Guan et al.
suggest evidence of not only a CoA substrate tunnel, but a
transmembrane channel that is hypothesized to bind
cholesterol (Guan et al., 2020; Qian et al., 2020). This channel
converges with the acyl-CoA donor binding site/tunnel at the
conserved His460 residues within the enzyme core. Mutations
along this tunnel were detrimental to activity, consistent with
the proposed role for this feature in acylation catalysis (Qian
et al., 2020).

3.2.2 ACAT2/SOAT2
ACAT2/SOAT2 was purified as a dimer of dimers with each

monomer containing nine transmembrane helices with only a
RMSD of 0.8Å between ACAT1/SOAT1 and ACAT2/SOAT2
(Figure 6) (Long et al., 2021). ACAT2/SOAT2 also contains the
conserved acyl-CoA binding pocket and the hydrophobic core for

FIGURE 5
Independently determined structures of ACAT1/SOAT1 reveal common characteristics. All three published ACAT1/SOAT1 structures are consistent
in identifying a multimeric complex, with at least two structures of the three also containing bound acyl donor and/or an inhibitor bound in the catalytic
core of the enzyme. Different colors denote eachmonomeric unit within the dimeric or tetrameric complexes. Bound inhibitors are shown in purple, and
acyl donor analogs are in orange. Figure created using Biorender.
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cholesterol esterification observed in ACAT1/SOAT1 (Guan et al.,
2020; Long et al., 2020; Qian et al., 2020; Long et al., 2021; Long et al.,
2022). The cholesterol tunnel described for ACAT1/SOAT1 is also
present in ACAT2/SOAT2 and has access to the proposed catalytic

histidine His434 (Long et al., 2021). ACAT2/SOAT2 also contained
an additional cholesterol binding site each monomer separate from
the cholesterol present in the substrate binding site within the
catalytic core. In both ACAT1/SOAT1 and ACAT2/SOAT2 the

FIGURE 6
Structure of ACAT2/SOAT2 bound to the PPPA inhibitor. (A) ACAT2/SOAT2 forms a tetramer, but only requires dimer formation for acylation activity.
Monomers are shown in gray, blue, pink, and purple, and the PPPA inhibitor in each monomer is hot pink. (B)Onemolecule of PPPA binds per monomer
of ACAT2/SOAT2, contacting residues Val489, Gln488, and Phe438. PDB ID: 7N6Q. Figure created using Biorender.

FIGURE 7
DGAT1 is a dimeric enzymewith a central cavity and a lateral gate. Independent structures confirm the formation of functional dimers (blue and dark
gray), with a lateral gate for substrate access denoted by black arrows on each structure’s top view from the luminal face (right). Both structures contain a
non-hydrolyzable CoA analog in orange. (A) Structure byWang and co-workers (PDB ID 6VP0). (B) Structure by Sui and co-workers (PDB ID 6VZ1). Figure
created using Biorender.
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second cholesterol binding site is proposed to be allosteric and
mutation of both of cholesterol binding sites reduce acylation
activity (Long et al., 2020; Long et al., 2021).

3.3 hDGAT1

Human diacylglycerol acyltransferase I (hDGAT1) was resolved
as a dimer and structurally analyzed by cryo-EM (Figure 7) (Sui
et al., 2020; Wang et al., 2020). In the study by Sui and co-workers,
the amphipol PMAL-C8 was used to maintain a homogenous
oligomer structure for structure determination (Sui et al., 2020).
hDGAT1 has nine transmembrane domains with the N-terminus
facing the cytosol and the C-terminus facing the lumen (Sui et al.,
2020; Wang et al., 2020). The hDGAT1 dimer is formed through
hydrogen-bonding and interactions with phospholipids present
between monomers. DGAT1 has a large central core and a lateral
gate that is open to the membrane. Its substrate diacylglycerol
(DAG) can enter the membrane from the lumen or the cytosol.
The conserved histidine His415 is also present in the large central
core where the lateral gate connects to the active site (Sui et al., 2020;
Wang et al., 2020) Oleoly-CoA binds within the central core, but the
acyl binding site is long enough to accommodate longer chain fatty
acids (Sui et al., 2020). Similar to the cholesterol acyltransferases,
DGAT1 has a channel connecting to the lipid membrane and Sui
and co-workers identified a diacylglycerol in this channel that co-
purified with the enzyme. Wang et al. also found a similar lateral
gateway, but could not resolve the density present in this chamber
(Wang et al., 2020). DGAT has a bend in the lateral gateway that is
proposed to select lipid substrates over rigid like structures like

cholesterol (Sui et al., 2020). For a more detailed comparison of these
structures, the authors direct attention to a recent review of DGAT
enzymes (Chen et al., 2022).

3.4 cLPCAT3

While a mammalian lysophosphatidylcholine acyltransferase
structure remains to be reported, Zhang and co-workers reported the
crystal structure of chicken lysophophatidylcholine acyltransferase 3
(LPCAT3) (Figure 8). To obtain this structure, LPCAT3 was
solubilized in undecyl maltoside and two residues at the enzyme
C-terminus were removed to improve homogeneity and stability
resulting structures at 3.4 Å resolution (Zhang et al., 2021).
LPCAT3 has an overall bell shape comprising 11 transmembrane
domains and 6 short helices, with the transmembrane domains
surrounding a central cavity (Zhang et al., 2021). Similar to ACAT1/
SOAT1 and DGAT1, LPCAT3 also contains a lateral tunnel connecting
the central cavity to the surrounding membrane. To characterize the
substrate binding pockets in LPCAT3, cryo-EMwas utilized as substrate-
bound crystals were not obtained. When purified in LMNG for cryo-EM
analysis, cLPCAT3 was oligomeric. The cryo-EM structure was solved in
the presence of both enzyme substrates, the arachidonoyl-CoA (araCoA)
acyl donor and 1-dodecanoyl-sn-glyero-3-phosphocholine (12:0-LPC) in
a dimeric state (Zhang et al., 2021). The cLPCAT3/araCoA structure had
an araCoA in the central cavity with the acyl chain downstream of the
unsaturation “kink” entering a side pocket. This acyl chain conformation
leaves the horizonal tunnel available for the LPCAT3 acyl acceptor,
resulting in araCoA lining up with the conserved His388 residue and acyl
acceptor within the enzyme core (Zhang et al., 2021). Cross-linking

FIGURE 8
cLPCAT3 structural analysis reveals a condition-dependent dimerization state. (A) X-ray crystal structure of cLPCAT3 (PDB ID 7EWT) solved without
substrates bound. For comparison to the dimer structure from cryoelectron microscopy, the rotated image on the right is presented in the same
orientation as the right (blue) subunit of the dimer in left side of panel (B)Dimeric structure of cLPCAT3 solved by cryoelectronmicroscopy (PDB ID 7F40)
with arachidonoyl CoA (orange) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC, lime green) bound to each monomer. Arrows on the
cytosolic top view indicate the lateral/horizontal tunnel for acyl acceptor entry. Figure created using Biorender.
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FIGURE 9
Antibody-based complexes enabled cryoelectron microscopy determination of HHAT structure, revealing substrate binding sites, inhibitor binding,
and an unanticipated heme cofactor. (A) Cryo-EM structure of HHAT by Jiang and co-workers (PDB ID 7MHY) shows the overall structure of the enzyme
complexed to antibodies on both the cytoplasmic and luminal interfaces. (B) Binding to a designed megabody partner enabled the cryo-EM structure of
HHAT by Coupland and co-workers (PDB ID 7Q1U). (C, D) Both groups report the presence of a heme (violet) in their structures; antibodies/
megabody shown in beige, palmitoyl-CoA in orange, and palmitic acid in green. (E)Heme binding site in PDB ID 7Q1U showing heme iron coordination by
Cys324. Figure created using Biorender.

FIGURE 10
Structures of PORCN bound to substrates. (A) Overall structure of PORCN with 11 transmembrane domains and both the N-terminus and
C-terminus in the ER lumen. (B) PORCN in complex with palmitoyl-CoA (orange) (PDB ID 7URA), showing the bound zinc ion (magenta) and palmitic acid
(green). The antibody structural chaperone is shown in wheat. Figure created using Biorender.
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studies support the biological relevance of cLPCAT3dimerization, but the
specific function of monomer-monomer interaction remains to be
understood (Zhang et al., 2021). Looking towards the catalytic
mechanism for lysophospholipid acylation, the authors suggest a
mechanism for acyl transfer wherein the acyl donor and acyl acceptor
are bound simultaneously within the enzyme core. The carbonyl carbon
of the acyl donor is activated by Asn352 in a manner reminiscent of
oxyanion hole interactions in serine proteases, while the sn-2 hydroxyl of
the acyl receiver is activated by His388 acting as a general base. Acylation
proceeds by attack of the activated sn-2 hydroxyl group on the activate
thioester of the acyl donor and resolves with transfer of the acyl chain to
the acceptor (Zhang et al., 2021).

3.5 hHHAT

Human hedgehog acyltransferase (hHHAT) is a monomeric
enzyme whose size is insufficient to support cryo-EM analysis of the
enzyme alone, leading two research groups to employ antibody-
derived binding partners to increase the enzyme-complex size
sufficiently to allow structure determination (Figure 9) (Coupland
et al., 2021; Jiang et al., 2021). The HHAT structures reveal
12 transmembrane helices connected by intervening alpha helical
and loop regions forming the now-canonical “MBOAT fold”. This
aligns the conserved His379 residue with the conserved residues in
the structures of other MBOAT family members (Coupland et al.,
2021; Jiang et al., 2021). Jiang and co-workers modeled a palmitoyl-
CoA acyl donor into the central cavity of the enzyme. The central
cavity connects to the cytosolic face of the ERmembrane (Jiang et al.,

2021). Coupland et al. also resolved a non-hydrolyzable palm-CoA
analog bound within the central tunnel which would span from the
cytosolic to luminal sides of the ER membrane. This places the
palmitoyl-CoA close to the conserved His379 and catalytically
required Asp339 residues (Coupland et al., 2021). Surprisingly,
both structures revealed a heme coordinated to Cys324, with
subsequent mutagenesis and functional studies indicating this
heme is required for enzyme stability (Coupland et al., 2021;
Jiang et al., 2021). Jiang and co-workers suggest a one-step
mechanism where Asp339 activates the N-terminal cysteine of
Hedgehog for nucleophilic attack on the thioester carbonyl atom of
the acyl donor, with the Oxford group supporting further studies before
defining a mechanism (Coupland et al., 2021; Jiang et al., 2021). The
HHAT structure was solved with the IMP1575 inhibitor bound by three
labs (Coupland et al., 2021; Jiang et al., 2021; Liu et al., 2022). IMP1575 is
the most potent reported HHAT inhibitor (Lanyon-Hogg et al., 2021).
This structure depicted a directed binding interaction to the catalytic
His379 and creates a conformational change within the enzyme. This
conformational change rearranges Asp339, Asn443, and Trp335.
Trp335 rotates into the binding pocket, and this residue is responsible
for preventingwater penetration into the enzyme core without palmitoyl-
CoA bound (Coupland et al., 2021).

3.6 hPORCN

In 2022 the structure of PORCN, the acyltransferase responsible for
Wnt acylation (Figure 10), was published by Lie and co-workers (Liu
et al., 2022). Similar to HHAT, PORCN was purified as a monomer

TABLE 1 MBOAT structures from computational and experimental studies.

MBOAT Year Monomer/Multimer PDB ID(s) Reference

Reported

Computational Modeling

GOAT 2019 Monomer n/a Campaña et al. (2019)

PORCN 2020 Monomer n/a Galli et al. (2021)

PORCN 2020 Monomer n/a Yu et al. (2021)

X-ray crystallography

DltB 2018 Monomer 6BUG, 6BUH, Ma et al. (2018)

6BUI

LPCAT3 2021 Monomer 7EWT Zhang et al. (2021)

Cryoelectron microscopy

ACAT1/SOAT1 2020 Tetramer 6VUM Long et al. (2020)

ACAT1/SOAT1 2020 Tetramer 6P2J, 6P2P Qian et al. (2020)

ACAT1/SOAT1 2020 Tetramer 6L47, 6L48 Guan et al. (2020)

DGAT1 2020 Dimer 6VYI, 6VZ1 Sui et al. (2020)

DGAT1 2020 Dimer 6VP0 Wang et al. (2020)

ACAT2/SOAT2 2021 Tetramer 7N6R, 7N6Q Long et al. (2021)

LPCAT3 2021 Dimer 7F3X, 7F40 Zhang et al. (2021)

HHAT 2021 Monomer 7Q1U, 7Q6Z Coupland et al. (2021)

HHAT 2021 Monomer 7MHY Jiang et al. (2021)

HHAT 2022 Monomer 7URF Liu et al. (2022)

PORCN 2022 Monomer 7URA, 7URC, Liu et al. (2022)

7URD,7URE
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which required antibody-derived binding partners to reach the
mass/size range compatible with cryo-EM methods. Consistent
with the computational models described above, PORCN was
determined to contain 11 transmembrane helical domains with
6 intervening alpha helices and 2 beta strands. The Wnt substrate
binding site on the luminal face of the enzyme is composed of
portions of TMs 1, 2, 5, and 7. The catalytic core and central
domain of PORCN containing the conserved His336 residue are
consistent with other protein/peptide acylating MBOAT. A co-
structure with palmitoleoyl-CoA showed this core also binds the
acyl donor substrate in a cavity made by TM7 and TM10. A zinc
ion found coordinated to four residues (Cys370, Cys376, Cys380,
and His382) consistent with previous studies of PORCN,
although the role of zinc in PORCN structure and function
remains to be defined (Lee et al., 2019; Liu et al., 2022). In
addition to the palmitoleoyl-CoA co-structure, one additional
co-structure was solved with a PORCN inhibitor LGK974 bound
(Liu et al., 2013). This co-structure found that Ser332 of PORCN
interacts with the carbonyl oxygen of LGK974 and is consistent
with the acyl-CoA competitive nature of this inhibitor (Liu et al.,
2022).

4 Conclusion and lessons learned from
MBOAT structures

For more than two decades, the MBOAT enzyme family has
posed intriguing challenges across the fields of enzymology,
structural biology, lipid synthesis and remodeling, and
cellular signaling by acylated proteins (Hofmann, 2000). The
recent explosion in MBOAT structures and structural models
spanning all three classes of acylation substrates has
dramatically advanced our understanding of these integral
membrane enzymes (Table 1). These structures have revealed
family-wide shared characteristics, illustrated distinct properties
of enzymes depending on their acyl acceptor substrates, and
brought into clearer focus questions regarding their acylation
mechanisms and the potential for inhibitor creation towards
therapeutic application. Between experimental structural
studies, structure modeling using the approaches described in
this review, and application of AI-based folding prediction
approaches such as AlphaFold (Jumper et al., 2021; Binder
et al., 2022), the prospects for continuing the rapid
advancement in our understanding of the MBOAT enzyme
family are incredibly promising.

Comparison of all reported MBOAT structures supports the
establishment of a “MBOAT core” fold, with a cone shaped
bundle of transmembrane domains surrounding a conserved
core region. This core region, comprising helices and domains
annotated as cytoplasmic loops in topological studies, contains
an open channel or cavity within which sits the conserved
histidine residues that is a hallmark of MBOAT family
members. This central catalytic channel also connects to an
acyl donor binding site exposed to the cytoplasmic space. We
note that, except for the bacterial MBOAT DltB, all other
MBOATS utilize acyl-coenzyme A as their acyl donor
substrates. These enzymes feature catalytic cores that lie
within the plane of their surrounding membranes, presenting

an elegant answer to early questions in the MBOAT field of
whether their active sites would lie on the cytoplasmic or
luminal/extracellular faces of these acyltransferases.

Within the MBOAT family, structural and mechanistic
distinctions are most notable between the protein-modifying
members (GOAT, HHAT, and PORCN) and the small
molecule/lipid modifying enzymes. The protein-modifying
members are active as monomers, which corresponds with
their experimentally solved structures. In contrast, the small
molecule/lipid acylation MBOATs function as dimers or
higher oligomers consistent with the tetramers or dimer of
dimers in the experimentally determined structures. Focusing
on the location of the acyl acceptor entry site and nature of the
catalytic channel, the protein-modifying family members all
contain channels that completely span the membrane with acyl
acceptors (ghrelin, Hedgehog, and Wnt) entering the enzyme
through a luminal pore and acyl donors binding from the
cytoplasmic interface. This catalytic topology matches what
would be expected for modification of proteins transiting the
secretion pathway through the ER lumen. The channel in the
protein/peptide MBOATs structures explains how substrates on
opposites sides of the membrane interact to effect substrate
acylation, a long-outstanding question in the MBOAT
community. Rather than entry from the lumen, acyl acceptors
for the small molecule/lipid modifying family members enter
through a “lateral gate” into the central channel/core that
presumably allows these hydrophobic substrates to transit
from the membrane bilayer into the enzyme active site for
acylation. Several of the small molecule/lipid modifying
MBOATs also contain secondary binding sites for cholesterol
and lipids, although the functional importance of these sites
remains to be conclusively demonstrated. Perhaps the most
surprising finding amongst the MBOAT structures is the heme
binding site within HHAT that impacts enzyme stability. It is
hypothesized the heme binding is essential to stabilize enzyme
structure, rather than participating directly in the enzyme
catalysis of substrate acylation.

Moving forward with this newfound bounty of MBOAT
structural data, our studies should focus on a comprehensive
mechanistic understanding of acyl transfer by MBOATs and
development of potent and specific MBOAT inhibitors. For
example, on the mechanistic front it remains unresolved whether
these enzymes use a one-step direct transfer mechanism with the
acyl chain moving directly to acyl acceptor or a two-step transfer
mechanism involving an acyl-enzyme intermediate. Given the
structural and topological distinctions between the protein- and
small molecule/lipid-modifying MBOAT family members, it will be
interesting to determine whether these distinct enzyme subclasses
also exhibit mechanistic differences. Combination of current and
future structural information with mechanistic insights will guide
the creation of the next-generation of MBOAT inhibitors, which are
needed to explore and exploit the therapeutic potential of these
enzymes for treating a range of human diseases.
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