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Sleep is an essential human physiological behavior, and the quality of sleep directly
affects a person’s physical and mental state. In clinical medicine, sleep stage is an
important basis for doctors to diagnose and treat sleep disorders. The traditional
method of classifying sleep stages requires sleep experts to classify them manually,
and thewhole process is time-consuming and laborious. In recent years,with the help
of deep learning, automatic sleep stage classification has made great progress,
especially networks using multi-modal electrophysiological signals, which have
greatly improved in terms of accuracy. However, we found that the existing
multimodal networks have a large number of redundant calculations in the
process of using multiple electrophysiological signals, and the networks become
heavier due to the use of multiple signals, and difficult to be used in small devices. To
solve these two problems, this paper proposes DynamicSleepNet, a network that can
maximize the use of multiple electrophysiological signals and can dynamically adjust
between accuracy and efficiency. DynamicSleepNet consists of three effective
feature extraction modules (EFEMs) and three classifier modules, each EFEM is
connected to a classifier. Each EFEM is able to extract signal features while
making the effective features more prominent and the invalid features are
suppressed. The samples processed by the EFEM are given to the corresponding
classifier for classification, and if the classifier considers the uncertainty of the sample
to be below the threshold we set, the sample can be output early without going
through the whole network. We validated our model on four datasets. The results
show that the highest accuracy of ourmodel outperforms all baselines.With accuracy
close to baselines, our model is faster than the baselines by a factor of several to
several tens, and the number of parameters of the model is lower or close. The
implementation code is available at: https://github.com/Quinella7291/A-Multi-exit-
Neural-Network-with-Adaptive-Inference-Time-for-Sleep-Stage-Classification/.

KEYWORDS

multimodal, sleep stage, depth-adaptive, feature fusion, attention network,
electrophysiological signals

1 Introduction

Sleep is an essential physiological behavior for human beings, and the quality of sleep
directly affects a person’s physical and mental state. Studies show that people who have
quality sleep also enjoy a healthy body and an energetic mind (Luyster et al., 2012). However,
as the pace of life accelerates and the stress of life increases, many people suffer from sleep
problems, such as sleep interruption and insomnia (Cesari et al., 2021). In sleep medicine,
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doctors can measure the quality of sleep by monitoring the patient’s
sleep stages for better treatment of patients with sleep problems (Pan
et al., 2020). But until today, it is still a challenge for doctors to
efficiently classify the sleep stages.

Polysomnography (PSG) is capable of collecting many
physiological parameters during sleep and is considered by
sleep experts to be the gold standard for measuring sleep
quality and sleep disorders (Rundo and Downey, 2019;
Malekzadeh et al., 2022). In general, PSG collects
electroencephalography (EEG), electrooculography (EOG),
electromyography (EMG) and electrocardiography (ECG) and
other electrophysiological signals (Pandi-Perumal et al., 2014),
and then PSG is divided into separate 30s epochs. According to
the American Academy of Sleep Medicine (AASM) standard,
epochs can be categorized into five different sleep stages: wake
(W); Non-REM1 (N1); Non-REM2 (N2); Non-REM3 (N3); and
rapid eye movement (REM) (Berry et al., 2012). The traditional
classification method requires manual division by sleep experts,
which not only requires the use of a lot of expertise but is also very
time-consuming and highly subjective. Therefore, it is imperative
to study methods for automatic sleep stage classification.

Traditional machine learning algorithms are first applied to
automatic sleep classification, and these methods usually need
manual feature extraction, such as support vector machines
(SVM) (Zhu et al., 2014; Seifpour et al., 2018), Naive Bayes
(Dimitriadis et al., 2018), random forests (RF) (Li et al., 2017),
and ensemble learning based classifiers (Hassan and Bhuiyan, 2016).
Although these models have achieved some results, the feature
extraction requires some prior expertise, resulting in poor
transfer ability of these models (Eldele et al., 2021). In recent
years, deep learning has gradually gained popularity among
researchers due to the excellent performance it has shown and
the low need for prior expertise. Many researchers have proposed
effective deep learning models for automatic sleep classification.
Some researchers have used convolutional neural networks (CNNs)
for feature extraction of EEG, EOG, and EMG signals to achieve
sleep stage classification (Phan et al., 2018b; Yildirim et al., 2019;
Zhang et al., 2020), some researchers have used the ability of
recurrent neural networks (RNNs) to extract features of both
forward and reverse sequences for classification (Phan et al.,
2018a; Phan et al., 2019; Sun et al., 2019), some researchers have
used the property of U-Net networks to handle cyclic alternating
patterns (CAP) for classification, and some researchers have taken
advantage of the Transformer’s ability to model the relationship
between global inputs and outputs for classification (Eldele et al.,
2021; Phyo et al., 2022; Zheng et al., 2022) The researchers tried to
propose models with higher accuracy for sleep stage classification,
and some problems have arisen as a result.

In some recent studies, multimodal networks are very popular
among researchers (Jia et al., 2021; Pradeepkumar et al., 2022;
Zheng et al., 2022) Multimodal networks can accept different
kinds of signals as input (e.g., EEG, EOG, EMG) and assign
weights according to the importance of different signals to the
current sample classification, which improves the classification
accuracy compared to unimodal networks that use only one kind
of signal as the classification basis. Despite the improvement in
accuracy of these models, the greater computational cost in order

to compute multimodal signals is often overlooked, which means
that these models are difficult to use in practice. As an example,
MMASleepNet (Zheng et al., 2022) is a multimodal model that
has recently been designed for sleep stage classification. The
accuracy improvement from using multimodal signals in
MMASleepNet versus the increased floating-point operations
(FLOPs) and params is shown in Figure 1. In fact, it can be
seen from Figure 1 that the accuracy improvement with the
addition of EOG and EMG signals is limited. The accuracy
data are from Section 4.2 of the MMASleepNet paper, and the
FLOPs and Params are calculated by us using the open source
code of the original paper. The source code of the model has not
been changed. In other words, many samples are sufficient for
classification using EEG signals alone, while only those samples
that are difficult to classify using EEG signals alone need to be
classified with the help of EOG and EMG signals. Most
multimodal models may not have considered this.

One approach to improving accuracy, often used in some
research works, is to feed only a fixed number of samples (usually
dozens of samples) into the model. This allows the model to learn
the differences between the samples and thus improve the
classification results (Jia et al., 2021; Phan et al., 2021;
Pradeepkumar et al., 2022). But this approach presents a
challenge for the performance of edge devices. For example, if
20 samples are fed to the edge device at one time, each for 30 s,
with a sampling frequency of 100 Hz. In a short period of time,
the edge device needs to compute up to 60,000 pieces of data, and
this number will be multiplied several times if it is a multimodal
network, and devices with low performance are likely to face the
problem of running out of memory or computational resources
and causing the software to terminate prematurely. Devices that
meet the performance requirements need to continuously collect
data for 600 s before the next computation, during which no data
is available for calculation, and wasting the computational
resources of the device.

Each class of samples has its own unique features. CNN is no
doubt a powerful feature extraction tool, which can extract different
features in each part of the sample. CNN also treats the features of
each channel equally, but not every feature extracted is helpful for
the classification task, and even the local information of each feature
extracted is not equally important for the classification task. Most
works simply use CNN as a tool for feature extraction (Sridhar et al.,
2020; Supratak and Guo, 2020; Phan et al., 2021; Pradeepkumar
et al., 2022) and do not do not take into account the importance of
different features.

To efficiently utilize multimodal signals, reduce unnecessary
computations, focus on important features and suppress
unnecessary features, we propose the DynamicSleepNet, which
consists of three effective feature extraction modules (EFEM) and
multi-exit classifier modules (MECM), as shown in Figure 2. The
main contributions of this paper can be summarized as follows:

(1) This paper proposes a practical speed-tunable sleep stage
classification model, namely DynamicSleepNet, that can be
dynamically tuned between computational speed and
accuracy to match different performance devices. To the
best of our knowledge, this type of speed-tunable dynamic
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model is proposed for the first time in the field of sleep stage
classification.

(2) A sample-wise adaptive mechanism for sleep stage
classification is proposed to solve the problem of
redundant training of samples for multimodal sleep
classification networks. The experimental results on the
four public datasets show that DynamicSleepNet has a
huge reduction in computational cost with very little loss
of accuracy.

(3) This paper develops two auxiliary modules: CBAM block and
SE block, which are used to highlight effective features to
solve the problem of CNN treating all features equally. The
results show that our model outperforms all the baseline

models in terms of accuracy, macro F1-Score, and Cohen’s
Kappa.

2 Materials and methods

2.1 Dataset description

In this section, we describe four public datasets Sleep-EDF-78,
Sleep-EDF-20, ISRUC-1, and ISRUC-3, used to evaluate the validity
of our model. The details of the datasets we used are shown in
Table 1. The data we used in the experiments are all original data
from the dataset and have not been pre-processed.

FIGURE 1
Metrics of MMASleepNet (Zheng et al., 2022) runs on the Sleep-EDF-20 dataset. The accuracy data for the three conditions are from Section 4.2 of
the original paper, and the FLOPs and Params are obtained by running its open source code. The source code of the model has not been changed. (A)
shows the FLOPs and Accuracy of the model for three different input conditions (EEG, EEG + EOG, and EEG + EOG + EMG). The batch size of the input is
256. (B) shows the Params and Accuracy of the model for three different input conditions (EEG, EEG + EOG, EEG + EOG + EMG). The batch size of
the input is 256.

FIGURE 2
The architecture of our proposed model. The model consists of three effective feature extraction modules (EFEM) and multi-exit classifier modules
(MECM). ⊕ is the point-wise addition and ⊗ is the point-wise multiplication. Conv is the convolutional layer, Pool is the pooling layer, MHSA is the multi-
head self-attention layer.
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The Sleep-EDF-78 dataset contains 153 sleep cassette files
collected from 78 subjects aged 20–101. Each sleep cassette file
includes one whole night of PSG recordings, each recording includes
two EEG channels (Fpz-Cz and Pz-Oz), a horizontal EOG channel,
and a submental chin EMG channel. The sampling rate is 100 Hz for
the EEG and EOG channels, and 1 Hz for the EMG channel. Sleep
experts divided the PSG recordings into 30s long epochs according
to the Rechtschaffen and Kales (R&K) (Rechtschaffen, 1968)
guidelines and manually labeled each epoch as one of the
following categories: WAKE, REM, N1, N2, N3, N4,
MOVEMENT, UNKNOWN. To be consistent with previous
studies (Eldele et al., 2021; Phyo et al., 2022; Pradeepkumar
et al., 2022; Zheng et al., 2022), we converted the R&K guidelines
to AASM guidelines by combining classes N3 and N4 into a single
class N3 and excluding the " MOVEMENT ″ and " UNKNOWN ″
classes. In addition, our study excluded continuous wake epochs
longer than 30 min outside of sleep periods, which is also consistent
with previous studies. Altogether 195,479 30s epochs of PSG
recordings were extracted. Similar to Sleep-EDF-78, the Sleep-
EDF-20 dataset collected a total of 42,308 30s epochs from
20 subjects aged 25–34 years.

ISRUC-1 dataset (Khalighi et al., 2016) collected PSG records
from 100 subjects aged 20–85 years, each record included six EEG
channels, F3-A2, C3-A2, O1-A2, F4-A1, C4-A1, O2-A1, two EOG
channels, LOC-A2, ROC-A1, three EMG channels, Chin EMG, left
leg movement, and right leg movement. All channels are sampled at
200 Hz and include a total of 87,187 such PSG recordings, each with
a length of 30s. The sleep stage to which each record belonged was
judged by two sleep experts, and records in which the two experts
judged inconsistent are not included in the data of the experiments
in this paper. ISRUC-3 collected 8,589 PSG records from 10 healthy
subjects aged 30–58 years, consistent with the structure of ISRUC-1.
We also excluded records that are judged inconsistent by two
experts. For all four datasets above, we used 10-fold cross-
validation to obtain our experimental results.

2.2 Method

Figure 2 shows the general framework and inference process of
DynamicSleepNet. DynamicSleepNet uses a three-step approach,
namely “train twice, infer once”. First, only three effective feature
extraction (EFEM) modules and EMG Classifier are trained, and all
samples are classified only by EMG Classifier. Then we freeze the
modules except the EEG Classifier and the EOG Classifier, and train
these two classifiers in combination with the self-distillation
mechanism. Each sample needs to be trained by each of these

three classifiers, but since we freeze most of the model, the actual
time spent is much less than the first time. Finally, in the inference
stage, for each classifier, we measure for each sample on whether the
current inference is credible enough to be terminated. In the
following subsections, we will describe in detail the structure of
our model and how it works.

2.2.1 Effective feature extraction module
EEG signal is the main method to discriminate different sleep

stages. θ wave (4–8 Hz) is stable in the relaxed state with eyes closed
and is an effective feature to distinguish Wake(W) stage. α wave
(8–13 Hz) is common in the late Non-REM1 (N1) stage and is also a
valid feature to distinguish N1 stage. We designed a small convolution
kernel with a kernel size of 64, which can capture 0.64s (F � 1/T) of
information for each convolution window at a sampling rate of 100Hz,
whichmeans we can capture relatively high frequency information like
α; θ waves completely; δ wave (0.5–4 Hz) is the main waveform in
Non-REM3 (N3) stage, which is relatively low-frequency information.
We designed a large convolution kernel with a kernel size of 512 and
each convolution window can capture 5.12s of information, which
means we can completely extract the low frequency information like δ
wave. The effectiveness of this method of extracting different local
features using convolutional kernels of different sizes has been
demonstrated in the previous studies (Supratak et al., 2017; Eldele
et al., 2021; Pradeepkumar et al., 2022). EOG EFEM, EMG EFEM and
EEG EFEM have the same model structure. Taking EEG EFEM as an
example, the structure is shown in Figure 3. The hyperparameters of
the three EFEMs have been uploaded as supplementary material
because the table is too large.

We propose a CBAM block based on CBAM (Woo et al., 2018).
The previous CBAM was specifically designed for extracting image
features by using 2D convolution and pooling layers. Different from
their study, we use 1D convolution and pooling layers for extracting
electrophysiological signal features. The CBAM block consists of a
channel attention module, which aims to adaptively select the most
helpful features for classification, and a spatial attention module,
which aims to enhance the most important parts of each feature.
Taking the CBAM block described in Figure 3 as an example, given
an input I ∈ RL×d, we apply a convolution operation to I such that
F � Conv1D(I), where F � F1, . . . , FC{ } ∈ RC×d, F is the input
feature of the CBAM block, C is the total number of features, d
is the length of Fi(1≤ i≤C), and Conv1D is the convolution
operation in EFEM module.

Next, we move to the channel attention module. The global
spatial information is squeezed by using global average pooling and
global maximum pooling that shrinks F ∈ RC×d to Fc

avg ∈ RC×1 and
F c

max ∈ RC×1. These two features are fed into a shared multilayer

TABLE 1 The details of the dataset.

Dataset Subjects Channel number Samples W N1 N2 N3 REM

Sleep-EDF-78 78 4 195479 65951 (33.7%) 21522 (11.0%) 69132 (35.4%) 13039 (6.7%) 25835 (13.2%)

Sleep-EDF-20 20 4 42308 8183 (19.3%) 2909 (6.9%) 17509 (41.4%) 6006 (14.2%) 7701 (18.2%)

ISRUC-1 100 11 87187 18237 (20.9%) 11110 (12.7%) 27232 (31.2%) 18188 (20.9%) 12420 (14.2%)

ISRUC-3 10 11 8589 1647 (19.2%) 1188 (13.8%) 2660 (31.0%) 1939 (22.6%) 1155 (13.4%)
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perceptron (MLP) network, which then uses sigmoid as the
activation function to produce the channel attention feature map
Mc. The process is shown in Eq. 1.

Mc F( ) � σ MLP AvgPool F( )( ) +MLP MaxPool F( )( )( )
� σ ω1 ω0 Fc

avg( )( ) + ω1 ω0 F c
max( )( )( ) ∈ RC×1 (1)

σ refers to the sigmoid activation function, ω0 and ω1 refer to the
pooling layer and the MLP layer respectively. Then, the feature map
F is scaled by Mc as follows:

F′ � Mc F( ) ⊗ F ∈ RC×d (2)
where ⊗ is the point-wise multiplication. The feature F is processed
by the channel attention module to obtain F′, which is the same
dimension as F. Next, move to the spatial attention module. The
channel information is squeezed by using global average pooling and
global maximum pooling that shrinks F′ ∈ RC×d to Fs

avg ∈ R1×d and
F s

max ∈ R1×d. We concatenate these two features and apply a
convolution operation to the concatenated feature, then uses
sigmoid as the activation function to produce the spatial
attention feature map Ms. The process is shown in Eq. 3.

Ms F′( ) � σ f7 AvgPool F′( );MaxPool F′( )[ ]( )( )
� σ f7 Fs

avg;F
s
max( )( ) ∈ R1×d (3)

f7 refers to the convolution operation with the kernel size of 7.
Finally, the feature F′ is scaled by Ms as follows:

F″ � Ms F′( ) ⊗ F′ ∈ RC×d (4)
F″ is the final feature after CBAM block processing, and has

adaptively selected the most important features and the most
important part of each feature for classification.

2.2.2 Multi-exit classifier module
The structure of the three classifiers is shown in Figure 1, and

they are nearly identical, with each classifier containing two core
blocks: SE block, transformer encoder block.

2.2.2.1 SE block
Our SE block is proposed based on SENet (Hu et al., 2020) and

different from their study, we extend the convolution and pooling
operations to the 2D plane. Taking the EMG Classifier module as an
example, given a feature map F � [FEEG, FEOG, FEMG] ∈ RL×C×d, L is
the type of input signal, the SE block can adaptively assign different
weights to the three signals according to the importance of the EEG,
EOG, and EMG signals to the classification task. The SE block is
similar to the CBAM block. First, two convolution operations are
applied to F such that F′ � Conv2D2(Conv2D1(F)) and F′ has the

FIGURE 3
EEG EFEM for extracting effective features. Each convolution block is followed by a Batch Normalization. Conv1D (64,64,8) refers to using 1D
convolution layer with 64 filters, a kernel size of 64 and a stride of 8. Similarly,MaxPooling (8,8) refers to a maxpooling layer with a kernel size of 8 and a
stride of 8. The leaky rectified linear unit (Leaky − ReLU) refers to the activation function of each convolutional layer.
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exact dimensions as the input feature map. Next, global average
pooling is performed along the spatial dimension that shrinks
F′ ∈ RL×C×d to Favg

′ ∈ RL×1×1, and two additional 2D convolutional
layers replace the full connection layers in SENet to reconstruct Favg

′.
The operations are formalized as follows:

Mse F′( ) � σ Conv2D2 Conv2D1 AvgPool F′( )( )( )( ) ∈ RL×1×1 (5)
Mse(F′) refers to the feature map produced by F′ after pooling

and convolution operations. Then, the final output F″ of the SE
block is:

F″ � F ⊕ Mse F′( ) ⊗ F′( ) ∈ RL×C×d (6)
where ⊕ is the point-wise addition and ⊗ is the point-wise
multiplication.

2.2.2.2 Transformer encoder block
Figure 4 shows the structure of the Transformer encoder block.

Multi-head self-attention has H headers, H different linear
projections are applied to the input, and the result is mapped
to parallel queries, keys, and values. Next, the dot-product is
performed on Qi and Ki to calculate a similarity score. A
normalization operation is applied to stabilize the gradient.
Then, the Softmax operation calculates the weight for Vi, and
another dot-product is applied. Finally, all the Attni are
concatenated together to produce the final output. The
operations can be formulated as follows:

Qi � XWQ
i , Ki � XWK

i , Vi � XWV
i , 0< i≤H (7)

Attni � σ
Qi · KT

i��
d

√( ) · Vi (8)

MHSA � Attn1;Attn2; . . . ;AttnH[ ] (9)
where X ∈ RLC×d is the input of the transformer encoder block, and
LC refers to the product of signal type and feature.
WQ

i ,W
K
i ,W

V
i ∈ Rd× d

H are learnable weights of linear projections,
d is the length of X. The operations of the layer normalization and
position-wise feed-forward network are shown as follows:

IO1 � LayerNorm MHSA ⊕ X( ) (10)
IO2 � FC1 FC0 IO1( )( ) ⊕ IO1 (11)
O � LayerNorm IO2( ) ⊕ X (12)

Then O is fed into two linear layers for the final classification.

2.2.3 Model training and inference
Dynamic neural networks (DNNs) aim to reduce the

computational effort and increase the model generalization
capability, and multi-exit is also one of the techniques of
dynamic neural networks. The idea of multi-exit has been widely
used in the fields of computer vision (CV) and natural language
processing (NLP) (Liu et al., 2020; Wang et al., 2021), but to our
knowledge, no multi-exit network has been specifically designed for
the sleep stage classification task to reduce the computational cost of
the network as of yet. In this section, we introduce the training and
inference process of DynamicSleepNet.

2.2.3.1 Single-exit training
Our model applies a three-step approach, namely “train twice,

infer once”. The first training is consistent with the training process
of most single-exit networks. This stage trains only three EFEMs and
the EMG Classifier which is also the final classifier and the other
classifiers are not enabled. EMGClassifier determines the class of the
sample by using a combination of the three signals, so it has the
highest classification accuracy.

2.2.3.2 Multi-exit training
Unlike most single exit networks, the second training needs to

freeze the parameters of the three EFEMs and the EMG Classifier,
which means that this part of the network is not involved in this
training. Only the EEG Classifier and the EOG Classifier are trained
in this stage. The EEG Classifier uses only the EEG signal to classify
samples, and the EOG Classifier uses only the EEG and EOG signals
to classify samples, so their classification accuracy is lower than the
EMG Classifier. To improve the accuracy of the two classifiers, we
combined the self-distillation mechanism in the training process.

FIGURE 4
The structure of the Transformer encoder block. FC refers to the fully connected layer, and the position-wise feed-forward network (FF) consists of
these two FC layers.
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Knowledge distillation is a method of training a lightweight
small model by using supervised information from a larger model
with better performance (called teacher model) to enable the smaller
model (called student model) to achieve better performance and
accuracy (Goldberger et al., 2000; Gou et al., 2021). Unlike
knowledge distillation, self-distillation does not require training
with the aid of a large model, but uses the deeper network
structures in its own model as the teacher model to train the
shallower network structures in the model (Zhang et al., 2021).
Inspired by the idea of self-distillation, we use the final classifier
(EMG Classifier) of DynamicSleepNet as the teacher classifier and
the two middle classifiers (EEG Classifier and EOG Classifier) as the
student classifier. The training process in this stage is as follows.

The training samples are successively classified by the EEG
Classifier, the EOG Classifier, and the EMG Classifier, and the
students’ predictions ps1 and ps2 are compared with the teachers’
predictions pt respectively, with the differences measured by KL-
Divergence in Eq. 13.

DKL ps, pt( ) � ∑N

i�1ps i( ) · log ps i( )
pt j( ) (13)

N refers to the number of classification categories, ps refers to
the probability distribution of the output from student-classifier.
The sum of the KL-Divergences of the two student classifiers is used
as the total loss for self-distillation, as shown in Eq. 14.

Loss ps1, ps2, pt( ) � DKL ps1, pt( ) +DKL ps2, pt( ) (14)

2.2.3.3 Adaptive inference
With two training steps, DynamicSleepNet is ready to perform

inference in an adaptivemanner. At each classifier, wemeasure whether
the inference for each sample is credible enough to be terminated early.
Given an input sequence, the uncertainty of a student classifier’s output
ps is computed with a normalized entropy in Eq. 15.

Uncertainty � ∑N
i�1ps i( )logps i( )

log 1
N

(15)

For a classifier, the lower the uncertainty, the higher the
probability that it is convinced the sample belongs to a certain
class. When the uncertainty of a sample is lower than a threshold we
set (we call it “Speed”), the sample will no longer be processed by the
deeper network and will be directly classified as a class with the
highest probability of classification, as shown in Figure 1.

Intuitively, with a higher Speed, fewer samples will be sent to
deeper layers, and overall inference speed will be faster, and vice
versa. Therefore, Speed can be used as a halt value for weighing the
inference accuracy and efficiency.

3 Experiment

3.1 Baseline

Our model has been compared with six baseline models:
AttnSleepNet, Epoch_CMT, MMASleepNet, DeepSleepNet-Lite,
TinySleepNet, and SalientSleepNet. AttnSleepNet, Epoch_CMT,
MMASleepNet and our model all adopt the model structure of

CNN + Transformer with similar design concepts, and they are all
single-sample input models. For these reasons we chose these three
models to compare with our model: DeepSleepNet-Lite,
TinySleepNet and SalientSleepNet are all models designed with
lightweighting as a design concept, so we compared with the
above three models in terms of both Parameters and Accuracy.
Brief descriptions for these models are as follows:

AttnSleepNet (Eldele et al., 2021): AttnSleepNet uses CNN to
extract features of EEG signals, followed by an adaptive feature
recalibration module to distinguish the importance of features, and
finally uses a multi-head self-attention mechanism for classification.

SleepPrintNet (Jia et al., 2020): A multimodal model with
dedicated filters constructed for each of the three signals EEG,
EOG, and EMG, emphasizing the differences in multimodal
signal characteristics.

MMASleepNet (Zheng et al., 2022): Feature extraction is performed
for the three signals of EEG, EOG, and EMG, and the attention
mechanism is used to distinguish the importance of the three
signals, and then using multi-headed self-attention for classification.

DeepSleepNet-Lite (Fiorillo et al., 2021): Using a lightweight
feed-forward sleep scoring architecture and capturing samples with
high uncertainty using Monte Carlo dropout sampling technique to
improve the performance of the model.

TinySleepNet (Supratak and Guo, 2020): An efficient CNN +
LSTM structure is used to classify single-channel EEG signals, which
reduces the number of parameters and computational resources
consumed by the model.

SalientSleepNet (Zheng et al., 2022): A U2-net based fully
convolutional network to extract features from EEG, EOG
signals. We use the revised SalientSleepNet as a comparison.

3.2 Evaluation metrics

Floating-point operations (FLOPs) is ameasure of the computational
complexity of a model, independent of the environment (CPU, GPU,
TPU) in which the model is running, and it indicates the number of
floating-point operations when a single process runs themodel.With the
same accuracy, the lower the FLOPs, the shorter the time taken for
calculation and the more suitable for clinical use.

Parameters (Params) is a measure of how much memory a
model takes up at runtime. If a device has less memory than the
model needs to run, the model cannot run on the device. The lower
the number of Params, the more suitable it is for deployment on
small devices with low performance at the same accuracy.

The other three evaluation metrics are accuracy (ACC),
macro-averaged F1-score (MF1), and Cohen’s Kappa (κ).
Given True Positives (TPi), False Positives (FPi), True
Negatives (TNi), and False Negatives (FNi) for the i-th class,
ACC, MF1, and κ are defined as follows:

ACC � ∑T
t�1TPt

N
(16)

MF1 � 1
T
∑T
t�1

2 × Pret × Rect
Pret + Rect

(17)

κ � ACC − pe

1 − pe
(18)
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where pe � ∑T

t�1at × bt
N × N , Pret � TPt

TPt × FPt
, Rect � TPt

TPt × FNt
. T refers to the

number of classes, and N refers to the total number of samples. at
refers to the number of samples of class t, and bt refers to the number
of samples predicted as the class t.

4 Results

4.1 Our model performance

Figures 5A–D show the variation curves of the total accuracy
and the accuracy of EEG classifier, EOG classifier, and EMG

classifier with the growth of Speed in the four datasets of Sleep-
EDF-20, Sleep-EDF-78, ISRUC-1, and ISRUC-3 for our model,
respectively. Overall, the accuracy of the EEG classifier is
consistently higher than the other two classifiers, not because this
classifier outperforms the other two classifiers, as we described in
Section 2.2.3.3, when the uncertainty of a sample is lower than the
Speed, that sample can be output earlier and does not need to go into
a deeper network. Therefore, these samples with lower classification
difficulty are outputted through the EEG classifier, resulting in the
EEG classifier outperforming the other two classifiers. The EOG and
EMG classifiers improve the performance of the classifier by training
with the help of more kinds of information, but the samples that pass
through these two classifiers are classified with higher difficulty,
resulting in the poorer performance of the classifier. From Figure 7C,
we can see that the performance of EMG and EOG classifiers is
stronger than that of EEG classifier.

Figures 5E–H show the proportion of samples output from each
exit in the four datasets Sleep-EDF-20, Sleep-EDF-78, ISRUC-1,
ISRUC-3 to all samples. Comparing with Figures 5A–D, we can find
that 71.11%, 55.27%, 50.50%, and 48.76% of the data in the four
datasets can obtain more than 95% accuracy with very low
computational resources consumption in the EEG classifier; With
the uncertainty less than or equal to 0.05, 52.43%, 47.59%, 50.50%,
and 33.71% of the data in the four datasets are also classified using
the EEG classifier with 97.47%, 96.66%, 95.00%, and 98.58%
accuracy at very low computational resource consumption,
respectively. The above results show that the EEG classifier is
sufficient to classify half of the data in Sleep-EDF-78, ISRUC-1,
and ISRUC-3 with an accuracy of more than 95%, and nearly three-
quarters of the data in Sleep-EDF-20 can be classified by the EEG
classifier. In the Sleep-EDF-20, Sleep-EDF-78, and ISRUC-1
datasets, half of the data can be classified by the EEG classifier
with higher accuracy, and more than one-third of the data in
ISRUC-3 can be classified by the EEG classifier with an accuracy
of 98.58%. These results prove our point in Section 1 that there are a

FIGURE 5
Performance of our model. (A–D) shows the variation curves of the accuracy of EEG classifier, the accuracy of EOG classifier, the accuracy of EMG
classifier and the total accuracy in the four datasets of Sleep-EDF-20, Sleep-EDF-78, ISRUC-1, ISRUC-3, respectively. (E–H) correspond to (A–D) and
show the percentage of samples output from the three classifiers in the four datasets.

FIGURE 6
Variation curves of FLOPs with Speed in the four datasets of
Sleep-EDF-20, Sleep-EDF-78, ISRUC-1, ISRUC-3.
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large number of samples with low classification difficulty in the
dataset that are sufficient for classification using only the EEG
classifier, and adding more electrophysiological signals would
only result in a significant waste of resources.

We measured the FLOPs of the model in four datasets, as shown
in Figure 6, under the condition of Speed = 0, all data are classified by
the EMG classifier only, and the EEG and EOG classifiers do not
perform any computation. The FLOPs of the model are about
10.28G in Sleep-EDF-20 and Sleep-EDF-78, and about 12.46G in
ISRUC-1 and ISRUC-3. When the Speed increases to 0.1, a large
number of samples with low classification difficulty are output early
via the EEG and EOG classifiers without going through the whole
network. The FLOPs of the model decreased by 21.76% and 23.26%
in Sleep-EDF-20 and Sleep-EDF-78 to 8.04G and 7.88G,
respectively, and by 23.58% and 21.77% in ISRUC-1 and ISRUC-
3 to 9.53G and 9.75G, respectively, while the accuracy decreased by
only 0.26%,0.093%,1.21%, and 0.37%, respectively. If the demand for

accuracy is insensitive, the FLOPs of the model decrease by
32.74%,32.63%,32.19%,32.82% for 6.91G,6.92G,8.45G,8.37G in the
four datasets with Speed = 0.5. Meanwhile, the accuracy decreases by
1.45%,1.35%,3.49%,4.07%. In Section 4.2 we will make a full
comparison with other models.

4.2 Results comparison with baselines

Table 2 shows the results of our models compared with the
baseline on three primary (ACC, MF1, κ) and five secondary
(W, N1, N2, N3, and REM) metrics. Because not all baselines
used the ISRUC-1 and ISRUC-3 datasets, our data are derived
from other work (Zheng et al., 2022) complementing the
baseline work. MMAsleepNet, SalientSleepNet, and
SleepPtintNet are all multimodal models, therefore, on the
whole, these three models perform better. Our model benefits

TABLE 2 Comparison of DynamicSleepNet and baselines.

Dataset Method Per-class F1-score Overall

W N1 N2 N3 REM ACC MF1 κ

SleepEDF-20 AttnSleepNet 79.02 32.70 87.03 85.67 72.36 79.10 71.35 71.43

MMASleepNet 92.20 54.75 89.70 92.20 86.41 87.30 82.65 82.63

DeepSleepNet-Lite 87.10 44.40 87.90 88.20 82.40 84.00 78.00 78.00

SalientSleepNet 90.79 49.86 89.03 84.77 88.44 86.28 80.58 81.02

SleepPtintNet 88.77 47.99 86.72 86.21 80.26 83.08 77.99 76.67

Ours (Speed = 0) 93.41 57.15 87.89 90.12 87.17 87.86 83.15 83.47

SleepEDF-78 AttnSleepNet 92.08 36.98 84.70 81.63 73.61 81.12 73.80 73.75

MMASleepNet 92.85 49.05 84.94 81.26 79.75 82.67 77.60 76.12

DeepSleepNet-Lite 91.50 46.00 82.90 79.20 76.40 80.30 75.20 73.00

SalientSleepNet 92.28 50.52 84.37 71.17 84.19 82.61 76.51 75.92

SleepPtintNet 79.12 40.12 58.22 68.80 73.67 81.64 63.99 56.02

Ours (Speed = 0) 92.32 48.11 85.77 82.19 80.26 83.03 77.73 76.44

ISRUC-1 AttnSleepNet 84.19 43.80 71.52 81.93 61.12 71.65 68.53 63.70

MMASleepNet 87.83 54.03 77.05 85.29 83.31 79.02 77.51 73.02

DeepSleepNet-Lite - - - - - - - -

SalientSleepNet 85.24 51.34 76.41 83.50 79.25 76.95 75.15 70.31

SleepPtintNet 79.12 40.12 58.22 68.80 73.67 65.40 63.99 56.02

Ours (Speed = 0) 89.53 57.22 81.96 87.31 85.53 83.72 80.31 78.79

ISRUC-3 AttnSleepNet 67.58 26.91 66.31 84.08 54.33 64.24 59.85 54.88

MMASleepNet 88.87 59.57 82.00 87.00 86.87 81.92 80.64 76.79

DeepSleepNet-Lite - - - - - - - -

SalientSleepNet 78.37 50.64 77.33 87.99 75.47 76.11 73.96 69.39

SleepPtintNet 85.15 52.53 74.95 87.28 74.84 76.88 74.95 70.29

Ours (Speed = 0) 89.86 62.39 80.70 90.68 84.64 82.89 81.65 79.08

The best values on each dataset are highlighted in bold.
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from the use of attention-like mechanisms for channel, space,
and signal type, so our model is slightly better than the other
baselines in the Sleep-EDF-20 and Sleep-EDF-78 datasets with
87.86% and 83.03% accuracy, and has some advantages in other
metrics as well. In the ISRUC-1 and ISRUC-3 datasets, our
model has more obvious advantages, with the accuracy of
83.72% and 82.89%, and the other metrics are almost better
than the baseline completely. These results show that our
proposed model has better performance in the field of sleep
stage classification.

To validate the advantages of our model in terms of accuracy,
speed and parameters, we use AttnSleepNet, SalientSleepNet,
SleepPrintNet, and MMASleepNet for comparison with our
model. Only AttnSleepNet is a single modal model, the other
three are all multimodal models. To make the comparison fair,
all data are measured in the Pytorch framework, and all parameters
of the baseline model are kept the same as before. The number of
samples entering into the model is uniformly set to 256. Due to the
same sample structure of Sleep-EDF-20 and Sleep-EDF-78, and the
same sample structure of ISRUC-1 and ISRUC-3, the baselines have

TABLE 3 Comparison of Accuracy, FLOPs (speedup), and Params of DynamicSleepNet and baselines.

Method/
Dataset

SleepEDF ISRUC

Accuracy
(20)

Accuracy
(78)

FLOPs
(Speedup)

Params Accuracy
(1)

Accuracy
(3)

FLOPs Params

AttnSleepNet 79.10 81.12 20.32G 1.09M 71.65 64.24 26.26G 1.12M

Ours (Speed = 0.00) 87.86 (+8.76) 83.03 (+1.91) 10.28G (1.98x) 1.29 M
(+0.20)

83.72 (+12.07) 82.89 (+18.65) 12.40G
(2.12x)

1.40 M
(+0.28)

Ours (Speed = 0.10) 87.60 (+8.50) 82.93 (+1.81) 7.89G (2.56x) 1.29 M
(+0.20)

82.50 (+10.85) 82.51 (+18.27) 9.53G (2.76x) 1.40 M
(+0.28)

Ours (Speed = 0.60) 85.81 (+6.71) 81.09 (−0.03) 6.86G (2.96x) 0.97 M
(−0.12)

79.54 (+7.89) 77.81 (+13.57) 8.35G (3.14x) 1.40 M
(+0.28)

Ours (Speed = 0.73) 85.59 (+6.49) 80.45 (−0.67) 6.78G (3.00x) 0.97 M
(−0.12)

79.15 (+7.50) 77.78 (+13.54) 8.26G (3.18x) 1.07 M
(−0.05)

SalientSleepNet 86.28 82.61 113.52G 1.18M 76.95 76.11 226.92G 1.18M

Ours (Speed = 0.00) 87.86 (+1.58) 83.03 (+0.42) 10.28G (11.04x) 1.29 M
(+0.11)

83.72 (+6.77) 82.89 (+6.78) 12.40G
(18.30x)

1.40 M
(+0.22)

Ours (Speed = 0.10) 87.60 (+0.32) 82.93 (+0.32) 7.89G (14.39x) 1.29 M
(+0.11)

82.50 (+5.55) 82.51 (+6.40) 9.53G
(23.81x)

1.40 M
(+0.22)

Ours (Speed = 0.60) 85.81 (−0.47) 81.09 (−1.52) 6.86G (16.55x) 0.97 M
(−0.21)

79.54 (+2.59) 77.81 (+1.70) 8.35G
(27.18x)

1.40 M
(+0.28)

Ours (Speed = 0.73) 85.59 (−0.69) 80.45 (−2.37) 6.78G (16.74x) 0.97 M
(−0.21)

79.15 (+2.20) 77.78 (+1.67) 8.26G
(27.47x)

1.07 M
(−0.11)

SleepPrintNet 83.08 81.64 21.54G 5.64M 65.40 76.88 48.31G 9.97M

Ours (Speed = 0.00) 87.86 (+4.78) 83.03 (+1.39) 10.28G (2.10x) 1.29 M
(−4.35)

83.72 (+18.32) 82.89 (+6.01) 12.40G
(3.90x)

1.40 M
(−8.57)

Ours (Speed = 0.10) 87.60 (+4.52) 82.93 (+1.29) 7.89G (2.73x) 1.29 M
(−4.35)

82.50 (+17.10) 82.51 (+5.63) 9.53G (5.07x) 1.40 M
(−8.57)

Ours (Speed = 0.60) 85.81 (+2.73) 81.09 (−0.55) 6.86G (3.14x) 0.97 M
(−4.67)

79.54 (+14.14) 77.81 (+0.93) 8.35G (5.79x) 1.40 M
(−8.57)

Ours (Speed = 0.73) 85.59 (+2.51) 80.45 (−1.19) 6.78G (3.18x) 0.97 M
(−4.67)

79.15 (+13.75) 77.78 (+0.90) 8.26G (5.85x) 1.07 M
(−8.90)

MMASleepNet 87.30 82.67 10.22G 1.17M 79.02 81.92 18.23G 1.58M

Ours (Speed = 0.00) 87.86 (+0.56) 83.03 (+0.36) 10.28G (0.99x) 1.29 M
(+0.12)

83.72 (+4.70) 82.89 (+0.97) 12.40G
(1.47x)

1.40 M
(−0.18)

Ours (Speed = 0.10) 87.60 (+0.30) 82.93 (+0.26) 7.89G (1.30x) 1.29 M
(+0.12)

82.50 (+3.48) 82.51 (+0.59) 9.53G (1.91x) 1.40 M
(−0.18)

Ours (Speed = 0.60) 85.81 (−1.49) 81.09 (−1.58) 6.86G (1.49x) 0.97 M
(−0.20)

79.54 (+0.52) 77.81 (−4.11) 8.35G (2.18x) 1.40 M
(−0.18)

Ours (Speed = 0.73) 85.59 (−1.71) 80.45 (−2.22) 6.78G (1.51x) 0.97 M
(−0.20)

79.15 (+0.13) 77.78 (−4.14) 8.26G (2.21x) 1.07 M
(−0.51)
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the same results of FLOPs in Sleep-EDF-20 and Sleep-EDF-78, and
the same results of FLOPs in ISRUC-1 and ISRUC-3. Our model is
dynamic, and even if the datasets have the same structure, minor
biases can occur due to the different depths when the samples exit
the network. To avoid overly complicated table, we only show the
FLOPs of Sleep-EDF-78 and ISRUC-1 because these two datasets
have enough samples and are therefore more stable.

The comparison results are shown in Table 3. Our model is about
3 times faster than AttnSleepNet under the condition that the
accuracy is higher or close to it, while the number of parameters
is lower or approximate. It is 14.39 times faster and 23.81 times faster
than SalientSleepNet under the condition that the accuracy is higher
than it, while the number of parameters is close. While the accuracy is
higher than SleepPrintNet, the speed is 3–5 times higher and the
number of parameters is much lower. Under the condition that the
accuracy is higher than MMASleepNet, the speed is 30%–90% higher
than it while having a close number of parameters. These results are
sufficient to show that our model is more efficient andmore flexible to
meet a wider range of needs in the field of sleep medicine.

4.3 Ablation study

CBAM and SELayer are two important blocks for extracting
effective features, while adaptive multiple exits and self-distillation
are two important mechanisms for achieving sample early exit, and
to verify their effectiveness, we conduct ablation studies using the
Sleep-EDF-78 dataset as an example. In order to be able to fully
demonstrate the effectiveness of CBAM and SELayer, we will close
all exits other than the final exit so that CBAM and SELayer can be
maximally utilized. Figure 7A shows the results of removing CBAM
and SELayer compared with DynamicSleepNet. The results show
that the accuracy of the model drops dramatically after removing
CBAM or SELayer, so CBAM and SELayer are very important for
our model.

To research the effect of adaptive inference on our model, we
conduct two experiments independently, one fixing all samples to be
output only from the EEG classifier, and the other fixing all samples
to be output both the EEG and EOG classifiers. The results of
comparison with DynamicSleepNet are shown in Figure 7B. The

results show that the adaptive inference mechanism enables a
portion of the samples to enter the deeper layers of the network,
thus improving the overall accuracy of the model.

Figure 7C shows the comparison results of EEG classifier and
EOG classifier under the conditions without and with self-
distillation, respectively, and the results show that self-distillation
can improve the classification accuracy of early exits.

5 Conclusion and future work

In this study, we propose a multi-exit neural network with
adaptive inference for sleep stage classification. By setting exits in
different depths of the network and allowing samples to be output
earlier, the classification speed of the model is greatly improved
without much loss of accuracy. The model we designed allows
simple samples with significant features to be output earlier, so
we added CBAM blocks to the convolution process to make the
effective features more prominent and the invalid features
suppressed. In the first part of each classifier, we also use
SELayer to enable the network to distinguish the importance of
several electrophysiological signals for classification. In the ablation
study, we demonstrated the effectiveness of these two modules. As
far as the results are concerned, our proposed model outperforms all
the bases in terms of accuracy. And under the condition that the
accuracy is close, the computational speed of our model is several
times faster than baselines and has a smaller number of parameters.

The results of this paper also point the way for our future work
mainly on two points: 1) Improving the generalizability of our
model. 2) Improving our model for a small number of samples
that are difficult to be classified correctly. This is the key to
improving the accuracy of the model.
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FIGURE 7
Results of ablation studies. (A) is the result of removing CBAM or SELayer compared with DynamicSleepNet. (B) is the result of classifying the Sleep-
EDF-78 dataset using only the EEG classifier or using both EEG and EOG classifiers.(C) is the result of the comparison between not using self-distillation
and using self-distillation.
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