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Background: Pulse transit time (PTT) is a key parameter in cuffless blood pressure
measurement based on photoplethysmography (PPG) signals. In wearable PPG
sensors, raw PPG signals are filtered, which can change the timing of PPG
waveform feature points, leading to inaccurate PTT estimation. There is a lack
of comprehensive investigation of filtering-induced PTT changes in subjects with
different ages.

Objective: This study aimed to quantitatively investigate the effects of aging and
PTT definition on the infinite impulse response (IIR) filtering-induced PTT changes.

Methods: One hundred healthy subjects in five different ranges of age
(i.e., 20–29, 30–39, 40–49, 50–59, and over 60 years old, 20 subjects in
each) were recruited. Electrocardiogram (ECG) and PPG signals were
recorded simultaneously for 120 s. PTT was calculated from the R wave of
ECG and PPG waveform features. Eight PTT definitions were developed from
different PPG waveform feature points. The raw PPG signals were preprocessed
then further low-pass filtered. The difference between PTTs derived from
preprocessed and filtered PPG signals, and the relative difference, were
calculated and compared among five age groups and eight PTT definitions
using the analysis of variance (ANOVA) or Scheirer–Ray–Hare test with post hoc
analysis. Linear regression analysis was used to investigate the relationship
between age and filtering-induced PTT changes.

Results: Filtering-induced PTT difference and the relative difference were
significantly influenced by age and PTT definition (p < 0.001 for both). Aging
effect on filtering-induced PTT changes was consecutive with a monotonous
trend under all PTT definitions. The age groups with maximum and minimum
filtering-induced PTT changes depended on the definition. In all subjects, the PTT
defined by maximum peak of PPG had the minimum filtering-induced PTT
changes (mean: 16.16 ms and 5.65% for PTT difference and relative difference).
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The changes of PTT defined by maximum first PPG derivative had the strongest
linear relationship with age (R-squared: 0.47 and 0.46 for PTT difference relative
difference).

Conclusion: The filtering-induced PTT changes are significantly influenced by age
and PTT definition. These factors deserve further consideration to improve the
accuracy of PPG-based cuffless blood pressure measurement using wearable
sensors.

KEYWORDS

cuffless blood pressure measurement, pulse transit time (PTT), photoplethysmography
(PPG), filtering, waveform feature

1 Introduction

Photoplethysmography (PPG) signal reflects the volumetric
changes in microcirculation. PPG pulse waveform characteristics
contain vital information regarding cardiovascular systems and
associated diseases. The PPG technology has been widely used in
physiological measurement of important cardiovascular parameters,
e.g., heart rate, heart rate variability, and blood pressure (Allen,
2007; Liu et al., 2019; Khalid et al., 2020; Khalid et al., 2022).
Nowadays, the development of wearable technology further
expanded the application scenarios of PPG-based mobile health
monitoring in daily life.

Among many, pulse transit time (PTT) is one of the most
important characteristics provided by PPG pulse waveform. PTT
refers the time for heart pulse wave (PW) to propagate through a
length of the arterial tree. It can be approximated as the interval
between the R wave of electrocardiogram (ECG) and the
characteristic point of PPG signal (e.g., the end-of-diastolic
valley) in the same cardiac cycle. PTT (negatively related to
blood pressure) and associated pulse wave velocity (PWV) have
been extensively used to develop novel cuffless and continuous
blood pressure measurements using wearable PPG sensors (Ding
and Zhang, 2019). In early works, several PPG pulse wave
characteristics have been extracted to determine PTT, including
PPG valley (Babchenko et al., 2000; Nitzan et al., 2002; Allen et al.,
2008), PPG peak (Zhang and Zhang, 2006; Allen et al., 2008;Wagner
et al., 2010; Kortekaas et al., 2012; Li et al., 2014), peak of the first
derivative of PPG (Yoon et al., 2009; Kortekaas et al., 2012; Kim
et al., 2013), and peak of the second derivative of PPG (Teng and
Zhang, 2006; Kortekaas et al., 2012), etc.

PPG measurement is influenced by many factors, including (but
not limited to) body site of measurement, breathing pattern, age, etc.
All these factors may affect the waveform quality of the PPG data,
and subsequently cause challenges in extracting PPG waveform
features. Hartmann et al. found that the PPG signals measured
from the fingertip achieved the highest percentage of analyzable
waveforms for feature extraction among six measurement sites of
finger, wrist under, wrist upper, arm, earlobe, and forehead
(Hartmann et al., 2019). In addition, the age-related changes of
vascular biomechanical properties, e.g., artery stiffness, can
significantly influence the PPG waveform and the location of
characteristic points (Allen et al., 2020). It has been reported that
PWV, the gold standard for evaluating arterial stiffness, was
correlated with age in healthy adults (Koivistoinen et al., 2007;

Schwartz et al., 2019). Allen et al. observed multiple age-related
changes in PPG pulse shape characteristics measured at different
body sites, with small but significant overall elongation of the
systolic rising edge (Allen and Murray, 2003). They found a
significant correlation between aging and PTT shortening (Allen
and Murray, 2002).

In addition to the abovementioned physiological factors,
preprocessing of raw PPG signals may also incur some changes
on PPG waveform features, particularly the timing information. In
many wearable applications, raw PPG signals are filtered before
feature extraction. Filtering can change the waveform of PPG signals
and the timing of feature points (Liu et al., 2021). At present, the
finite impulse response (FIR) and infinite impulse response (IIR)
filters are widely applied in PPG signal processing. IIR filters offer a
number of advantages over other types of filters, such as their ability
to achieve a high degree of signal attenuation and their applicability
in digital signal processing systems. Whereas, the nonlinear phase
response of the IIR filter can deform PPG signals and affect the
timing of PPG waveform feature points (Allen and Murray, 2004).
In our previous study, we observed that IIR filtering can significantly
change the characteristics of PPG waveforms (e.g., peaks and
valleys) with the average time shift over 0.1s (Liu et al., 2021).
Hence it was noted that filtering parameters should be quoted to
support the reproducibility of PPG-related studies (Liu et al., 2021;
Charlton et al., 2022). In this paper, we continue this line of thought
and research methodology on IIR filtering which will establish the
groundwork for future research on FIR and other filters.

Considering the importance of PTT for measuring important
cardiovascular signs (e.g., blood pressure, vascular elasticity), it is
valuable to study all possible sources leading to PTT measurement
errors. So far, little has been reported on how filtering-induced time
shift in PPG signal preprocessing affects PTTmeasurement, which is
largely due the lack of a standardized PPG signal processing
workflow. The filtering parameters of many commercial wearable
PPG sensors are unrevealed. In early studies, the filtering parameters
were not uniform and narrow frequency bands were widely used,
e.g., 0.5–4 Hz (Wang et al., 2007; Vogel et al., 2009) and 0.8–4 Hz
(Poh et al., 2012).

This work took the first step toward quantitatively assessing the
effect of PPG pulse filtering on PTT changes. Specially, eight
waveform feature points from PPG signals were used to define
8 types of PPT for studying the PPT definition effect, and PPG
signals were collected from a wide range of age for studying the
possible aging effect.
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2 Materials and methods

2.1 Subjects

A total of one hundred participants (age: 44 ± 14 years, age
range: 20–71 years; 48 males and 52 females) were recruited from
staff, students and their relatives in Newcastle Hospitals and
Newcastle University with written informed consent. The
participants were equally distributed in five age groups
(i.e., 20–29, 30–39, 40–49, 50–59, and over 60 years old,
20 subjects in each). No participant suffered cardiovascular
disease before. This study received ethical permission from the
Faculty Research Ethics Panel at Anglia Ruskin University
(FMSFREP/17/18205), and all participants provided their written
informed consent. The experimental procedures involving human
subjects described in this work complied with the principles in the
Declaration of Helsinki by World Medical Association in 2000.

2.2 Measurement procedure

Figure 1 illustrates the schematic diagram of the PPG and ECG
measurement system. The experiment was performed in a
thermostatic room maintaining the temperature at 23°C ± 1°C. In
order to stabilize the cardiovascular system, each participant was
guided to lie supine on a couch and rest for 5 min. Their arms were
placed parallel to the body without any movement. During the
experiment, the ECG and PPG signals were recorded, reviewed, and
saved using the MP160 data acquisition system with the Biopac
AcqKnowledge software. The sensors to measure ECG and PPG
signals were attached to thoracic area and right index fingertip,
respectively. The participants were informed to keep a normal
breathing. When the ECG and finger PPG signals on the
monitor screen were stable, they were recorded simultaneously at
a sample rate of 2,500 Hz for 120 s. The operator monitored the data
during the recording, reviewed the whole data segments after the
recording, and then saved the data with adequate quality. If any

error or low-quality segment appeared, the data recording was
repeated.

2.3 Signal preprocessing and filtering

The recorded data were anonymized and imported to
MATLAB (R2021b; MathWorks Inc. Natick, United States) for
signal processing. The ECG signals were first pre-processed with
a 4th-order Butterworth band-pass filter (passband: 0.05–35 Hz,
stopbands: <0.01 Hz and >40 Hz) to remove the baseline drifts
(i.e., low-frequency noises) and high-frequency noise, followed
by a wavelet transformation to further remove the remaining
low-frequency noises due to the slant stopband edges. Specially,
the Daubechies 8 wavelet (db8) was used for 11-level
decomposition. As compared with a band-pass filter, the
discrete wavelet transform could perform better in terms of
eliminating high-frequency noise (e.g., electrocardiogram
noise, power line noise, etc.) while keeping the morphology
feature points of the ECG signal (Zhao et al., 2022). The
approximation coefficient of the wavelet decomposition at the
11th level, which contained low-frequency drift component, was
replaced by zero. Then, the signal was reconstructed based on the
new coefficients to obtain the preprocessed ECG signal.

The raw PPG signals were preprocessed with a high-pass infinite
impulse response (IIR) filter (1 zero and 10 poles, passband: >0.5 Hz,
stopband: <0.2 Hz) to remove the baseline drifts. A low-pass IIR
filter (1 zero and 16 poles, passband: <20 Hz, stopband: >30 Hz) was
then used to remove the high-frequency noises which included the
50 Hz power line and electrophysiological noises.

To investigate the effect of filtering on PTT measurement, the
preprocessed PPG signals were further filtered with a low-pass IIR
filter (1 zero and 13 poles, passband: <3 Hz, stopband: >5 Hz). The
details of the PPG signal preprocessing could be found in Figure 2 of
(Liu et al., 2021). Figure 2 illustrates the removal of baseline
wondering and high-frequency noises (see the enlarged circle) in
preprocessing, and further smoothing in the IIR filtering.

FIGURE 1
Schematic diagram of the measurement system.
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2.4 Definition of PTT

PTT is usually defined as the time between the R-peak of the
electrocardiogram (ECG) and a reference point on systolic PPG
signal segment. The reference point can be derived from different
PPG features (e.g., end-of-diastolic valley, systolic peak, see
Figure 3), which leads to different PTT definitions.

This work selected eight different PPG pulse waveform
characteristics to define eight PTTs. The eight PPG pulse
waveform characteristics are (see Figure 4).

(1) Onset point of the first derivative (O1D): the onset of the first
derivative of PPG in a cardiac cycle.

(2) Valley point of PPG (VP): the point corresponding to the
minimum value of the PPG in a cardiac cycle which is
located at the end of diastole.

(3) Maximum second derivative (M2D): the point corresponding to
the maximum value of the second derivative of PPG in a cardiac
cycle.

(4) Maximum first derivative (M1D): the point corresponding to
the maximum value of the first derivative of PPG in a cardiac
cycle.

FIGURE 2
Example waveforms of (A) raw PPG, (B) preprocessed PPG, and (C) filtered PPG signals with a duration of 60 s.

FIGURE 3
Illustration of two types of PTT, i.e., preprocessed PTT and filtered
PTT. Here, the preprocessed PTT refers the interval between the ECG
R-wave and the end-of-diastolic valley of the preprocessed PPG
signal, while the filtered PTT is the interval between the ECG
R-wave and the end-of-diastolic valley of the filtered PPG signal.
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(5) Valley point of the second derivative (V2D): the point
corresponding to the minimum value of the second
derivative of PPG in a cardiac cycle.

(6) Forward peak of PPG (FP): the point that has the maximum
value in a cardiac cycle of the forward PPG wave.

(7) Maximum peak of PPG (MP); the systolic peak point that has
the maximal PPG value in a cardiac cycle.

(8) Valley point of the first derivative of PPG (V1D): the point
corresponding to the minimum value of the first derivative of
PPG in a cardiac cycle.

The derivatives were approximated using backward difference
calculated from adjacent sampling points. Therefore, the first and
second derivatives of the PPG signal started from the second and third
sampling points, respectively. Considering the high sampling frequency
(i.e., 2,500 Hz), the error caused by the approximation was very limited
(<4 × 10−4 s for the timing of any characteristic point). The characteristic
points were detected from the extrema (i.e., peak and valley points) of PPG
and its derivatives, as well as the decomposition of forward and backward

pulse waves. The details of defining and detecting characteristic points can
be found in our early works (Liu et al., 2021; Lin et al., 2022).

To prevent inaccurate readings at the immediate start and end of
a PPG recording, any characteristic point was excluded from the
analysis if it or its ‘counterpart’ (i.e., any of the preprocessed or
filtered one) fell in the first 0.5 s (e.g., in Figure 4D, the pair of peak
points are excluded) or the last 0.75 s (Figure 4E). To exclude the
missing or erroneous feature points, any detected feature point was
excluded if there was no ‘counterpart’ point within ±0.3 s of the
detected feature point. The time axis was unchanged (i.e., no shift of
any signal) during signal processing.

As to ECG signals, the R wave peak was detected as the maximal
value in a cardiac cycle using the Pan Tompkins method
(Sathyapriya et al., 2014). To prevent inaccurate readings at the
immediate start and end of an ECG recording, similar as in PPG
preprocessing, any R peak point was excluded if it or its counterpart
was in the first 0.5 s or the last 0.5 s. When processing the noisy PPG
signals in some cardiac cycles, only the valleys within 100–500 ms
after the ECG R-peak (i.e., 100 ms≤ PTT ≤500 ms) were selected for

FIGURE 4
The characteristic points on (A) the PPG signal and its (B) first and (C) second derivatives. Points 1-8 denote O1D, VP, M2D, M1D, V2D, FP, MP, and
V1D, respectively. Adopted from (Mejia-Mejia et al., 2022). (D) and (E): Corresponding PPGwaveform characteristics points of both signals (preprocessed
and filtered) were excluded from the analysis if any of them falls in the first 0.5s (D) or last 0.75s of the recording (E).
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analysis. For each PPG signal (preprocessed or filtered), the PTT was
calculated as the mean value of PTTs of all included cardiac cycles.

2.5 Statistical analysis

For each participant, the filtering-induced PTT difference was
calculated between the PTT values derived from the filtered and
preprocessed PPG signals. The relative PTT difference was calculated as:

RDPTT � PTTfiltered − PTTpreprocessed( )/PTTpreprocessed (1)

For each subject, the PTT difference and RDPTT were averaged in
all included cardiac cycles. The ratio between the mean and standard
deviation of RDPTT in all included cardiac cycles was also calculated to
estimate the intra-subject variation of filtering-induced PPT changes.
Statistical analysis was performed using SPSS (Version 24.0, IBM
Corp.; Armonk, NY, United States) and R programming language,
version 4.1.0 (R Core Team, 2021). Considering the data size,
Shapiro–Wilk test was performed to investigate the normality of

FIGURE 5
Box and whisker plots of the filtering-induced difference and
relative difference of PTT in five age groups and eight PTT definitions.
The medians are represented by the horizontal lines within the boxes
while the first and third quartiles are represented by the box
boundaries.

TABLE 1 Results of Scheirer-Ray-Hare test regarding the PTT difference.
Asterisk denotes significant difference.

H p-value

Age 22.29 <0.001*

PTT Definition 530.37 <0.001*

Age & PTT Definition Interaction 35.89 0.146

TABLE 2 Results of Scheirer-Ray-Hare test regarding the PTT relative
difference. Asterisk denotes significant difference.

H p-value

Age 23.54 <0.001*

PTT Definition 484.48 <0.001*

Age & PTT Definition Interaction 36.87 0.122

FIGURE 6
Results of Dunn’s Kruskal–Wallis multiple comparisons between
the five age groups regarding the PTT difference, derived from all PTT
definitions. The brightness indicates the statistical significance
(i.e., higher significance in red color).

FIGURE 7
Results of Dunn’s Kruskal–Wallis multiple comparisons between
the five age groups regarding the PTT relative difference (RDPTT). The
brightness indicates the statistical significance (i.e., higher significance
in red color).
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data distribution. Normal distribution was defined as p > 0.05 in
Shapiro–Wilk test.

To investigate if there was any significant effect of age, PTT
definition, or their interaction on the filtering-induced PTT
difference or RDPTT, the analysis of variance (ANOVA) or
Scheirer–Ray–Hare test was performed. ANOVA was performed
on normally distributed data where the homogeneity of variance was
satisfied (defined as p > 0.05 in Levene’s test), otherwise the
Scheirer–Ray–Hare test was performed as a substitute.

To further investigate the difference between age groups, or
between PTT definitions, and to identify the age group and the PTT
definition with the highest reliability (i.e., with the least filtering-
induced PTT changes), the post hoc analysis was performed, i.e., least
significant difference tests and Dunn’s Kruskal–Wallis multiple
comparisons for ANOVA and the Scheirer–Ray–Hare test,
respectively. In the Dunn’s Kruskal–Wallis multiple comparisons,
the p-value was adjusted via the Benjamini–Hochberg method
(Benjamini and Hochberg, 1995).

Finally, to investigate quantitatively the aging effect on filtering-
induced PTT difference and its relative difference, linear regression
analysis was performed. The R-squared value was calculated to evaluate
the strength of the linear relationship. A significant linear relationship
was defined as r > 0.5 (R-squared >0.25) and p < 0.05. A strong linear
relationship was defined as r > 0.8 (R-squared >0.64) and p < 0.05.

Regression analysis of the data and curve plotting were performed using
Graphpad Prism (version 9.0.0, GraphPad Software, United States).

3 Results

3.1 Effects of age and PTT definition on
filtering-induced PTT differences

The ratio between mean and standard deviation of RDPTT in
included cardiac cycles was below 20% for all PTTs in 72 subjects,
indicating limited intra-subject variability of filtering-induced PTT
difference. Therefore, in this study, the data analysis was focused on
the mean values of filtering-induced PTT changes and RDPTT.

Figure 5 shows the distribution of filtering-induced PTT
difference and its relative difference in five different age ranges
and eight PTT definitions. The distribution of filtering-induced PTT
difference and relative difference did not satisfy the homogeneity of
variance (p < 0.05 in Levene’s test for both). Therefore, the Scheirer-
Ray-Hare test was performed. As shown in Tables 1, 2, there were
significant effects of age and PTT definition (p < 0.001 for both) on
filtering-induced PTT difference and its relative difference, whereas,
the effect of interaction between age and PTT definition is
insignificant.

FIGURE 8
Results of Dunn’s Kruskal–Wallis multiple comparisons between the eight types of PTT definition regarding the PTT difference. The brightness
indicates the statistical significance (i.e., higher significance in red color).

FIGURE 9
Results of Dunn’s Kruskal–Wallis multiple comparisons between the eight types of PTT definition regarding the PTT relative difference (RDPTT). The
brightness indicates the statistical significance (i.e., higher significance in red color).
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3.2 Comparison between age groups and
PTT definitions

As shown in Figure 5, in most PTT definitions, there is a
consecutive and monotonic trend in filtering-induced PTT
difference across different age groups (e.g., increase and decrease
with age for M1D in MP, respectively).

In Figures 6, 7, in can be observed that the differences in PTT
difference and RDPTT both increase with the gap between age
groups, where the difference between the youngest and oldest
groups (20–29 and >60 years) is the most significant (p <
0.001 for both PTT difference and relative difference).

Considering all PTT definitions, the age groups (20–29) and
(50–59) had the maximum and minimum filtering-induced
changes, respectively (for both PTT difference and relative
difference, in mean value). Of note, the age groups with maximal
and minimal filtering-induced PTT changes were actually
definition-specific (Figure 5).

Regarding the differences among PTT definitions, as shown in
Figure 8, significant differences in PTT difference were observed (p <
0.05) except between O1D and FP, and between MP and M1D. As
shown in Figure 9, significant differences in PTT relative difference
were observed (p < 0.05) except between V2D and M2D, between
V1D and VP, as well as between MP and M1D. Therefore, PTT
definition has significant influence on the filtering-induced PTT
changes. In all subjects, MP had the minimum filtering-induced
changes for both PTT difference and RDPTT (mean in all subjects:
16.16 ms and 5.65%, respectively).

3.3 Quantitative analysis: age and filtering-
induced PTT difference

As shown in Figure 10, many filtering-induced PTT changes
have linear relationships with age, which is in accordance with the
trends in Figure 5. The significant linear relationship between age
and PTT difference was found in all types of PTT definition group
except O1D, FP and V1D. Overall, M1D had the highest strength of
the linear relationship (r2 � 0.47 in PTT difference and r2 � 0.46 in
PTT relative difference).

4 Discussion and conclusion

The results in this work showed that IIR filtering considerably
influenced PTT values by changing the positions of PPG feature
points. We observed that filtering-induced PTT changes depended
on age and the definition of PTT. In all PTT definitions, the effect of
age was consecutive with a monotonous trend. The age group with
the least filtering-induced PTT changes depended specifically on
PTT definition. Among different PTT definitions, MP showed the
highest robustness against the filtering-induced PTT changes. The
MP and M1D exhibited the least filtering-sensitive PTT changes,
which may explain the lack of significant difference between them in
Figures 8, 9. The performance of difference PTTs deserves further
investigation on the underlying physiological mechanisms. The
linear trends between age and filtering-induced PTT changes
indicated the significance of age-based adjustment in PTT
estimation. As far as we know, this work is among the first
attempts to investigate the filtering-induced PTT changes.

4.1 Filtering-induced PTT changes: A
neglected concern

PPG signals are typically subject to noises and trends. Therefore,
a proper preprocessing plays a key role in many applications, e.g.,
the functional assessment of autonomic nervous system (Akar et al.,
2013). However, at present, there is a lack of comprehensive
evaluation of the filtering effect on the accuracy of PTT across

FIGURE 10
Linear regression plot between age and filtering-induced PTT
difference and relative difference (RDPTT) under eight definitions
of PTT.
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different ages. Our results filled this gap and highlighted the
importance of age-based adjustment of the filtering-induced
inaccuracy in PTT-based applications, e.g., BP estimation.

Currently, despite the increasing diversity in PPG pre-
processing techniques, traditional IIR and FIR filers still play an
important role because they are easier to design in digital signal
processors (Liu et al., 2021; Mejia-Mejia and Kyriacou, 2023).
Recently, Mejía-Mejía et al. investigated the effect of PPG
filtering strategy in the analysis of pulse rate variability (PRV),
and concluded that PRV information can be reliably extracted from
PPG signals filtered by elliptic IIR or equiripple or Parks–McClellan
FIR filters (Mejia-Mejia and Kyriacou, 2023).We also focused on the
IIR filter in this pilot study. Compared with PRV which is measured
between consecutive heartbeats, PTT is derived from a much shorter
period in a cardiac cycle, and thus can be more sensitive to the
filtering-induced time shift of PPG feature points. Our results
revealed that the filtering can led to considerable changes in PTT
(>39.6%, all age groups in VP), affecting the accuracy in BP
estimation. Therefore, filtering-induced PPG waveform
deformation deserves further attention in PTT-based BP estimation.

4.2 Beyond age: physiological factors that
can influence PTT

It is well known that the PTT-BP relationship depends on age
(Allen and Murray, 2002; Foo et al., 2005). Allen et al. found a
consistent trend in the effect of age on PTT (r2 � 0.48) (Allen and
Murray, 2002), while we further observed similar phenomena in the
filtering-induced PTT difference (Figures 5, 10). These observations
commonly provide the reference for age-adjusted PTT calculation in
the future.

Besides age, many other physiological conditions including
measurement site, breathing pattern, and neural activities can
significantly influence PPG waveform, therefore change the PTT
values (Hartmann et al., 2019; Liu et al., 2020; Khalid et al., 2022).
The temperature-induced autoregulation can also influence PTT.
Teng et al. found that local cold exposure can influence the PTT
defined by MP with negligible effect on the PTT defined by VP
(Zhang and Zhang, 2006). Furthermore, vascular stiffness increases
with age, which has a significant effect on PPG signal waveform
(Allen andMurray, 2002). A recent study on oscillography-based BP
estimation concludes that, age, BP, and arterial stiffness have
complex interaction (Pan et al., 2022). The effect of these
physiological factors in PPG waveform changes deserves further
investigation.

4.3 Technological factors in improving the
accuracy of PTT estimation

Some technical issues can influence the PTT values. Recently,
Chandrasekhar et al. pointed out that the PPG sensor contact
pressure might be another factor that influences the reliability of
PTT measurement (Chandrasekhar et al., 2020). Teng et al. found
that, during the increase of contacting force, the PTT defined by
M2D had the largest overall change (from 200.3 ± 20.6 ms to 225.0 ±
19.3 ms) (Teng and Zhang, 2006), whereas the PTT defined by M1D

had the minimum 325 changes (from 245.3 ± 20.2 ms to 261.4 ±
14.2 ms) (Teng et al., 2004) which is in accordance with our
observations. They also found that the interaction between age
and contact force might influence PTT. As the contact force
increased to the mean intra-arterial pressure (zero transmural
pressure), PTT increased from 155.2 ± 18.5 ms to 164.7 ±
21.6 ms for the group of elderly subjects and from 186.7 ±
21.0 ms to 201.7 ± 19.5 ms for the group of young subjects (Teng
and Zhang, 2007). Therefore, more physiological and technical
factors, as well as their interactions, need to be considered to
improve the accuracy of PTT-based BP estimation. Since MP and
M1D exhibited the least filtering-sensitive PTT changes and showed
strongest linear relationships, we recommend using M1D in
younger subjects and MP in older subjects in calculating PTT to
improve its reliability.

4.4 PPG signal preprocessing: towards
application-specific standardization

PPG technology provides the possibility of low-cost, non-
invasive, and continuous BP measurement for different
application scenarios. Recent development of learning-based
methods has largely improved the accuracy of BP estimation
based on single PPG waveform analysis. PTT-based BP
estimation is being considered at a secondary place due to the
significant impact of arterial stiffness, individual instability and
physical condition on the predetermined hypothetical
relationship (Agham and Chaskar, 2021). However, due to its
accuracy and reliability, PTT-based BP estimation is still the
commonest solution in wearable devices compared with other
approaches.

Our results revealed a major limitation of PTT-based methods,
i.e., the lack of a framework for standardized filtering and
quantitative adjustment of the results. At present, there is a lack
of standardized practices in PPG signal acquisition and processing
(Charlton et al., 2022). In the majority of PPG studies, there are
insufficient details of the settings/parameters of the filters. As
summarized in our previous work, the filtering parameters are
not uniform, where the lower and upper stop frequencies range
around 0.005–0.5 Hz, and 5–20 Hz, respectively, with an
inconsistency in key properties such as transition bandwidth and
ripples (Liu et al., 2021). Considering the diversity of PPG pre-
processing methods, and the interaction between technical with
physiological factors in the changes of PTT values, we recommend
that the preprocessing of PPG signals can be standardized and
tailored to meet different application scenarios, where both technical
and physiological factors (e.g., filtering parameters, age,
measurement site, etc.) can be considered comprehensively and
adjusted quantitatively to improve the accuracy of PTT-based BP
estimation.

4.5 Limitations and future directions

This is a small-scale pilot study, where other physiological
factors as abovementioned were not included to avoid
confounding the results. Another major limitation of the study is
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that it did not include the subjects with very low and high ages
(<20 and >70 years). Existing studies showed that the relationship
between age and arterial stiffness is non-linear (Vlachopoulos et al.,
2011; Laurent et al., 2019). Therefore, the results might not reflect
the filtering-induced PTT changes in elderly people who are more
liable to hypertension. Also, we only included healthy subjects,
without considering the effect of pathological changes on PPG
signal waveform. Existing evidence showed that PTT was mildly
elevated in patients with heart failure compared with healthy
subjects (468 ± 12 vs. 430 ± 23 ms, p = 0.001) (Wagner et al., 2010).

In future studies, large-scale, multi-center datasets covering
a wider range of age and more pathophysiological conditions
could be used to improve the accuracy of PTT calculation and
enable a fine-grained PTT estimation framework. More filtering
metrics and techniques can be explored to develop a panoramic,
standardizable PPG preprocessing framework with high
robustness against filtering-induced PPG waveform
deformation.

In conclusion, the results in this work showed that the filtering-
induced PTT difference was significantly different among different
types of PTT definite or among different age groups. The
physiological factor including age and PTT definition should be
considered in PTT-based application using wearable sensors, e.g.,
blood pressure estimation.
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