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Objective: A growing body of research shows the promise and efficacy of EMG-
based robot interventions in improving the motor function in stroke survivors.
However, it is still controversial whether the effect of EMG-based robot is more
effective than conventional therapies. This study focused on the effects of EMG-
based robot on upper limb motor control, spasticity and activity limitation in stroke
survivors compared with conventional rehabilitation techniques.

Methods: We searched electronic databases for relevant randomized controlled
trials. Outcomes included Fugl-Meyer assessment scale (FMA), Modified Ashworth
Scale (MAS), and activity level.

Result: Thirteen studies with 330 subjects were included. The results showed that
the outcomes post intervention was significantly improved in the EMG-based
robot group. Results from subgroup analyses further revealed that the efficacy of
the treatment was better in patients in the subacute stage, those who received a
total treatment time of less than 1000 min, and those who received EMG-based
robotic therapy combined with electrical stimulation (ES).

Conclusion: The effect of EMG-based robot is superior to conventional therapies in
terms of improving upper extremity motor control, spasticity and activity limitation.
Further research should explore optimal parameters of EMG-based robot therapy and
its long-term effects on upper limb function in post-stroke patients.

Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/;
Identifier: 387070.
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1 Introduction

Stroke is a prevalent neurological dysfunction syndrome characterized by high incidence,
mortality and disability rate (Winstein et al., 2016). Upper limb disorders are present in 85% of
stroke survivors, with motor dysfunction still affecting 55%-75% of patients 3-6 months after
onset (Parker et al., 1986; Feys et al., 1998). The residual upper limb dysfunction hugely impacts
the ability of post-stroke patients to live and work independently, leading to reduced quality of life
and a burden on patients’ families and society (Micera et al., 2020). Therefore, there is an urgent
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need to promote upper extremity function in post-stroke patients.
However, the need for effective rehabilitation techniques for upper limb
in stroke survivors remains largely unmet. Thus, it is of great
significance to develop effective and positive rehabilitation methods
for the upper limb rehabilitation of stroke survivors.

Conventional rehabilitation techniques, such as constraint-induced
movement therapy (CIMT), physical therapy (PT) and occupational
therapy (OT) (Pollock et al., 2014; Corbetta et al., 2015), have been
adopted to assist upper limb rehabilitation. These techniques require
patients to perform full or partial-assisted movements under the
supervision of therapists. Other rehabilitation methods such as
electrical stimulation (ES) and robots can provide repetitive, high-
intensity training and also have benefit to reduce the physical stress
of rehabilitation staff (Doucet et al., 2012; Zhang et al., 2017; Wang et al,,
2021). However, a lack of real-time feedback from patients and excessive
electrical stimulation may impede the efficacy of repetitive, high-
intensity training and, in certain instances, induce muscle fatigue,
thereby hindering the facilitation of motor function recovery (Chae
et al, 2002).

Electromyography (EMG) have been utilized to control electrical
stimulations (Hu et al., 2010; Rong et al., 2015; Rong et al., 2017; Nam
et al,, 2022) and powered exoskeletal devices (Rosen et al., 2001;
Cheng et al., 2003; Dipietro et al., 2005; Ferris et al., 2005; Song et al.,
2008) and trigger robot-assisted training to provide movement
assistance (Zhuang et al., 2021). The EMG-based robot is one of
the novel techniques designed for maximizing the involvement of
voluntary efforts during post-stroke training. Unlike traditional robot-
assisted training, the EMG-based robot can detect residual EMG
signals of the affected limb in real time and integrate the participants’
voluntary motor intention represented by the EMG signal from the
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residual muscles into training (Song et al., 2008; Rong et al., 2015;
Chen et al., 2022). Once the EMG signals reach a specific threshold,
the robot-assisted training will be activated, assisting the patients to
complete a desired movement. The EMG-based robot could increase
the interaction between participants and machines, potentially
enhancing the effect of robot-assisted training, and reducing the
pressure on medical staff. Studies have found that the EMG-based
robot improved the Fugl-Meyer assessment (FMA) score and
spasticity of the upper extremity in post-stroke patients when
compared with conventional therapy, (Stein et al, 2007; Song
et al, 2008; Hu et al, 2015; Nam et al., 2017). However, Chen
et al,, (Chen et al., 2022), and Page et al., (Stein et al.,, 2007; Page
et al., 2013; Page et al,, 2020), respectively found the efficacy of the
EMG-based robot was not superior to task-oriented training and
conventional hands-on manual therapy. Therefore, it remains unclear
whether the effect of the EMG-based robot is superior to conventional
therapies on upper limb function of stroke survivors.

To date, there is a lack of meta-analyses summarizing whether
EMG-based robot training is superior to conventional treatment.
Therefore, the objectives of this meta-analysis are twofold: 1) to
determine the superiority of EMG-based robot therapy over
conventional therapy, and 2) to analyze the effectiveness of
different treatment options.

2 Methods

This review was on the basis of the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) (Moher et al.,
2009).
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FIGURE 1
The PRISMA flow diagram.
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FIGURE 2

Risk of bias in the systematic review. Bias of the included articles

is relatively low and stable. (A) Risk of bias for all included studies. (B)
Risk of bias item for each included study.

2.1 Search strategy

We searched studies published before 20 November2022 in these
electronic databases: Embase, Scopus, PubMed (MEDLINE), Cochrane
library and Web of science. The PICOS (participant, intervention,
comparison, outcome and study design) framework was used to
research. When determined the systematic keywords to retrieve, we
only used P and I to avoid missing crucial articles. The mesh terms used
(Participants),
“Electromyography” AND “Robotics” (Intervention), and in other
“Stroke”
“Electromyography” AND “Robot” (Intervention). Detailed search

in Embase were “Cerebrovascular Accident”

databases were related to (Participants),

strategy for those databases could be found in Supplementary Material.

2.2 Inclusion and exclusion criteria

The following was the inclusion criteria: 1) Participants: patients
who have been suffering stroke; 2) Intervention: EMG-based robot
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therapies, including EMG-driven robot, smart rehabilitation
systems with EMG, and electromechanical orthosis; 3) Outcomes:
measures of upper extremity motor function, spasticity and activity
limitation; 4) Study design: randomized controlled, cross-over
clinical trials; 5) articles published in English.

The following was the exclusion criteria: 1) studies not focusing
on post-stroke patients; 2) no EMG-based robot system described; 3)
studies targeting the low limb functions of stroke; 4) case reports; 5)
review articles; 6) studies without the full text. Two reviewers
assessed each article for inclusion independently. When an
identity of views was not reached between the two reviewers, the
ratings were discussed among all co-authors until a consensus was
reached.

2.3 Outcome measures

Based on the International Classification of Functioning Disability
and Health model (ICF) (Reis et al., 2021), we classified outcomes into
a) motor control of upper limb, b) muscle tension, and ¢) activity
capacity. The above three aspects were respectively evaluated by Fugl-
Meyer Assessment Scale (FMA), modified Ashworth Scale (MAS) and
activity limitation (e.g., Box and Blocks Test [BBT], Nine Hole Peg Test,
Jebsen-Taylor Hand Function Test, Action Research Arm Test
[ARAT]) (Veerbeek et al., 2017; Reis et al., 2021).

2.4 Data extraction

Two authors analyzed the abstracts and contents of each article
carefully and extracted the data systematically. If there was a
disagreement, it would be resolved by consultation with a third
author. We extracted data on the following two aspects: 1) the basic
information of the study, including the type of study, demographic
characteristics of the subjects, outcomes measures, and 2)
information on the EMG-based robot systems, including robot
types, parameters of intervention. We contacted authors for
original data when partial data were not available.

2.5 Risk of bias assessments

We used the Cochrane risk of bias assessment tool (Higgins and
Altman, 2008) to assess each study by two independent authors. This
tool contains six items, selection bias, performance bias, detection
bias, attrition bias, reporting bias, and other biases (Higgins et al.,
2011). Disagreements were resolved by consultation with a third
reviewer when necessary.

2.6 Statistical analysis

Review Manager 5.4 (The Nordic Cochrane Centre, The
Cochrane Collaboration, Copenhagen, Denmark) was used to
analysis. We compared variation in effect sizes on the outcome
measures of upper extremity function between the experimental
group (EG, using EMG-based robot) and control group (CG, using
conventional therapies) before and after intervention.
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Then, we used mean difference (MD) or standardized mean
difference (SMD) and 95% confidence intervals (CIs) to calculate
the pooled effects of outcome measures. In addition, we evaluated
heterogeneity by examining forest plots, chi® test and I* statistic
were used to assess the heterogeneity between RCTs. I* values
range from 0% to 100%, and are considered low at <25%, modest
at 25%-50%, and high at >50%, and the t-statistic is being used
for the degrees of freedom in the random effects analysis, when
the number of studies is small (e.g., <10). Subgroup analyses,
meta-regression and sensitivity analysis were computed to
evaluate heterogeneity.

3 Results
3.1 Study screening

Figure 1 shows the details of the whole selection process. A
total of 2,469 articles were retrieved after searching the databases.
And 1750 articles were screened after removing 719 duplicates, of
which 1,691 articles were excluded according to the PICOS
principle in titles and abstracts. The rest of 59 studies were
submit to full-text checking, of which 13 studies were
included for meta-analysis.

3.2 Quiality of the included studies

Risk of bias for included 13 studies was assessed by two reviewers
independently. The results were shown in Figure 2, and sensitive
analysis indicated that the results appeared to be stable.

3.3 Study characteristics

Table 1 shows the details of basic information of the included
trials. In total, this meta-analysis included 330 subjects (EG, n = 175;
CG, n = 155). One study was extracted two experimental groups
(Page et al.,, 2020). For randomized cross-over trial (Chen et al,
2022), data before crossover were extracted. The study with fewest
number of participants was carried out by Hayward (n = 8, EG:4,
CG:4) (Hayward et al,, 2013). The mean duration of post-stroke
ranged from 0.87 months to 8.3 years. Most studies concentrated on
stroke rehabilitation in chronic stage.

In terms of setting EMG-based robot intervention parameters,
the session duration of EMG-based robot ranged from 30 min to
90 min, and the average was 47 min. Eight studies set a session less
than 60 min. Three studies (Barker et al., 2008; Hayward et al., 2013;
Chen et al., 2022) set a session duration of 60 min, and others were
more than 60 min. The average frequency of intervention was
3.79 times/week, and most studies focused on a frequency of
3 times/week. The average intervention period was 6.04 weeks,
and most studies continued 4 weeks.

According to the statistics, the effect of the intervention on
participants was mainly confirmed by measuring subjects’ upper
limb motor function, spasticity and activity limitation. The FMA,
MAS and assessment for activity level, such as ARAT, BBT were the
most commonly used scales.
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3.4 Synthesis of results

3.4.1 Effect of EMG-based robot therapy compared
with control group

In the subgroup analyses, the EMG-based robot, non EMG-
based robot (ie., conventional rehabilitation robot such as
InMotion), and conventional (non-robotic) rehabilitation were
compared for the improvement of motor control, spasticity and
activity limitation post intervention. Nine studies measured the
effect of EMG-based robot on FMA. The results showed that the
score of FMA was significantly increased (SMD:0.62, 95% CI:0.29 to
0.95) (Figure 3A). Seven studies focused on MAS, and the results
showed MAS changed significantly (MD: —0.42, 95% CI: —0.82 to
-0.03) (Figure 3B). Eight studies aimed at activity limitation, the
results showed the activity level also improved notably (SMD:0.43,
95% CI:0.05 to 0.82) (Figure 3C). The results of subgroup analyses
showed that the effect of EMG-based robot in motor control was
superior to both conventional therapies (SMD:0.46, 95% CI:0.03 to
0.89) and robotic therapies (SMD:0.94, 95% CI:0.43 to 1.45) (Figure
4A). In terms of spasticity, no obvious advantage was found for the
EMG-based robot over conventional treatment (Figure 4B). The
EMG-based robot was more effective than the robotic therapies in
the activity limitation (SMD:0.90, 95% CI:0.02 to 1.79) (Figure 4C).
However, there is high heterogeneity in the outcome of MAS and
activity limitation. The results of meta-regression (Supplementary
Figure Al) and sensitivity analysis (Supplementary Figure A2)
showed that the sample size contributed to the outcome of MAS
and the duration of disease contributed to activity limitation.

3.4.2 The total time of training

As described in previous studies (Wang et al., 2021; Zhang et al.,
2022), the amount of intervention was estimated by total time. We
discovered that there was a significant difference in the upper limb
motor function in both subgroups at the end of treatment between
EMG-based robot therapy and conventional therapies, and the effect
size was lager in subgroup with total training time <1000 min (SMD:
0.67, 95% CI:0.25-1.09) than subset with total time >1000 min
(SMD:0.58, 95% CI:0.14-1.03) (Figure 5A). In terms of spasticity,
subgroup with total time <1000 min had a significant difference
between EG and CG (MD: -0.77, 95% CI: —1.06 to —0.48), but no
significant difference in the subset with total time >1000 min (MD:
-0.02, 95% CI: —-0.58 to 0.53) (Figure 5B). Activity limitation also
changed significantly in subgroup with total time <1000 min (SMD:
0.45, 95% CI.0.06-0.83), rather than subgroup with total
time >1000 min (SMD:0.44, 95% CI: —0.58-1.45) (Figure 5C).

3.4.3 The intervention mode

The intervention modes provided by EMG-based robot included
EMG-driven robot with electrical stimulation (ES) and the type
without ES. Subgroup analysis showed that the robot type with ES
(SMD: 0.91, 95% CI:0.44-1.37) had larger effect size on the FMA
than the type without ES (SMD: 0.42, 95% CI: 0.01-0.82) at the end
of treatment (Figure 6A). The outcome of MAS at the end of
treatment showed no significant difference between EG and CG
in both subgroup (Figure 6B). In terms of the activity limitation, we
found that the subgroup with ES (SMD:0.60, 95% CI:0.17-1.04) was
better than the subgroup without ES (SMD: -0.06, 95% CI:
-0.62-0.49) (Figure 6C).
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TABLE 1 Basic information about included studies.

Intervention EG  Participants  Age(years) Post-stroke Intervention time setting Outcome
vs. CG duration(months) measures
Mean = SD Mean + SD Session Frequency  Weeks
duration (WEES)
(minutes)
Ambrosini EMG-driven FES robot = EG:36 EG:60.9 (13.7) | EG:2.11 (1.96) 30 3 9 ARAT, BBT
et al., 2021 vs. Conventional
Therapies CG:36 CG:67.8 (122)  CG:2.07 (2.56)
Barker et al. =~ Smart rehabilitation EG:10 EG:61 (16) EG:60 (58.8) 60 3 4 MAS
(2008) system and stim vs.
smart rehabilitation CG;13 CG:67 (8) CG:40.8 (31.2)
system alone
Chen et al. EMG-driven robot vs. EG:14 EG:54.58 EG:37.07 (34.39) 60 3 8 FMA, ARAR
(2022) Task Oriented (10.98)
CG:10 CG: CG:59.8 (43.34)
64.98 (8.22)
De Aratjo Electromechanical EG:6 EG:42.83 EG:21.67 (11.83) 50 3 8 FMA, MAS
et al.,, 2011 orthosis vs. (14.04)
Conventional Therapies
CG:6 CG:52.67 CG:19.00 (11.01)
(17.84)
Hayward Smart rehabilitation EG:4 EG:69 (10) EG:1.53 (0.4) 60 5 4 MAS
etal. (2013) = system and stim vs.
smart rehabilitation CG4 CG:56 (24) CG:0.87 (0.2)
system alone
Hu et al. EMG-Driven robot vs. EG:15 EG:49.2 (14.7) = EG:56.4 (50.4) 36.5 3-5 4-7 FMA, MAS,
(2009) passive device ARAT
CG:12 CG:53.3 (10.4) = CG:61.2 (49.2)
Hu et al. EMG-Driven robot vs. EG:5 EG:50.2 (10.2)  EG:12 36.5 3-5 4-6 FMA, MAS
(2009) passive device
CG:5 CG:50.2 (10.2)  CG:12
Huangetal, ~EMG-Driven NMES- EG:15 EG: EG:99.24 (51.84) 60 3-5 4-7 FMA, MAS,
2020 robot vs. robot 57.33 (9.19) ARAT
CG:15 CG: CG:74.4 (40.92)
60.07 (6.88)
Immick EMG-driven robot EG:19 EG:59.0 (15.9) | EG:2.14 (2.2) 30 3 9 ARAT, BBT
et al., 2018 vs.Conventional
Therapies CG20 CG:67.7 (121) | CG:2.65 (3.13)
Page et al. Myomo vs. RTP EG:14 EG: EG: N 30 3 8 FMA
(2020) 55.79 (9.25)
CG: 5 CG: CG: N
57.22 (7.68)
Page et al. Myomo + RTP vs. RTP = EG:8 EG:52.89 EG: N 30 3 8 FMA
(2020) (11.38)
CG:5 CG: CG: N
57.22 (7.68)
Perini et al.,  MeCFES + robot vs. EG:6 EG:65.5 (23.1) | EG:20 (10.3) 45 5 4 FEMA, ARAT
2019 Conventional Therapies
CG:5 CG65.5 (23.1) | CG:20 (10.3)
Perini et al, =~ MeCFES + robot vs. EG:9 EG:58.7 (20.6) = EG:35.3 (44.5) 90 5 4 FMA, BBT
2021 Task Oriented
CG:9 CG:61.4(9) CG: 42 (44.7)
Qian et al. EMG-Driven NMES- EG:14 EG:54.6 (11.3) | EG:0.83 40 5 4 FMA, MAS,
(2017) robot vs. Conventional ARAT
Therapies CG:10 CG:64.6 (3.43) = CG: 0.46

EG, experimental group; CG, control group; Myomo, myoelectric device; RTP, repetitive, task-specific practice; NMES, neuromuscular electrical Stimulation; MeCFES, myoelectric control
functional electrical stimulation; FMA, fugl-mayer assessment; MAS, modified ashworth scale; ARAT, action research arm test; BBT, box and block test.
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A EMG-based robot other therapies Std. Mean Difference Std. Mean Difference
_Study or Mean i % Cl IV, Fixed, 95% CI
De Araljo, et al.2011 9.66 7.12650686 6 10.83 12.00771419 6 84% -0.11[-1.24, 1.02]
Hu, et al. 2008 4.05 6.11212729 5 191 5.18965317 5 68% 0.34 [-0.91, 1.60] I
Hu, et al. 2009 56 5.69297813 15 05 5.05667875 12 16.6% 0.91[0.11,1.72)
Huang, et al.2020 21.07 11.112214 15 7.8 10.32411255 15 17.3% 1.20 [0.42, 1.99] - =
Page, et al. 2020 2.87 6.16522506 9 283 5.10972602 5 9.0% 0.01[-1.09, 1.10]
Page, et al(b). 2020 4.16092538 2.83 9 43 16.57347278 5 9.0% -0.01 [-1.11, 1.08]
Perini, et al. 2019 122 15.34698667 6 1.2 15.60865145 5 7.0% 0.65 [-0.58, 1.88) ]
Perini, et al.2021 10 1599718725 9 4.3 16.57347278 9 123% 0.33 [-0.60, 1.27] I
Qian, et al.2017 21.3 10.00530359 14 98 8.53 10 13.6% 1.18[0.29, 2.07] - =
Total (95% ClI) 88 72 100.0% 0.62 [0.29, 0.95] -
Heterogeneity: Chi = 8.78, df = 8 (P = 0.36); I = 9% 2 1 o 1 2
Test for overall effect: Z = 3.71 (P = 0.0002) Favors control Favors treatment
Experimental Control Mean Difference Mean Difference
B _Study or Mean SD Total Mean SD Total Weight IV. Random, 95% Cl 1V, 95%Cl
Barker, et al. 2008 -0.82 1.13767306 10 0 0.83 13 11.4% -0.82[-1.66,002) — - |
De Araljo, et al. 2011 -0.17 0.41 6 -0.17 0.53563047 6 16.3% 0.00 [-0.54, 0.54] - T
Hayward, et al. 2013 0.5 0.6408588 4 0 0.19 4 142% 0.50 [-0.16, 1.16] ]
Hu, et al. 2008 -0.41 0.90504144 5 -0.05 0.94978945 5 78% -0.36 [-1.51, 0.79]
Hu, et al.2009 -0.6 0.65574385 15 0.1 0.36055513 12 19.1%  -0.70[-1.09,-0.31] — =
Huang, et al.2020 -0.77 0.87469995 15 -0.24 0.79504717 15 15.2% -0.53 [-1.13, 0.07] ——r
Qian, et al.2017 -0.5 087 14 05 052848841 10 159%  -1.00 [-1.56, -0.44] S
Total (95% CI) 69 65 100.0% -0.42[-0.82, -0.03] —
Heterogeneity: Tau? = 0.17; Chi* = 16.85, df = 6 (P = 0.010); I* = 64% 1 0’ = o 0’5 1
Test for overall effect: Z = 2.12 (P = 0.03) Favours experimental Favours control
Experimental Control Std. Mean Difference Std. Mean Difference
C _Study or Mean % Cl 1V, 95% Cl
Ambrosini, et al. 2021 17.9 17.69943502 36 8.5 18.59220267 36 18.6% 0.51[0.04, 0.98]
Chen, et al. 2022 1.5 9.13681016 14 36 1134144171 10 12.0% -0.20 [-1.01, 0.61] - =
Hu, et al. 2009 1.1 11.41183596 15 04 11.4660368 12 129% 0.06 [-0.70, 0.82] -1
Huang, et al. 2020 13.47 12.38697703 15 -4.86 12.69086679 15 121% 1.42(0.61,2.24) -
Immick, et al. 2018 26.1 17.7163766 19 52 19.29429968 20 14.3% 1.10[0.43, 1.78] -
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FIGURE 3

Favours control Favours experimental

Forest plot analysis of the effect of EMG-based robot therapy vs. conventional therapies. (A) Forest plot analysis of the effect of EMG-based robot
therapy vs. conventional therapies on FMA. (B) Forest plot analysis of the effect of EMG-based robot therapy vs. conventional therapies on MAS. (C) Forest
plot analysis of the effect of EMG-based robot therapy vs. conventional therapies on activity limitation.

3.4.4 Stage of stroke

The stage of stroke was evaluated according to the duration after
the onset time, and the participants were classified into subacute
(<6m) and chronic (>6m) group (Wang et al., 2021). For upper limb
motor function, most studies focused on chronic stage and just one
study designed by Qian, et al. (Qian et al,, 2017) was in subacute
stage. Analysis showed that FMA score was significantly changed in
chronic group (SMD:0.55, 95% CI:0.23-0.88) and subacute group
(SMD:1.18, 95% CI:0.29-2.07) (Figure 7A). For spasticity, there
were no significant difference between two groups (Figure 7B).
When comes to the activity limitation, the result showed the
effect was better in subacute group (SMD:0.60, 95% CI:0.10-1.09)
than chronic group (SMD:0.30, 95% CI: —0.31-0.91) (Figure 7C).

4 Discussion

In the present meta-analysis, a total of 12 RCT's and one cross-over
clinical trial were analyzed, which included a total of 330 subjects (EG,
n =175; CG, n = 155). The results indicated that EMG-based robot was
more effective than conventional therapies, including physical therapy,
occupational therapy, passive training, and conventional robotic
therapy. Results from subgroup analyses further revealed that the
efficacy of the treatment was better in patients in the subacute stage,
those who received a total treatment time of less than 1000 min, and
those who received electromyography (EMG)-based robotic therapy
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combined with electrical stimulation (ES). These findings suggest that
EMG-based robot therapy may be considered a promising
rehabilitation method to improve upper limb dysfunction in post-
stroke patients.

4.1 Effect of EMG-based robot

The findings presented in Figures 3, 4 demonstrate that EMG-based
robot therapy can significantly enhance upper limb motor function,
reduce spasticity, and improve activity level in post-stroke patients, as
compared to the robotic therapies and conventional therapies.
Following a stroke occurrence, the injured brain undergoes a
reorganization process that involves recruiting pathways homologous
to the damaged regions in function but distinct in anatomy,
synaptogenesis, dendritic arborization, and reinforcing synaptic
connections (Rossini et al., 2003). Such adaptive brain changes seem
to be closely related to rehabilitation and motor training, contributing to
the improvement of functional outcomes (Chen et al., 2018; Sampaio-
Baptista et al., 2018; Sheng et al, 2022). High-intensity repetitive
training is one of the principles of post-stroke rehabilitation
(Langhorne et al,, 2011). Although there are no clear guidelines for
the optimal level of practice, it is widely accepted that more intensive
training is beneficial. Robot-assisted therapy can provide patients with
repetitive, high-intensity training and improve their motor function
(Zhang et al,, 2017; Kim et al,, 2020; Wang et al., 2021; Yeung et al.,
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FIGURE 4

A subgroup analysis of the effect of EMG-based robot vs. different control

groups on outcomes. (A) Forest plot analysis of the effects of different

control groups on FMA. (B) Forest plot analysis of the effects of different control groups on MAS. (C) Forest plot analysis of the effects of different control

groups on activity limitation.

2021). The possible mechanism involves enhancing neural plasticity
and neuronal activity to facilitate neuroplasticity change (Chen et al,
2019; Xing and Bai, 2020). According to the Hebbian learning rule, the
connections between neurons are strengthened when neurons are
simultaneously active (that is, long-term potentiation) (Orbach,
1998). In addition, signals from EMG-based robot can reflect the
voluntary movement intention of patients in real time (Rong et al,
2015; Zhuang et al, 2021), which may increase active patient
participation and promote interaction between humans and
machines. Recording of muscle activity by EMG has proved to be
helpful to explore the activity state of muscle tissue and the control
mechanism of the nervous system under different task states after stroke
(Ma et al,, 2017; Chen et al,, 2018), and then be useful for evaluating
central and peripheral determinants of motor dysfunction which
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facilitates the understanding of mechanism behind rehabilitation
intervention (Sheng et al, 2022; Li et al, 2023). Voluntary motor
intention is crucial in the rehabilitation of motor function after stroke
(Yang et al, 2022). Rehabilitation training that incorporates
participants’ intention input is more effective which further facilitate
active participation (Hu et al., 2009; Hu et al., 2021; Zhang et al., 2022)
1999). The formation of a
sensorimotor cycle by the voluntary intention output and the

and interactive control (Cozens,
afferent sensor might facilitate motor relearning in post-stroke
(Cauraugh et al, 2000). Furthermore, the effectiveness of repeated
training increased substantially with the increase interaction between
patients and machine (Hu et al,, 2009; Hu et al,, 2021). In general, the
results of current study support the clinical application of EMG-based

robot therapy in improving upper limb dysfunction in patients after
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A subgroup analysis of the effect of EMG-based robot with different total training time vs. conventional therapies on outcomes. (A) Forest plot
analysis of the effects of different total time of training on FMA. (B) Forest plot analysis of the effects of different total time of training on MAS. (C) Forest
plot analysis of the effects of different total time of training on activity limitation.

stroke. However, more investigation is needed to reveal the relation
between the changes of brain function and improvements of
neuromuscular systems (ie., by using cortical-muscular coherence
technique) during the EMG-based robot training. This might be
helpful for the understanding of the potential mechanism related to
neuroplasticity in post-stroke patients.

4.2 The training intensity and mode of the
EMG-based robotic intervention

The subgroup analysis suggested that the effect of the subgroup
with total treatment time < 1000 min was better than the subgroup
with total time >1000 min (Figure 5), indicating the optimal
treatment parameters to achieve the best effect of EMG-based
robot therapy remains to be determined. Post-stroke fatigue is a
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common complication that impacts  patient’s
rehabilitation outcomes (Duncan et al., 2012; Finsterer and
Mahjoub, 2014; Maaijwee et al., 2015). One prevalent hypothesis
is that physical deconditioning may contribute to fatigue following
stroke (Duncan et al., 2012). One study focused on brain-computer

interface (BCI) indicated that mental fatigue may also play a role in

negatively

poorer BCI performance (Foong et al., 2020). Fatigue may affect
patient motivation during training and interaction between human
and machine, thereby hampering the efficiency of EMG-based robot.
However, the relationship between post-stroke fatigue and motor
training is rarely studied, and further research is needed to explore
this aspect.

In the context of training mode, our results showed that the
efficiency of the EMG-based robot with electrical stimulation (ES) was
superior to the type without ES (Figure 6). Clinically, ES can be used to
activate muscles, prevent muscle atrophy, and increase muscle
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different intervention mode on activity limitation.

strength (Hu et al, 2021; Li et al, 2022). In addition, sensory
dysfunction is a common complication after stroke (Sullivan and
Hedman, 2008; Tyson et al., 2008), which is related to the reduction of
motor function recovery (Kusoffsky et al., 1982). ES may effectively
improve sensory awareness of paralyzed muscles after stroke
(Méenpad et al,, 2004), and elicit sensory feedback to the cortex
during muscle contraction to facilitate motor relearning (Sujith,
2008). The sensory feedback is beneficial for motor function
recovery post stroke (Sharififar et al.,, 2018). In the subgroup that
received ES, the sensory feedback from the ES to the affected limb may
be beneficial in motor function improvement. But excessive ES might
impede the effect of motor training (Chae et al., 2002) and it is crucial
to explore the optimal proportion of assistance from both ES and
robot (Li et al., 2022). Hu et al., (Hu et al., 2011), reported that the
performance of wrist tracking could be better with the 1:1 assistance
from both ES and robot. But the small sample size and lack of long-
term testing limited the findings of this study.
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The subgroup analysis also showed that the EMG-based robot was
more effective in subacute stage than chronic stage (Figure 7), which is
consistent with previous studies (Mehrholz et al., 2018; Dehem et al,,
2019; Dromerick et al., 2021). Early participation in rehabilitation is
crucial for motor recovery as it can facilitate brain reorganization,
optimize motor responsiveness and spontaneous neural plasticity,
which may contribute to better rehabilitation outcomes in post-stroke
patients, (Zeiler and Krakauer, 2013; Ng et al., 2015). Improved motor
function in the subacute phase is more likely to generalize into activities
of daily living (Floel et al., 2014; Tomori et al., 2015).

4.3 Study limitations
While our subgroup analysis indicated that the effect of EMG-based

robot was better in patients in the subacute stage, those who received a
total treatment time of less than 1000 min, and those who received
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EMG-based robot combined with ES, it is important to acknowledge
the limited sample size of the included studies and the potential impact
on the validity of the results. Furthermore, the language restriction of
our study to English-language articles may have introduced a selection
bias which may also limit the generalizability of the results. The EMG-
based robot requires active training and may not be suitable for patients
with cognitive impairment. Future studies may explore the relationship
between post-stroke fatigue and functional training to determine the
best parameters of the EMG-based robot for the upper limb function,
which could ultimately results in improved clinical outcomes for stroke
survivors.
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5 Conclusion

The present study provides evidence that EMG-based robot
therapy is superior to conventional therapies in improving upper
limb motor control, spasticity, and activity limitation in post-stroke
patients. These findings suggest that EMG-based robot therapy
could be a promising rehabilitation method for promoting the
recovery of upper extremity function in this patient population.
Further research should explore optimal parameters of EMG-based
robot therapy and its long-term effects on upper limb function in
post-stroke patients.
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