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The honeybee is an important species for the agri-food and pharmaceutical
industries through bee products and crop pollination services. However,
honeybee health is a major concern, because beekeepers in many countries
are experiencing significant colony losses. This phenomenon has been linked to
the exposure of bees to multiple stresses in their environment. Indeed, several
biotic and abiotic stressors interact with bees in a synergistic or antagonistic way.
Synergistic stressors often act through a disruption of their defense systems
(immune response or detoxification). Antagonistic interactions are most often
caused by interactions between biotic stressors or disruptive activation of bee
defenses. Honeybees have developed behavioral defense strategies and produce
antimicrobial compounds to prevent exposure to various pathogens and
chemicals. Expanding our knowledge about these processes could be used to
develop strategies to shield bees from exposure. This review aims to describe
current knowledge about the exposure of honeybees to multiple stresses and the
defense mechanisms they have developed to protect themselves. The effect of
multi-stress exposure is mainly due to a disruption of the immune response,
detoxification, or an excessive defense response by the bee itself. In addition, bees
have developed defenses against stressors, some behavioral, others involving the
production of antimicrobials, or exploiting beneficial external factors.
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1 Introduction: domestic bees and their importance
on our modern society

Although it is difficult to accurately date the beginnings of bee domestication, the earliest
evidence of beekeeping practices appears to date back to ancient Egypt in the form of
funerary paintings (2,400, 1,450 and 600 BC) (Crane, 2004). To attract bees, early beekeepers
simply placed collected combs in boxes or cylinders made of natural materials (Weber,
2013). Similarly, Apis mellifera, the only native European honey bee, was domesticated
during Roman times where beekeepers influenced their swarming to take them to desired
locations (Crane, 2004; Weber, 2013). It was not until the 1,600 s that humans introduced
this species to North America and most of the habitable areas of the globe (VanEngelsdorp
and Meixner, 2010). Currently, A. mellifera is present all over the world (except Antarctica)
thanks to human management (Geslin et al., 2017).
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1.1 Economic and ecological weight of the
domestic bee

Although the honeybee Apis spp. is mostly known for its
production of honey, it would be reductive to link its economical
weight only to the honey market. Firstly, bees also generate many
other commercial hive products, such as beeswax, propolis, royal
jelly and venom. Honey production alone is valued at USD
118 million annually in Canada (Agriculture et Agroalimentaire
Canada, 2017), USD 718 million annually in the US (Matthiews
et al., 2018), USD 186 million annually in France (FranceAgriMer,
2020) and USD 39million annually in Australia (Batt and Liu, 2012)
for examples. Furthermore, all bee products have antimicrobial
properties and specific characteristics with great potential for the
formulation of new drugs. For example, honey and propolis have
been identified as effective for treating the Herpes simplex virus
(Rocha et al., 2022), while propolis and royal jelly have shown
therapeutic potential for treating cancer and neural diseases (Badria
et al., 2017; Ali and Kunugi, 2020). Bee venom is currently being
investigated for its potential application against various diseases
(Son et al., 2007; Khalil et al., 2021). Thus, the honeybee has great
potential for the pharmaceutical market in the future, especially
because bee products are complex substances that are therefore
difficult to synthesize. On this aspect, some breeds such as the
European honeybee have been extensively studied but research on
products of other bee breeds is growing. For example, stingless bee
products are increasingly studied as they seem increasingly
promising (Zulkhairi Amin et al., 2018; Al-Hatamleh et al., 2020;
Mustafa et al., 2020). Nevertheless, the most critical economic
contribution of the honeybee lies in its ability to pollinate various
important crops essential for human nutrition. Apis mellifera is
indeed the most important commercially available crop pollinator in
the world (Garantonakis et al., 2016). At least 35% of the world’s
food production depends on insect pollination and honeybees are
the most manageable pollinator for this purpose (Klein et al., 2007).
In Europe, 10% of the total economy of food production involves
pollinators (Gallai et al., 2009). Honey bees are known to pollinate
over 100 commercial plant species in North America (Hung et al.,
2018; Hristov et al., 2020a; Khalifa et al., 2021). Moving and renting
beehives is now a common practice as in Québec (Canada) for
blueberry crops, or in California (United States) for almond
orchards (DeGrandi-Hoffman et al., 2019). Bees’ pollination
contributes USD 3.07 billion per year to American agriculture
and more than 200 billion worldwide (Gallai et al., 2009; Khalifa
et al., 2021). In 2020, the estimated global value of crop pollination
services ranged fromUSD 195 billion to USD 387 billion, an increase
that could be explained by the rising production costs of pollinator-
dependent crops (Porto et al., 2020). They also improve crop quality
(Giannini et al., 2015) as observed with coconuts in India
(Meléndez-Ramírez et al., 2004) or with sesame in Burkina Faso
(Stein et al., 2017). Bee pollination can be said to improve the
profitability and productivity of many crops essential for human
nutrition such as fruits, vegetables, seeds, nuts or coffee, for example,
(Khalifa et al., 2021). The presence of beneficial insects in crops is
known to reduce the abundance of pests, making them even more
valuable (Stern et al., 1959). Finally, by pollinating wild species, bees
provide ecological services, defined as “functions provided by nature
that sustain and improve human wellbeing” (Daily, 1997). Such

services include carbon sequestration, water purification or
biodiversity preservation among others (see Hristov et al.,
2020b). These pollination services are essential to ecosystems and
thus to humans, but they would be difficult to quantify in monetary
terms, which does not make them any less precious.

1.2 Role of the domestic bee in pollinator
and ecosystem conservation

Like other pollinators such as wild bees, honeybees maintain
functional ecological communities in nature by providing
pollination services. Indeed, around 80% of wild plants require
insects for their reproduction. Nevertheless, only 5% of plant
species appear to be strictly visited by A. mellifera (Hung et al.,
2018), perhaps explaining why their importance is sometimes
minimized. The main argument from that perspective is that the
honeybee pollination rate is negligible in comparison to that of other
species. This is indeed true in some respects, as honeybees are
imported and therefore not specialists of local plants (Ollerton et al.,
2012). Nevertheless, their large population size could compensate
for this low efficiency, as could the fact that they are also generalists,
allowing them to pollinate a wider range of species, especially species
neglected by wild pollinators (Aebi et al., 2012). Their numbers,
communication patterns and social organization strengthen their
contribution. Indeed, thanks to their informative dances, foragers
can precisely indicate the location of a floral resource, inform others
not to go there in case of overcrowded sites, and ask other bees to
help them unload their harvest (Hrncir et al., 2011; Broccard-Bell,
2021). In this way, honeybees avoid wasting time searching for
resources, making them very efficient pollinators.

In addition, studying the honeybee can contribute to the
conservation of other pollinators. Indeed, both honeybees and
wild pollinators are currently facing many threats and suffering
huge losses (Winfree, 2010). To this end, the honeybee could serve as
a bioindicator of environmental contamination with relevant data
having much wider implications. Thus, the study of honeybees and
their products could allow scientists to detect areas where other
pollinators may be at risk, whether because they are heavily
contaminated by pesticides or colonized by invasive species or
because their climate has changed, for example, (Celli and
Maccagnani, 2003; Bargańska et al., 2016). Once such areas have
been detected, it would be easier to implement targeted conservation
measures to save all pollinators or reduce risks. This strategy might
only work at the individual level, given the differences in wild
pollinator and honeybee lifestyles (Wood et al., 2020). In
addition, some studies show negative correlations between honey
bee colony density and wild pollinator activity, particularly in urban
areas (Wojcik et al., 2018; Ropars et al., 2019). Concern is also
growing about the possible transmission of pathogens from honey
bee colonies to wild pollinators (Graystock et al., 2013). These
should be considered when placing honey bee colonies.
Nevertheless, studies at this scale could be of great interest. The
honeybee could indeed be a model for genetic studies, especially
since its genome is now fully sequenced (Honeybee Genome
Sequencing Consortium, 2006).

From a more political point of view, bees are a very famous
species. The slogan “Save the bees” has now become a universal
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slogan and helps spread the message of the importance of
biodiversity and the threats to it to the widest audience. Topics
favored by public opinion attract more funding and visibility and
allow related projects to receive funding as well. Therefore, studying
honeybees and trying to save them is a way to support doing the
same for other pollinators, making themmore familiar to people and
potential funders.

1.3 Bee decline

Given the importance of honeybees from an economic and
ecological standpoint, it is not surprising that humans have long
been multiplying the number of honeybee colonies (Aizen and
Harder, 2009), to meet the demand for pollination services. More
recently, the health of these colonies is increasingly alarming.
Indeed, beekeepers are experiencing increasing numbers of
colony losses over the years, often related to high winter
mortality, primarily in North America and Europe (Gray
et al., 2020; Canadian Association of Professional
Apiculturists, 2022). Given the global scale of the
phenomenon, it is very unlikely to result from a single specific
stressor. Although it is difficult to fully understand the causes,
scientists agree that the combination of various stressors and
their interactions are leading to bee decline. By the term
“stressors,” we mean any element, whether biotic (parasites,
viruses, predators) or abiotic (pesticides, nutrient stress,
temperature), that disturbs the proper internal functioning of
the bee or the colony. Because of their social nature, lifestyle, and
foraging behavior, honey bees are exposed to a multitude of these
stressors. Indeed, the proximity of thousands of genetically close
individuals within a hive facilitates the development and
dispersal of pathogens (Fries and Camazine, 2001). It is their
foraging behavior that brings them into contact with
anthropogenic stressors, as well as beekeepers’ treatments
(Fulton et al., 2019; Xiao et al., 2022), which can also be
detrimental in certain circumstances for honey bees (e.g.,
intestinal dysbiosis, brood toxicity) (Pettis et al., 2004;
Thompson et al., 2005; Daisley et al., 2020; Jia et al., 2022). In
the context of deteriorating bee health, the spread of new
parasites, increasing exposure to pesticides and hive
treatments, beekeeping practices, diminishing floral resources,
and declining queen quality could be the main factors responsible
for this tragedy (Smith et al., 2013; Hristov et al., 2020a). In their
study published in 2019, Neov et al. (2019) identified other
factors they consider to be responsible for bee colony
mortality. The varroa mite and the community of viruses it
transmits to bee brood are identified as the primary cause,
followed by landscape change and reduced access to food
resources, beekeeping practices (including excessive transport
in the US), and intensive farming with its spread of pesticides.
They also describe how climate change has always impacted bee
populations in the past and how they have always managed to
recover. This supports the theory that colony mortality is not
associated with a single factor, but rather the simultaneous
accumulation of multiple stressors. Herein lies the complexity
of the decline of bee health. The exposure of bees to stressors of
the same type (i.e., several different pesticides) can potentially

undermine their defense systems (Berenbaum and Johnson,
2015). In the event of a combination of different types of
stressors (i.e., biotic and abiotic), several types of defenses
may be activated at the same time, such as the immune
system and the detoxification (Mao et al., 2013). This can lead
the bee’s body to prioritize one type of defense, leaving the field
open to the stressors of the other type. It can also trigger a general
weakening of the individual, as its reserves of resources and
energy are drained in the fight against stressors (Dussaubat, 2012;
Buchon et al., 2014). If food resources are scarce at the time, the
bee’s exposure to all these stressors at once can even be fatal
(DeGrandi-Hoffman and Chen, 2015). Some stressors can even
impair the immune system or the detoxification (Di Prisco et al.,
2013). In addition, some stressors can interact with each other,
generating additive, synergistic or antagonistic effects (O’Neal
et al., 2017; Raymann et al., 2018; Tosi and Nieh, 2019). It is
therefore essential to understand the underlying mechanisms of
these interactions between stressors, their individual effects, as
well as their overall impacts on bee health and defense systems, if
one is to have any chance of halting this decline.

1.4 Goals and challenges of this review

This review aims to gather and provide information on the
exposure of honeybees to multiple stressors, as well as their defense
mechanisms. The first part inventories interactions and synergistic/
antagonistic effects between the most common stressors of
honeybees and describes (the processes) involved. This
knowledge will help to obtain an overview of both exposure to
multiple stresses and their consequences. Furthermore, such
knowledge could be used to predict and perhaps even avoid the
impacts of these stressors on bee health. In order to consider
solutions to fight or mitigate the effects of these multiple stresses,
defense strategies and the beneficial external factors that help
honeybees to resist and maintain their health will be presented
and discussed in a second part.

2 Exposure of bees to multiple stresses

Since the Late Cretaceous, about 100 million years ago
[Michener and Grimaldi (1988)], honeybees and other
pollinators have been exposed to certain stressors, such as
predators, pathogens, or suboptimal environmental conditions.
Despite this, honeybees have survived and evolved. Unfortunately,
urbanization, globalization and the increase of modern agriculture
have introduced a wide range of new stressors for honeybee
colonies. In addition, their specific lifestyle may increase their
exposure to these stressors. By living in communities of many
individuals gathered in enclosed, temperate locations, honeybees
experience a different degree of exposure to stress than other
pollinators. Indeed, it seems relatively easy for pathogens to
spread from one individual to another (horizontal transmission)
when these individuals interact very closely (Fries and Camazine,
2001). Furthermore, all of these individuals have very similar
genetics and the same defense systems because they are the
progeny of the same queen.
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A second major source of bee exposure to stress is external,
through exposure to various drugs. Beekeepers regularly use
chemical molecules, such as antibiotics or acaricides, to fight
against pathogens. These chemicals can then remain in the hive
and accumulate. As bees gather pollen and nectar, they may
simultaneously be exposed to a considerable variety of agro-
chemical molecules, such as pesticides or herbicides and
insecticides. Chemicals and pesticides can then accumulate in
hive products, including wax, bee bread, and pollen (Daniele
et al., 2018; Fulton et al., 2019; Xiao et al., 2022). These
molecules can lead to lethal damage, but they also induce a large
range of sublethal effects that weaken the fitness of impacted
colonies (such chronic exposure is well described in the review
by Chmiel et al., 2020). Bee products can be contaminated by wind-
borne particles or polluted water. Contamination routes are
summarized in Figure 1. Thus, bees can be exposed to biotic and
abiotic stressors through different routes of contamination. The
main route of contamination is consumption and absorption of the
stressor, but bees can be contaminated topically or orally by sprayed
pesticides, for example. The most dangerous route is often the oral
route: the bees will swallow the contaminant by eating pollen, nectar,
or bee bread or by feeding new bees by trophallaxis. This is the case
for the intestinal parasite Vairimorpha (Nosema) ceranae and
various pesticides whose LD50s (the dose of the stressor at which
50% of the population dies) are lower and therefore more toxic by
the oral route than by contact (Laurino et al., 2011; Blacquiere et al.,
2012; Zhu et al., 2014). In addition to simple contact between
contaminated and healthy bees, some stressors can be spread by
parasites. For example, the varroa mite feeds on the hemolymph of
bees and on the larval fat body, inflicting deep wounds and infecting
the host with a wide range of bee viruses such as black queen virus
(BQCV) and deformed wing virus (DWV) (Dussaubat, 2012;
Mondet et al., 2014). Finally, pathogens such as viruses can be

passed among bees during the reproductive process, from drones to
the queen or from the queen to her brood, in a vertical transmission
route (Ravoet et al., 2015; Prodělalová et al., 2019).

3 Interactions between stressors

3.1 Global increase of adverse effects with
multiple exposures

Because bees are often exposed to many different stressors and
most often to several stressors simultaneously, recent studies more
frequently include cross-exposure trials (Tosi and Nieh, 2019; Paris
et al., 2020; Lupi et al., 2021; Balbuena et al., 2022). In the future,
such studies could allow us to adapt or develop new strategies to
increase bee resiliency and resistance to multiple coexistent
stressors. In this section, some examples of exposure to multiple
stressors will be described and discussed in order to explain their
impacts on bee health and productivity.

An example of synergy is double parasite exposure to Varroa
destructor and Vairimorpha ceranae. In Little et al. (2015), found
that the intensity of V. ceranae infestation was positively correlated
with that ofV. destructor and vice versa. Another example of synergy
involving V. ceranaewas documented by Schwarz and Evans (2013).
After comparing the defenses developed by the bee against exposure
to this parasite and the arthropod-specific trypanosome Crithidia
mellificae alone, they observed that infected bees secreted fewer
antimicrobial peptides and that infestation with both stressors at the
same time decreased bee cellular immunity.

Pathogens can act in synergy with abiotic stressors too. Upon
exposure to pesticides (especially fungicides and acaricides),
honeybees are twice as likely to be infested with V. ceranae (Wu
et al., 2012; Pettis et al., 2013). Similarly, bees become more

FIGURE 1
Main routes of contamination of honey bees by stressors.
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susceptible to viruses when treated with certain acaricides or
pesticides. Some of these products, such as amitraz and
clothianidin, promote virus replication (Di Prisco et al., 2013;
O’Neal et al., 2017). Another study showed that pesticides like
clothianidin or fluvalinate reduce survival of bees infested with
Peanibacillus larvae, the pathogen of American foulbrood (López
et al., 2017).

Pesticides can even act in synergy with each other. Indeed, some
pesticides applied in the field interact with fungicide treatments used
in the hive, which is among the worst-case scenarios as it occurs at
field concentrations (Thompson et al., 2014). It occurs specifically
with molecules called sterol biosynthesis inhibitors (SBI). Taken
individually, these fungicides have a relatively low acute impact on
bees, unlike insecticides. Nevertheless, they act synergistically with
pesticides and become toxic within the insect body (Raimets et al.,
2018; Iverson et al., 2019). Another example of pesticide interaction
is the case of flupyradifurone, whose LD50 decreases 6-fold when
interacting with the fungicide tebuconazole (Tosi and Nieh, 2019).

The high winter loss of honeybees observed today in the
United States, Canada, and Europe may occur because of
synergistic phenomena between stressors. In Desai and Curry
(2016), published a study describing “the effects of overwintering
environment and parasite-pathogen interactions on honeybee
colony loss.” Several colonies were kept outdoors with insulating
blankets during a Canadian winter, while others were kept indoors at
constant low temperatures. Parasite and viral loads as well as colony
survival rates were measured. They showed the critical role of
beekeeping practices, as colonies overwintered outdoors had a
higher survival rate than colonies overwintered indoors with the
same pathogen loads. This may indicate that a constant low
temperature weakens bees less than variable winter conditions
during winter, whereas variable temperatures could increase the
effects of parasites. Similarly, they observed an increased abundance
of V. ceranae in colonies overwintered outdoors and a decreased
abundance in colonies overwintered indoors. Most of these colonies

had been treated with fumagillin previously, so these observations
could be the result of increased replication of V. ceranae spores in
winter or reduced efficacy of the treatment at low temperatures.
Indeed, the properties of a chemical can vary with temperature and
several pesticides were found to bemore toxic at low temperatures or
in the presence of other context-dependent factors (Henry et al.,
2014; Saleem et al., 2020).

Other variables intrinsic to bee biology may also be important in
these interactions. A given caste of bee (e.g., nurse or forager) may
suffer more from the presence of a stressor than others, For example,
foragers were shown to be the most infected by V. ceranae in the
colony (Higes et al., 2008; Martín-Hernández et al., 2018). In
addition, this parasite seems to exert a sex-related effect, since
drones show higher mortality when contaminated. Infected
drones even facilitate the spread of the parasite compared to
contaminated workers (Roberts and Hughes, 2015; Martín-
Hernández et al., 2018).

3.2Mainmodes of action related to stressors
interactions

The effects resulting from exposure to multiple stresses on bee
health can be cumulative, but also synergistic (deleterious effects
outweighing cumulative effects or appearance of new deleterious
effects) or antagonistic (the presence of one stressor reducing the
deleterious impact of a second). This depends on the stressor, its
mode of action, the contamination route, the environment, and bee
health and defense systems.

3.2.1 Individual immune response in the honeybee
There are similarities between the innate immune responses of

insects and vertebrates, which involve cascading reactions that
trigger mechanisms such as phagocytosis, enzymatic degradation,
and secretion of antimicrobial peptides (Hoffmann, 2003). Each bee

FIGURE 2
Impacts of exposure to multiple stressors on honey bee defense systems and metabolism.
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also has an individual immunity including cellular and humoral
responses (developed in the review of Larsen et al., 2019). Several
signaling pathways have been identified in insects and especially in
bees, Drosophila, and mosquitoes (see Evans et al., 2006 for detailed
description). The first is the Toll pathway, which functions through
transmembrane signaling proteins called Toll-like receptors. These
proteins play a role in immunity and development. When a cytokine
molecule binds to this receptor, it forms a complex that will degrade
an inhibitor of the nuclear factor κB (NF-κB) that is then
translocated into the nucleus. NF-κB is a gene transcription
factor of the immune system that is also involved in many
fundamental processes (Evans et al., 2006; Hayden and Ghosh,
2008). Its translocation into the nucleus allows the activation of
several effectors such as antimicrobial peptides, phenoloxidase and
lysosomes. The immune deficiency (IMD) pathway plays a more
specific role in fighting against bacteria (especially Gram + bacteria)
but can also be triggered in the presence of certain fungi. It induces
the transcription of major antimicrobial peptides (AMP) via the NF-
κB transcription factor Relish. These defense systems occur
primarily in the gut. The bee must therefore maintain a balance
between the pathogenic and commensal bacteria in its gut
microbiota. When the PGN (bacterial cell wall compound) of a
bacterium is recognized by a peptidoglycan recognition protein
(PGRP), there are two possible outcomes. In the case of
sustained association with low numbers of bacteria, the intestinal
master sensor PGRP-LE induces local production of amidase, which
can cleave PGNs and prevent their diffusion into the hemolymph
(which activates the IMD pathway). It is also a negative regulator of
NF-κB that adjusts its signaling level to the nature of the bacteria.
This allows a protective immune tolerance towards the microbiota.
In contrast, under high loads of infectious bacteria, the PGRP-LE
response switches to AMP production through the IMD pathway
(via the transcription factor NF-κB Relish) to eliminate the stressor
(Bosco-Drayon et al., 2012). A subsequent reduction in the number
of immune genes has been observed in domestic bees compared to
Drosophila and mosquito. This reduction occurs at each step of the
immune pathways and could be related to the presence of specific
social defenses that render these additional genes unnecessary
(Evans et al., 2006; Larsen et al., 2019).

3.2.2 Detoxification in the honeybee
It is not widely known that bees possess yet another system to

fight xenobiotics. Certain foreign and non-living substances present
in the organism are able to interact with host cells. They can be
natural (plant toxins) or anthropogenic (such as pesticides)
(Berenbaum and Johnson, 2015). The objective of detoxification
is to transform lipophilic substances into hydrophilic substances so
that they can be excreted easily (Berenbaum and Johnson, 2015;
Chen, 2020). This process consists of three phases. The first is called
functionalization and aims to cut the lipophilic interaction through
enzymatic alteration. Enzymes used in this phase belong to the
cytochrome P450 superfamily or are carboxylesterases (Berenbaum
and Johnson, 2015; Hilliou et al., 2021). Bees use them against
flavonoids in their food but also against mycotoxins, pesticides and
acaricides (Hýbl et al., 2021). The second phase is the conjugation of
the product of the first phase to a glutathione thanks to a
glutathione-S-transferase so that it is solubilized and
transportable. In the third phase of detoxification, the final

metabolite is transported out of the cell until its excretion. This
is done through ABC (ATP-binding cassette) proteins such as
multidrug-associated proteins (Berenbaum and Johnson, 2015).
This three-phase process takes place in the midgut, where
detoxification enzymes are present (Glavan and Bozic, 2013).

Domestic bees suffer from a genetic deficit in enzymes that
operate during the three phases compared to other insects. They
have fewer variants of the enzymes involved. This does not render
the bee more sensitive to pesticides since the LD50s associated with
these pesticides are comparable to those of other insects (Hardstone
and Scott, 2010). Nonetheless, this deficiency could partially explain
the sensitivity of bees to synergists. Reviews by Berenbaum and
Johnson (2015) and Gong and Diao (2017) provide a detailed
description of this phenomenon.

3.2.3 Modes of action related to synergic
interactions

The way in which synergistic interactions between stressors can
be so detrimental to bees is very complex and still little understood.
Indeed, each context has its own explanations depending on
mechanisms that are often unknown. Nevertheless, studies are
increasingly addressing this subject, and have identified some of
the modes of action that lead to such synergistic effects. The impacts
on honeybee defense and metabolic systems of exposure to multiple
stressors are illustrated in Figure 2.

First, the detoxification process exacts an energetic cost on the
organism (Derecka et al., 2013). Expressing the genes and encoding
the proteins to detoxify and transport the toxin out of the body
consumes a great deal of energy and resources. For this reason,
toxicity curves are often higher for high doses but still high for low
doses, as observed by El Khoury et al. (2021) where bees were
exposed to clothianidin. This can be explained by the fact that below
a certain threshold of xenobiotics in the organism, the detoxification
process does not begin because the dose is considered too low to
have an impact on the organism and the start of detoxification would
cost more than the benefit for the bee. Conversely, the detoxification
process is stopped at high doses in order to conserve the energy
needed to maintain vital functions. In the case of other stressors,
such as parasites or viruses, the body may have to “choose” between
starting detoxification or the immune system response. This
increases the detrimental effects of the unmanaged stressor. This
is also why the presence of stressors is so deleterious in terms of
energy expenditure (Derecka et al., 2013; Tosi et al., 2017).

The sensitivity of bees to xenobiotic synergy may also be
explained by detoxification gene deficiency (Berenbaum and
Johnson, 2015). Indeed, exhibiting multiple isoforms of
detoxification enzymes may allow an organism to handle a
greater diversity of chemicals. Furthermore, some isoforms may
have cross activity properties, thus improving resistance against a
chemical that is able to interact in a way that disarms other enzyme
isoforms. Many modes of action of pesticide synergies involve the
cytochrome P450 family of detoxification enzymes. For example, the
adverse effects of synergy between sterol biosynthesis inhibitor (SBI)
fungicides and acaricides/insecticides are likely due to inhibition of
P450-mediated detoxification of pesticides by fungicides (Johnson
et al., 2013). Indeed, prochloraz, which is an SBI fungicide, has been
shown to inhibit P450 activity in honeybees, thereby increasing the
toxicity of pyrethroid insecticides (Pilling et al., 1995; Johnson et al.,
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2006). Similarly, synergies between the acaricides tau-fluvalinate and
coumaphos and other acaricides or pesticides could arise from
competition or interference with, or saturation of, the
cytochrome P450 active site due to an excess of xenobiotics in
the body (Johnson et al., 2006; Berenbaum and Johnson, 2015). Both
compounds are lipophilic and can accumulate in beeswax, slowly
building up over time. Bees may then be continuously exposed to
higher concentrations that saturate their detoxification enzymes. In
that case, the normal mode of action of pesticides such as
neonicotinoids has a direct impact on the health of the bee, as it
remains untreated in the body.

Cytochrome P450 plays an important role not only in
detoxification, but also in the synergy between antibiotics and
pesticides. Antibiotics are indeed used by beekeepers to combat
or prevent bacterial infections such as American foulbrood in
hives (Ortiz-Alvarado et al., 2020). These molecules are designed
to eliminate bacteria but do not distinguish between beneficial
and deleterious bacteria. As a result, they can alter the gut
microbiota and trigger dysbiosis. This disruption can have
adverse consequences for host health, such as altered
metabolism, decreased immunity, poor survival (Li et al.,
2017; Raymann et al., 2017; Liu et al., 2020) and failure of
synthesis of P450 detoxifying enzyme, as it has recently been
shown that gut microbiota promotes expression of genes
encoding the P450 enzyme in the midgut (Wu et al., 2020).
Cross exposure to antibiotics and pesticides induces a higher
mortality rate that could result from deleterious changes to the
gut microbiota worsen by antibiotic, which decreases expression
of detoxification enzymes. As a result, the low titers of
detoxifying enzymes allow the pesticide to act inside the body,
causing damage. In addition, a disrupted gut microbiota is unable
to perform beneficial functions, so the host will face decreased
immunity and a slower metabolism. Other pathogens can then
invade, worsening the gut dysbiosis and triggering disease.

The detoxification process changes the xenobiotic chemical
composition in order to expel it from the body, possibly
generating new metabolites more toxic than the original
compound. This is the case with imidacloprid, which yields 5-
OH-imidacloprid, and thiamethoxam, which converts to
clothianidin (Nauen et al., 2001; Ford and Casida, 2006;
Benzidane et al., 2010). These metabolites may react with the
parent molecule or act synergistically with it and create further
damage. Somemetabolites are particularly reactive and can break up
DNA molecules, creating mutations that can lead to cancer or
malformations (if the bee is still developing). The case of benzo
[a]pyrene (B[a]P) illustrates this concept. This molecule belongs to
the family of polycyclic aromatic hydrocarbons (PAHs) and bees can
be exposed to it by breathing polluted air near highways. Once in the
body, B[a]P can accumulate on lipids or be taken up by the
detoxification enzymes of cytochrome P450. In either case, the
first phase of detoxification leads to the formation of more toxic
metabolites, a process called bioactivation. Both parent and daughter
molecules can generate DNA lesions or adducts that are responsible
for cell death, enzymatic alterations, and cancers (Baird et al., 2005;
Moreau, 2014). Another example of such harmful molecules is the
family of reactive oxygen species (ROS). Transformation of some
xenobiotics can lead to the emission of ROS, but they are also
directly produced by the body during its normal functioning

(cellular respiration). Although ROS have antimicrobial
properties, they can also react with macromolecules (DNA and
proteins, for example,) and lead to cell death (Dussaubat, 2012).
Many types of stressors induce ROS production, both in bees and in
other organisms (Simone-Finstrom et al., 2016; Paris et al., 2017).
Overproduction of ROS during detoxification can thus inflict a great
deal of damage and disrupt important functions by oxidizing key
enzymes, for example. This situation probably occurs with most
types of disruptors andmay explain some of the dangerous synergies
between pesticides. Indeed, excessive immune response or
detoxification can be dangerous to the host under certain
circumstances. On the one hand, it comes at an energetic cost,
and can lead to metabolic dysregulation, resource wastage, and
inflammatory diseases in insects (Buchon et al., 2014). On the
other hand, it is related to the production of those ROS
(Dussaubat, 2012). This is likely to occur with multiple exposures.

Many studies show how certain pesticides inhibit bees’ immune
system. This is the case with neonicotinoids. In 2013, Di Prisco and
collaborators showed that clothianidin and imidacloprid increase
the gene expression of leucine-rich repeat protein. This protein
appears to be a natural inhibitor of NF-κB, which is a signaling
component and gene transcription factor of the immune system
involved in many processes such as antimicrobial peptide synthesis,
coagulation, melanization, and antiviral defenses and of key
importance in the response to environmental stress (Evans et al.,
2006; Hayden and Ghosh, 2008). Neonicotinoids are therefore
responsible for decreased immune system response in bees,
which in turn promotes DWV (deformed wing virus) replication,
explaining the synergy between these stressors (Di Prisco et al.,
2013). Pathogens can inhibit the bee immune system too. An
example is the case of the infamous varroa mite, thatlowers the
host’s immune defenses, then inflicts damage by feeding directly on
the bees’ hemolymph and fat bodies. It also increases the prevalence
of the three strains of the DWV virus (A, B and C) in infected bees
(Dainat et al., 2012; Nazzi et al., 2012). In fact, these stressors seem to
exhibit a form of mutualistic interaction. The mite allows direct
propagation of DWV, while the virus decreases the expression of a
gene belonging to the NF-κB family that reduces the available pool
of this transcription factor in the bee body (Nazzi et al., 2012). This is
beneficial to varroa, because it decreases wound-triggered
coagulation and melanization involving NF-κB (Hayden and
Ghosh, 2008). Blocking this process leaves the wound open and
allows the mite to feed properly. The decrease in the NF-κB pool
implies that all stress responses dependent on this transcription
factor are reduced in the infected bee, making it highly vulnerable to
further environmental stresses. Varroa mites also impact key bee
functions such as vitellogenin storage, which is fundamental for
winter survival (Dainat et al., 2012; Martin and Brettell, 2019). The
microsporidia V. ceranae is another pathogen that can affect bee
immune response. Indeed, it downregulates certain genes that
encode several serine proteases and hymenoptaecins (Aufauvre
et al., 2014). Serine proteases are known to be part of the
regulatory cascade reactions of the immune response. Indeed,
these reactions activate the Toll and phenoloxidase pathways
(Buchon et al., 2009). Hymenoptaecins are antimicrobial peptides
involved in the innate immunity of insects against bacteria and
fungi. The microsporidia degrade and prevent apoptosis of midgut
cells as well (Kurze et al., 2018). In doing so, it impairs turnover of
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the midgut epithelium, which is a key organ for detoxification and
immunity (Thompson et al., 2014).

3.2.4 Action modes related to antagonist
interactions

While lack of food increases damage frommost stressors in bees,
the type of food also has an impact on detoxification. In Wahl and
Ulm (1983), observed that bees fed high quality pollen (polyfloral
pollen or rape pollen) during the first day of life were more resistant
to pesticides. This phenomenon was later confirmed by other
studies, showing the importance of the quality and diversity of
pollen type for pesticide and pest resistance (Di Pasquale et al., 2013;
Schmehl et al., 2014). A correlation between the level of protein in
the diet and the level of GST (a phase 2 detoxification enzyme) has
been demonstrated in spongy moths (Lindroth et al., 1990). Amino
acids in the diet could indeed be useful in producing detoxification
enzymes When flavonoids are present in good quality pollen, they
can also activate the detoxification process and the immune system,
allowing bees to manage the stressor without latency (Johnson et al.,
2012; Mao et al., 2013; Berenbaum and Johnson, 2015). One
substance, p-coumaric acid, induces upregulation of several genes
involved in detoxification and immune system functioning (Mao
et al., 2013). A quality diet also leads to healthy gut microbiota,
which can upregulate the gene expression of detoxifying enzymes
(Wu et al., 2020). This is an example of the way in which
antagonistic effects between stressors and diet quality can
manifest and may also explain the synergy between these
stressors and nutritional stress.

When stressors are parasites, they may act as antagonists within
the host because they occupy the same ecological niche or consume
the same resources, thus competing with the host. The antagonistic
interaction between V. ceranae and deformed wing virus (DWV) in
the midgut does not occur in other tissues, indicating that they
likely compete for space, function, or resources there (Costa et al.,
2011). Indeed, the parasite suppresses the resources the virus
requires by destroying midgut cells and thus the cellular
material that the virus needs in order to replicate (Costa et al.,
2011; Doublet et al., 2014; Traynor et al., 2016). This antagonistic
interaction seems to be asymmetrical, as it depends on the order of
infection. If V. ceranae establishes before DWV, it inhibits DWV
infection, but the reverse does not occur (Doublet et al., 2014;
Traynor et al., 2016). Protein supplementation could increase the
inhibition of DWV by V. ceranae but this parasite could increase
DWV replication with pollen supplementation instead (Zheng
et al., 2019). This underlines the complexity of these interactions
and the importance of other factors like nutrition. Similarly,
Serratia marcescens, an opportunistic pathogenic bacterium for
worker bees, has antagonistic interactions with other bacteria
(Raymann et al., 2018). Indeed, this bacterium exhibits strain-
specific anti-competitive mechanisms against other pathogenic
bacteria such as Enterobacter cloacae. Nevertheless, although
these mechanisms do not target host eukaryotic cells, they may
damage some beneficial bacteria in the microbiota and increase the
damage created by this one bacterium (Murdoch et al., 2011).
Another example of anti-competitive mechanisms is the fungus
Aspergillus fumigatus, whose mycotoxin called Fumagillin is used
to prevent and treat V. ceranae infection in bees (Guruceaga et al.,
2019).

Another mechanism illustrating antagonistic interactions is the
activation of the immune system or detoxification by a stressor. In
this situation, the first stressor triggers the host’s defense system,
which can be deleterious to another pathogen or even prevent its
establishment. For example, the parasite V. ceranae inhibits immune
system gene expression but not the synthesis of reactive oxygen
species. This suggests that oxidative stress, rather than immunity,
directly blocks the replication of DWV virus (Doublet et al., 2014).
The bacterium S. marcescens has been shown to sometimes lead to
intestinal cell purging in Drosophila through its pore-forming
hemolysin toxin (VanHook, 2016). This purging is a defensive
mechanism of the intestinal epithelium to shed pathogens in the
cytoplasm that may explain some antagonist interactions between S.
marcescens and other pathogens like V. ceranae.

Progress has beenmade in understanding themodes of action by
which stressors have a synergistic versus antagonistic impact on
bees. These interactions are extremely complex, as they are specific
to each combination of stressors and depend on many external
factors. Yet most studies investigate exposure to a limited number of
stressors, whereas bees are exposed to a multitude. Targeting host-
specific defensive molecules through bioassays could help identify
the stressors to which bees are exposed, leading to the development
of new strategies to predict and perhaps even counteract the
consequences of multiple stress exposure in honeybee colonies.
The use of technology such as QSAR could be of great
help. Quantitative Structure-Activity Relationships (QSAR) are
mathematical models that enable prediction of the deleterious
effects of a xenobiotic based on its chemical structure. In the
same way, one could imagine a program where a beekeeper
would enter data on the location of their hives and obtain a
detailed list of threats to the colony and solutions according to
the mode of action of these stressors. This hypothetical tool would
allow the beekeeper to choose the best location for their colonies and
select appropriate solutions to reduce exposure, risk, and damage to
the bees.

4 Honeybees’ defenses and beneficial
environmental factors

While honeybee lifestyle is likely to favor pathogenic
infestations, they have developed a “social immunity” over time.
This term describes how individual behaviors can reduce the
transmission and impacts of pathogens at the colony level
(Simone-Finstrom and Spivak, 2010). Moreover, some natural
factors in their environment may help limit bee exposure to
anthropogenic stressors. In addition, honeybees have developed
strategies to avoid chemical contamination. Directing funding
and research toward these beneficial factors could provide
support to help combat bee stressors and their synergistic effects
in the future. These beneficial factors are discussed below.

4.1 The behavioral immunity of honey bees

Studies of bee defense systems have shown a genetic deficit in
their immune system and detoxification compared to other insects
(Evans et al, 2006; Berenbaum and Johnson, 2015). Bees may
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compensate for this genetic deficit through their social defenses and
have developed an array of behaviors that help them combat
stressors.

First, bees have specific strategies to protect them from their co-
evolved predators, as exemplified by Apis ceranae in regard to the
Asian hornet. “Guardians” remain at the hive entrance and
surround aggressive hornets by vibrating around it until it dies of
hyperthermia (Villemant, 2008). It is thus the novelty of this
predator in Europe that makes it so deadly for A. mellifera there.
Bees have also developed behavioral strategies to survive
temperature variations (in winter) by forming well-organized
clusters (Jarimi et al., 2020).

Bees have developed a number of complex behaviors to combat
insidious stressors such as parasites, fungi or bacteria. The most
famous is hygienic behavior. Workers in a colony are considered to
demonstrate this characteristic when they can identify and remove
infected, diseased, or dead brood (Spivak and Gilliam, 1998). This
behavior prevents or reduces colony infestation by fungi or bacteria,
or even varroa mites. It is a good example of social immunity, where
the health of the colony takes precedence over that of the individual.
Grooming is another behavior developed among European bees as a
defense against parasites. It involves a bee removing the parasite
from itself (autogrooming) or from its sisters (allogrooming) and is
particularly effective against varroa mites (Boecking and Spivak,
1999; Invernizzi et al., 2022). Both types of behavioral defenses
against parasites are used by A. ceranae, which co-evolved with the
varroa mite. Today, researchers and beekeepers are attempting to
further develop these positive behaviors by using genetic selection to
accelerate the co-evolution delayed by beekeeping treatments.
Indeed, these treatments, necessary to the beekeepers, prevented
the natural selection process that would have allowed the selection of
mite-resistant colonies over the years (Le Conte et al., 2007). Mite
numbers can also be reduced by other behaviors, such as swarming,
a natural process but one that is rarely allowed in apiaries (Seeley
and Smith, 2015). Some honeybee subspecies are also known to
imprison some of their parasites; A. mellifera capensis encapsulates
the small hive beetle in a propolis prison (Neumann et al., 2001). The
European honeybee uses propolis to encapsulate dead enemies
inside the hive if they are too large to be removed, to avoid
decomposition and bacterial proliferation (Burdock, 1998; Fokt
et al., 2010).

Honeybees can also increase the temperature of the brood in the
event of foulbrood infection, to eliminate this deadly but
temperature-sensitive fungus (Starks et al., 2000). Sick, infected,
or parasitized workers also tend to withdraw from the colony.
Although the mechanisms of this “altruistic suicide” are not yet
fully understood, affected workers tend to engage in riskier
behaviors and not return to the colony, when they do not
directly choose to leave (Evans et al., 2006; Rueppell et al., 2010).
A sick worker remaining in the colony may be recognized by a
mechanism similar to that of hygienic behavior (probably bonded to
pheromones) and expelled by others (Baracchi et al., 2012).
Similarly, some workers engage in corpse removal tasks to
prevent bacterial proliferation and the spread of disease (Trumbo
et al., 1997). All of these behavioral defenses against pathogens are
well described in the review by Simone-Finstrom published in 2017.

Recently, Berenbaum and Johnson (2015) proposed that
honeybees may exhibit behaviors designed to avoid

contamination by natural or chemical toxins, which could
compensate for their lack of detoxification genes. It has been
proposed that bees may detect toxins through taste neurons in
their proboscis (Kessler et al., 2015), performing a kind of selective
pollination (Berenbaum and Johnson, 2015). However, Kessler and
colleagues showed in 2015 that, in some cases, bees favored
neonicotinoid compounds. In any case, foraging on flowers of
different species allows honeybees to dilute toxins by mixing
different types of pollen or nectar, thereby reducing the exposure
dose (Berenbaum and Johnson, 2015). In addition, beekeepers have
observed a new phenomenon of “entombed pollen.” Although this
behavior is still poorly understood, it appears to be related to colony
mortality and the presence of high levels of pesticides in the pollen
involved (Evans et al., 2009); it may represent another means used
by bees to prevent chemical exposure.

These social immunity and detoxification behaviors allow bees
to decrease pathogen invasion and toxin exposure with a reduced
number of dedicated genes. Bees also defend the hive by spreading
antimicrobial compounds from various sources, as described below.

4.2 Bee collective defenses in the hive

Social bees have also developed a true collective immunity, with
defensive molecules and beneficial bacteria distributed throughout
the hive. To visualize this, one could imagine the colony as an
organism, with each bee as a cell. By producing antimicrobial
molecules and maintaining a stable microbiota, each bee
contributes to the immunity of this superorganism (Simone-
Finstrom, 2017).

As a result, almost all bee products contain antimicrobial
molecules (Romanelli et al., 2011; Baracchi et al., 2012;
Brudzynski and Sjaarda, 2015). Propolis is one of these, and its
curative and antiseptic properties have been recognized since
antiquity (Fokt et al., 2010). This complex mixture is composed
mainly of plant resin and beeswax chewed together. Salivary
compounds and, probably, other molecules are added during this
chewing process. Bees use this product to fill holes in the hive and
likely as a protective agent against wind and enemy access to the
hive. The plant content of propolis makes its composition highly
dependent on season and region. Nevertheless, Kujumgiev et al
showed in 1999 that propolis from different regions all exhibited
antibacterial and antifungal properties. Indeed, propolis helps
colonies to fight against Gram + bacteria (Kujumgiev et al., 1999;
Silici and Kutluca, 2005; Przybyłek and Karpiński, 2019), fungi and
microsporidia such as Vairimorpha spp (Peng et al., 2012; Yemor
et al., 2015; Arismendi et al., 2018; Mura et al., 2020; Naree et al.,
2021) and parasites such as Varroa destructor and their associated
viruses (Damiani et al., 2010; Drescher et al., 2017). Bees use propolis
as a defense against infestations as well as for self-medication. Its
consumption can indeed improve bee health and natural defenses
against pathogens (Yemor et al., 2015; Drescher et al., 2017; Turcatto
et al., 2018) and it is also known to have antioxidant properties
(Russo et al., 2002; Kumazawa et al., 2004). In addition, propolis
activates the bee immune system and generates high-level responses
from associated genes to help bees fight microorganisms.

The properties of propolis and other hive products originate
from the plant extracts that compose them (Cushnie and Lamb,
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2006; Göçer and Gülçin, 2011; Peng et al., 2012; Meyuhas et al.,
2015) as well as from the bees’ production of antimicrobial
molecules. Antimicrobial peptides (AMPs) are one example of
these molecules (reviewed by Danihlík et al., 2015). Their
synthesis is induced by the presence of certain pathogens
(Aronstein et al., 2010; Lourenço et al., 2013) and they are part
of the bee humoral immune system. “Jelleins” are AMPs produced
by workers and added to royal jelly for the queen. Most types of
jelleins exhibit antimicrobial activity on bacteria and yeast, probably
by acting on bacterial cell walls (Romanelli et al., 2011; Brudzynski
and Sjaarda, 2015; Danihlík et al., 2015). They work synergistically
with other AMPs, such as temporins, present in bee venom
(Romanelli et al., 2011). Indeed, venom may also play a role as a
protective agent against pathogens through its antimicrobial
properties (Baracchi et al., 2012; Leandro et al., 2015; Wehbe
et al., 2019). Some major venom compounds are found in the
bee cuticle and in the wax (Baracchi et al., 2012), which suggests
a more important role of venom in defense against pathogens.
Beeswax also exhibits antimicrobial properties, summarized in
the review by Fratini et al. (2016), as does bee bread (Bakour
et al., 2019; Khalifa et al., 2020).

Honey possesses antimicrobial properties due to the presence of
numerous antimicrobial compounds that act synergistically.
Polyphenolic compounds from plants are the main antimicrobial
agent in honey (Güneş et al., 2017) and explain how honeys with
different origins exhibit different antimicrobial characteristics
(Nolan et al., 2019). Bees use other plant products such as
nectar, which they transform using specific enzymes including
glucose oxidase. This enzyme catalyzes the glucose
transformation and enables production of hydrogen peroxide,
another potent antimicrobial in honey (Brudzynski et al., 2011;
Nolan et al., 2019). Such enzymes play a key role in herd immunity,
as they allow the production and dissemination of antimicrobials
throughout the hive. Furthermore, bees tend to choose to consume
the most antimicrobial honey when infected with the microsporidia
V. ceranae (Gherman et al., 2014). This could be another example of
self-medication. Honey also contains AMPs such as defensin-1,
which contributes to its antimicrobial properties. The antimicrobial
compounds in honey are very complex, due to variations in origins,
compounds, and compound concentrations. They are well described
in reviews by Kwakman and Zaat (2012) and Nolan et al. (2019).
Finally, honey can also have antioxidant properties, as is the case
with Manuka honey, which contains the highest rate of phenolic
compounds known to reduce free radicals and oxidative damage
(Stephens et al., 2010; Alvarez-Suarez et al., 2014).

To summarize, bees increase collective immunity by
disseminating protective molecules throughout the hive in their
products. These molecules include antimicrobial peptides (AMPs)
produced directly by the bees and reactive molecules such as
hydrogen peroxide (H2O2) produced indirectly by the catalysis of
plant compounds by bee enzymes. Reactive molecules of bee
products such as H2O2 could help degrade some pesticides, as
demonstrated by several studies (Doong and Chang, 1998;
Badellino et al., 2006). Bees also incorporate plant-derived
antimicrobial molecules, such as polyphenols, into their products.
Some components of propolis and honey such as p-coumaric acid
can activate and regulate the immune system response and the
process of detoxifying pesticides and other xenobiotics. These

molecules and associated hive products act synergistically to
address the most pathogens in the most effective way (Romanelli
et al., 2011; Fratini et al., 2016). In addition, they show amazing
potential for combating antibiotic resistance (Lerrer et al., 2007;
Kwakman et al., 2011). Finally, an increasing number of studies are
now looking at the specific microbiota of bees and the overall
microbiota of the hive. Given that each bee has its own
microbiota that can modulate the overall microbiota of the
colony, this could be considered another kind of collective
immunity of the bee. Since the individual and overall microbiota
are also dependent on the external environment, the bacterial
composition of the hive will also be discussed in the next paragraph.

4.3 External environmental factors helpful to
bees

As seen in the previous paragraph, hive products (propolis and
honey) contain many bioactive molecules, the majority of which
come from plant extracts. Among flavonoids and phenolic acids
(from wildflowers, fruit plants and aromatic plants), galantin and
caffeic acid are known to have antimicrobial and antioxidant effects
(Heijnen et al., 2001; Cushnie and Lamb, 2005; Cushnie and Lamb,
2006; Göçer and Gülçin, 2011; Meyuhas et al., 2015). In addition,
p-coumaric acid, a ubiquitous component of pollen, activates the
immune system and detoxification (Mao et al., 2013). This prepares
the bee system for warding off potential future stressors,
exemplifying how external molecules can help bees fight
pathogen invasions. Unlike stressors, plants act as beneficial
environmental factors. Interestingly, this phenomenon is fairly
universal, since it does not depend on plant type or geographic
area (Seidel et al., 2008; Damiani et al., 2010).

Bees also bring bacteria into the hive from their forays in their
surroundings. These bacteria can be beneficial and integrate with the
bacteria in the hive. Indeed, it appears that the bee microbiota is also
dependent on the environment outside the hive (Jones et al., 2018).
The presence of specific bacteria beneficial to bees can prevent the
development of opportunistic bacteria by occupying ecological
niches or by secreting antibacterial compounds (principle of
competitive exclusion, Meszéna et al., 2006). In 2020, Wu and
collaborators also showed that a healthy gut microbiota promotes
endogenous detoxification in bees by upregulating the expression of
P450-associated genes. Furthermore, the hive microbiota conditions
the establishment of a beneficial microbiota on the larvae,
promoting good development (Martinson et al., 2012; Powell
et al., 2014). A healthy microbiota makes honeybees more
resistant to many stressors (Koch and Schmid-Hempel, 2011;
Steele et al., 2021) since an unstressed microbiota plays key
functional roles for bees, such as pollen and carbohydrate
digestion, molecule synthesis, immune system activation, and
pathogen resistance, among others (Koch and Schmid-Hempel,
2011; Engel et al., 2012). Improving the health of the bee at the
individual level makes the colony more resilient against all kinds of
stressors. Finally, some bacteria also can degrade organic
compounds such as pesticides (Zhang et al., 2014; Yuan et al.,
2021) and thus reduce bee exposure to pesticides. Recently, in El
Khoury et al. (2022), showed that the endogenous gut microbiota of
honeybees has the ability to metabolize clothianidin, a compound
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highly toxic to bees. In fact, other factors such as UV and sunlight
can degrade neonicotinoids (Gupta et al., 2008; Kurwadkar et al.,
2016), as well as some reactive compounds such as reactive oxygen
compounds or H2O2 (Doong and Chang, 1998; Badellino et al.,
2006; Sablas et al., 2020). Thus, supplying additional beneficial
bacteria (i.e., probiotics) could be a potential solution that
beekeepers could implement to help honeybees resist to the
multiple stressor exposure, as suggested by Chmiel et al. (2020).

5 Conclusion

In this review, we have described the interaction between
stressors and the modes of action related to their synergic effects.
We have also detailed the natural defenses of the honeybee. These

interactions and their impacts on honey bees, as well as honey bee
defense systems, are summarized in Figure 3. This valuable species
not only provides us with hive products of great interest for agri-
food and pharmaceutical fields, but it also pollinates our
monocultures. However, honeybee health is declining, and some
regions are now experiencing significant colony losses. Many studies
have been carried out on this species to investigate the causes
underlying this phenomenon. The species could also help to
protect broader pollinator biodiversity, since A. mellifera can
serve as a bioindicator of the state of the environment and has
characteristics similar to those of other pollinators on an individual
scale. It appears that honeybees suffer from exposure to multiple
stresses in their environment, both biotic and abiotic, that generate a
wide range of effects. These cumulative effects reinforce each other,
multiply and engender additional impacts, since exposure to

FIGURE 3
Effects of multiple stressor contamination on honey bees (A) and illustration of honey bee defense systems (B) at individual and colony levels.
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different stressors occurs simultaneously. Fundamental
environmental factors such as temperature also interact with
stressors, as do certain bee characteristics, such as bee caste.
While it is extremely difficult to obtain a synthetic overview of
the situation due to the number of parameters to be considered and
individual differences among cases, certain modes of action related
to stressor synergic effects have been identified. Synergistic stressors
interactions (that negatively affect the bees) often result from a
disruption of the immune response or detoxification that allows
them to remain mismanaged in the body, or from an excessive
defense response by the bee itself. Antagonistic interactions (that
positively affect the bees) are most often a result of competition
between stressors or activation of the bee’s own defenses.

The honeybee possesses a well-developed social immunity
comprising complex behaviors and secretion/collection of
various detoxification and antiseptic compounds that combat
pathogens and reduce chemical toxicity. They also use their
products to sterilize the hive and self-medicate, partly by
incorporating external plant molecules. By consuming
products like honey, they activate their defenses and improve
their own health. External environmental factors can thus help
bees to combat certain stressors through antimicrobial activity or
by degrading anthropogenic pollutants such as pesticides.
Beneficial factors combined with bee collective and social
immunity should make them resistant to many stressors. This
shows the seriousness of the situation for the health of bees and
even more so for other pollinators that do not possess this type of
protection. Nonetheless, the three types of defenses described
here are encouraging and have great potential to function as
strategies to help combat bee stressors. Genetic selection to
promote hygienic behavior, allowing bees to retain some of
their production, instead of feeding them sugar solutions
during the winter, or placing hives in areas surrounded by
plants with a high potential for detoxification activation
represent solutions that are or could be considered in the
future. Scientists also have a key role to play in safeguarding
the honey bee. This literature review illustrates how fundamental
it is to carry out integrative studies, targeting several stressors,
both individually and in interaction, and using a holistic
approach to bee health. The honey bee is also a superb
biological model, enabling studies to be carried out on at
different scales. This allows to study the effects and complex
mechanisms of stressors in an accurate, targeted way (on a cage
scale), and then to validate these effects and conclusions in the
field (on an apiary scale). Various approaches can be used on bees
to detect stressors. Targeted (e.g., enzyme-linked
immunosorbent assay (ELISA), quantitative PCR, targeted
mass spectrometry) or non-targeted analyses such as multi-

omics approaches or microbiota analysis on honey bees should
be seriously considered to detect not only the presence of
stressors in the environment, but also to assess their
bioavailability and toxicity. In conclusion, this review provides
a sense of the magnitude of the problem, while the long-term
chronic and behavioral effects of these stressors remain to be
investigated further. Nevertheless, there is hope for the honeybee,
as this knowledge can and should be used to develop concrete
solutions to ensure their wellbeing.
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