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Introduction

Chicken breast meat is one of the most sustainable and affordable sources of animal
protein making it one of the most popular protein sources globally. As such, maintaining
consistency in product quality is of the utmost importance. Over the last decade three novel
myopathies have been identified in broilers (White striping (WS), Wooden breast (WB) and
Spaghetti breast (SB)) (Soglia et al., 2019; Baldi et al., 2021; Barbut and Leishman, 2022);
there has been a wealth of research across the poultry sector to understand their aetiology.
These myopathies can be found together or individually in all broiler chicken breeds in all
global regions (Lorenzi et al., 2014; Barbut, 2019; Soglia et al., 2019; Che et al., 2022a); the
incidence and severity varies (Petracci et al., 2019; Che et al., 2022b) making them a complex
area of study.

The exact aetiology of the myopathies is still not fully understood however a wide range
of studies have used gene expression (Velleman and Clark, 2015; Zambonelli et al., 2016),
proteomics (Kuttappan et al., 2017) and metabolomics (Boerboom et al., 2018) in an effort to
characterise and understand the underlying biology. These studies have shown that muscle
affected by the myopathies have an increased expression of genes associated with a range of
metabolic, anatomical, and structural biological processes. Whilst the three myopathies are
distinct from each other, the current understanding indicates a common root in hypoxia and
oxidative stress resulting in disturbed growth and development within in the muscle
(Petracci et al., 2019; Soglia et al., 2021). Whilst these studies indicate what is occurring
in the affected muscle at the point of sampling it is still not clear what the initial triggers are.

Current opportunities for control strategies

Genetic selection for broiler performance traits such as bodyweight (BW) and breast
yield (BY) has been a core theory as a cause of the myopathies. Published data of large
populations of broiler pure lines have estimated low genetic correlation between the three
myopathies and performance traits (BY and BW), this indicates there is little shared genetic
background between the myopathies and broiler performance traits (Bailey et al., 2015;
2020). Heritabilities for the myopathies were also estimated in these studies and found to be
low to moderate (0.04 for SB, 0.024–0.097 for WB and 0.185–0.338 for WS). Alnahhas et al.
(2016)reported a higher heritability for WS (0.65), where WS was measured on an
underlying continuous scale rather than a categorical scale as per Bailey et al. (2015,
2020). According to Dempster and Lerner (1950) this can result in a higher heritability
estimate; a heritability of 0.65 on the continuous scale would correspond to a lower
heritability of 0.41 on the observed categorical scale. Another key difference is the fitting
of the effect of the common maternal environment as done by Bailey et al. (2015, 2020).
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Alnahhas et al. (2016) did not fit this effect therefore this
environmental effect is included in the genetic variance, thus
over-estimating the heritability. The low to moderate
heritabilities indicate that there is a genetic component to
myopathy development but it is not the major contributing
factor. Nevertheless, the genetic component can be used to select
against the genetic propensity for developing the myopathies (Bailey
et al., 2015). Empirical testing has shown that genetic selection for
WB potentially reduces the relative incidence ofWB by around 9.2%
(Bailey et al., 2020), whilst at the same time continuing to improve
breast yield through balanced breeding. Even though improvements
can be made through genetic selection, these improvements are slow
due to the low heritabilites of the myopathies and thus must be
viewed as a long term strategy. The non-genetic factors should not
be dismissed as they offer a more impactful and more immediate
opportunity to reduce the incidence of myopathies as they have a
significantly greater influence than the genetic factors.

There are many non-genetic factors that can influence broiler
growth rates such as incubation, brooding, nutrition, temperature
and ventilation (Bartov, 1987; Leksrisompong et al., 2009; Baracho
et al., 2019). A key aspect of muscle growth and development are the
satellite cells which drive growth and repair of muscle (Moss and
Leblond, 1970), and play an important role in meat quality traits
(Velleman, 2022). Incubation conditions influence early satellite cell
development and can influence meat quality traits and may play a
role in myopathy development (Oviedo-Rondón et al., 2020b;
Halevy, 2020). During the first week post hatch these cells are
most active and their population increases rapidly (Mann et al.,
2011; Daughtry et al., 2017; Halevy, 2020). Satellite cell number and
activity are negatively impacted upon if conditions during brooding
are not optimal, e.g., elevated temperatures (Patael et al., 2019) or
suboptimal early nutrition (Harthan et al., 2014; Powell et al., 2014;
2016; Velleman et al., 2014). It is therefore essential that the
development of satellite cells is supported to maximize their
potential to support optimal muscle development to reduce the
risk of a myopathy occurring.

Oxidative stress and hypoxia have been highlighted as a key
feature of all three myopathies (Soglia et al., 2021) therefore it is
important to ensure optimal management though the whole life of
the bird. Poor ventilation leading to poor oxygen availability or heat
stress can lead to oxidative stress in the muscle increasing the risk of
myopathies (Ain Baziz et al., 1996; Livingston et al., 2019a; Patael
et al., 2019; Zaboli et al., 2019; Emami et al., 2021). With this in mind
it is important to ensure that the environmental conditions within
the broiler shed are in line with the breeder recommendations.
Excessive build-up of carbon dioxide (>3000ppm, for example,)
during brooding has been associated with an increased mortality and
impaired cardiovascular function (McGovern et al., 2001;
Olanrewaju et al., 2008) which will undoubtedly influence oxygen
supply to the muscle.

Whilst genetic correlations indicate that there are no
significant links between the myopathies and bird growth at
the genetic level, phenotypically it is often the larger birds in a
flock which express the myopathies. This phenotypic relationship
is not always the case however, as some studies report that WS
and WB are not linked to bird weight (Lorenzi et al., 2014;
Trocino et al., 2015). Wooden breast and white striping do not
occur spontaneously; chronological studies have shown that

disruption to the breast meat at the cellular level can start as
early as 2 weeks of age (Brothers et al., 2019; Chen et al., 2019)
indicating that this could be a key time point to influence muscle
development to reduce myopathy risk especially as growth rates
start to increase from around 3 weeks of age (Aviagen, 2022).
With this in mind, an important part of the strategy to control the
myopathies could be to look at the growth trajectory of the birds
and their breast muscles. Characterising the manner in which an
individual bird reaches its final bodyweight and/or breast yield
over time rather than the ultimate value may offer more insight
into myopathy development and guide management strategies.
Demand on the muscle for growth increases as the broiler reaches
mid-phase growth; thus if there has been insufficient satellite cell
development during early growth there may be an increased risk
of myopathies occurring. In practical terms, any potential for
accelerated growth later in life of the flock (e.g., following partial
depopulation) could place increased demand on the muscle and
pose a risk for myopathy development, particularly if early bird
growth and satellite cell development was suboptimal.

One approach to influencing growth is reducing nutrient
intake by diluting or limiting the availability of feed; these
methods ultimately impact upon the efficiency of production
through poor bird growth or the birds compensate by eating
more food and thus do not offer a suitable solution (Meloche
et al., 2018a; 2018b; Livingston et al., 2019b). By targeting specific
amino acid levels or ratios the broiler growth curve can be
influenced in a more elegant manner. Lysine is a key amino
acid for muscle growth—when levels are reduced by 15% during
mid-phase growth, WS andWB incidence is significantly reduced
without impacting upon performance (Meloche et al., 2018c).
Reduced incidence of WS and WB were also seen when the level
of histidine (Lackner et al., 2022) or arginine (Zampiga et al.,
2019) was increased relative to lysine. A theory for the success of
altering the growth curve through mid-phase could be that it
allows for the muscle support structures (e.g., the vascular system
and connective tissues) to reach equilibrium with the muscle
fibres prior to the next stage of growth.

Adoption of all-plant based diets has been considered by some to
be a cause for the increase in myopathies due to reduced intake of
dietary creatine which is found in diets containing animal by-
products (Khan and Cowen, 1977; Ringel et al., 2007). Creatine
supports muscle function by providing an alternative energy source
to ATP/ADP (Wyss and Kaddurah-Daouk, 2000). Birds naturally
produce creatine from arginine and glycine via the intermediate
guanidinoacetic acid (GAA) (Portocarero and Braun, 2021) but this
may divert these important amino acids away from other
biologically important processes in the muscle such as blood
vessel and connective tissue development (Oviedo-Rondón et al.,
2020a). Exogenous GAA can be supplemented in the feed; when
administered to broilers fed all-plant based diets it has been found to
reduce the incidence of myopathies and increase breast meat yield
(Córdova-Noboa et al., 2018a; 2018b).

Increasing dietary antioxidants such as vitamin E and selenium
have been used to reduce oxidative stress and myopathies but results
have been mixed and may depend upon the quality of fat in the diet
(Guetchom et al., 2012; Kuttappan et al., 2012; 2021; Vieira et al.,
2021). A novel approach to increase antioxidant levels was taken by
increasing dietary phytase (Greene et al., 2019). Phytase breaks
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down phytate in the feed and releases inositol which is absorbed by
the bird and taken up by the myoctyes. Greene et al. (2019),
demonstrated that “super dosing” of phytase at a level of
2000 FTU significantly reduced the WB incidence and severity
broilers, and also showed through metabolomics that it acted as
an antioxidant with modulation of genes associated with oxygen
homeostasis linking with a reduction in oxidative stress.

Spaghetti breast is probably the least understood myopathy
(Baldi et al., 2021) and its incidence appears to be more sporadic
thanWB andWSmaking it more difficult to study. This myopathy is
characterised by a loss of integrity of the muscle tissue which could
indicate an insufficiency in the connective tissue in the muscle (Baldi
et al., 2018; 2021; Soglia et al., 2021). Interestingly, in contrast to WB
and WS, it is more likely to be found in female birds rather than
males (Druyan et al., 2019; Pascual et al., 2020) which may offer
avenues to understand its aetiology. In a study by Griffin et al.
(2018), photographs of carcases of birds euthanised on farm were
used to map the development of the three myopathies over time.
Whilst WB and WS were easy to detect immediately post mortem,
the authors stated that SB was not and thus not described fully due to
the uncertainty; this raises the question of whether SB is present in
the live bird (Petracci et al., 2019) or only detectable following post
mortem change in the muscle. Immediately post mortem, muscle
pH drops as a result of lactic acid production which is accompanied
by the release of proteolytic enzymes (Etherington, 1984; Soglia
et al., 2018; Lilburn et al., 2019). This process can ultimately soften
connective tissue in the muscle (Etherington, 1984; Shi et al., 2021)
and, in the event of an insufficiency in the connective tissue, could
potentially cause SB to manifest. With that in mind it is possible that
processes in the slaughter house could exacerbate the impact of post
mortem changes in the muscle and thus increase SB incidence in a
flock. The rate of cooling of carcases post mortem has an influence on
the rate of lactic acid production and the activity of the proteolytic
enzymes (Etherington, 1984; Mir et al., 2017; Shi et al., 2021)—the
slower the rate of cooling the greater the opportunity for degradation

of muscle (Huang et al., 2016). The use of compounds such as
peracetic acid as part of meat hygiene measures may also impact
connective tissue in a similar way to lactic acid so may play a role in
the manifestation of SB. During plucking there is a manipulation of
the carcases by the fingers on the pluckers — this physical
interaction on the breast meat of the bird could disrupt the
integrity of the connective tissue. As SB incidence remains highly
variable these factors could offer areas to reduce incidence at the
slaughter plant whilst the underlying aetiology is further
investigated.

Conclusion

Breast myopathies remain an important focus for the poultry
industry and the poultry science community, and it is clear that there
is still a lot to understand. The reduction in breast myopathies relies
on a holistic approach to control: Balanced breeding by poultry
breeders can target the genetic component but the larger influence
from non-genetic factors remains an important focus area.
Understanding the biological needs of the muscle and ongoing
physiology in the modern broiler provides key time-points for
strategies to reduce the myopathies and gain more insight into
their aetiology (Figure 1).
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FIGURE 1
Graph proposing critical stages of broiler lifecycle where management may be critical for reducing myopathies.
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