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The rapid development of big data technology and artificial intelligence has
provided a new perspective on sports injury prevention. Although data-driven
algorithms have achieved some valuable results in the field of sports injury risk
assessment, the lack of sufficient generalization of models and the inability to
automate feature extraction havemade it challenging to deploy research results in
the real world. Therefore, this study attempts to build an injury risk prediction
model using a combination of time-series image encoding and deep learning
algorithms to address this issue better. This study used the time-series image
encoding approach for feature construction to represent relationships between
values at different moments, including Gramian Angular Summation Field (GASF),
Gramian Angular Difference Field (GADF), Markov Transition Field (MTF), and
Recurrence Plot (RP). Deep Convolutional Auto-Encoder (DCAE) learned the
image-encoded data for representation to obtain features with good
discrimination, and the classifier was performed using Deep Neural Network
(DNN). The results from five repeated experiments show that the GASF-DCAE-
DNN model is overall better in the training (AUC: 0.985 ± 0.001, Gmean: 0.930 ±
0.007, Sensitivity: 0.997 ± 0.003, Specificity: 0.868 ± 0.013) and test sets (AUC:
0.891 ± 0.026, Gmean: 0.830 ± 0.027, Sensitivity: 0.816 ± 0.039, Specificity:
0.845 ± 0.022), with good discriminative power, robustness, and generalization
ability. Compared with the best model reported in the literature, the AUC, Gmean,
Sensitivity, and Specificity of the GASF-DCAE-DNN model were higher by 23.9%,
27.5%, 39.7%, and 16.2%, respectively, which confirmed the validity and
practicability of the model in injury risk prediction. In addition, differences in
injury risk patterns between the training and test sets were identified through
shapley additivity interpretation. It was also found that the training volume was an
essential factor that affected injury risk prediction. The model proposed in this
study provides a powerful injury risk prediction tool for future sports injury
prevention practice.
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1 Introduction

Running is one of the most popular sports in the world (Hulteen
et al., 2017). Regular running can improve overall health by
enhancing heart function, promoting blood circulation, and
improving the respiratory and digestive systems. Additionally,
running can enhance endurance and decrease the risk of
cardiovascular disease (Hespanhol Júnior et al., 2015; Wewege
et al., 2017). Despite the numerous benefits of running, it is
crucial to acknowledge the inherent risk of injury that this
physical activity entails. Research conducted by van Gent et al.
(2007) demonstrates that the likelihood of injuries varies across
running distances. More specifically, among individuals engaged in
short-distance running of 15 km or less, reported incidences range
from 14.3% to 44.7%. Conversely, long-distance runners
participating in half-marathons or marathons demonstrate a
greater exposure to injuries, with incidence rates ranging from
16.7% to 79.3%. Hespanhol Júnior et al. (2016) reported a
running-related injury incidence rate of 7.7–17.8 per 1,000 h of
running among athletes to support these findings. It is worth noting
that approximately 80% of these running-related injuries are due to
overuse, which means that most injury problems can be prevented
by proper exercise management.

Identifying potential risk factors for sports injuries through
training load monitoring and timely adjustment of the training
program is vital for developing injury prevention strategies
(Schwellnus et al., 2016; Soligard et al., 2016). Although there is
much research evidence that excessive or sudden increases in
training load are an important cause of injury (Gabbett, 2016;
Gabbett et al., 2016), these phenomena were not found in the
research reports by Suárez-Arrones et al. (2020). These
conflicting research findings hinder the development of injury
prevention strategies based on load management. Recent research
reports suggest that misuse of statistical models may be the main
reason for this spurious phenomenon. Bache-Mathiesen et al. (2021)
analyzed the dose-response relationship between training load and
injury risk by using multiple statistical models and found that
nonlinear statistical models could fit the relationship sufficiently,
while statistical models that assumed a linear association did not.
The findings of certain studies support this view (Windt and
Gabbett, 2016; Lathlean et al., 2017). Notably, some studies have
found significant differences in the response patterns of individuals
to the same training load, which implies that each individual’s
tolerance, response, and recovery to training loads is highly
personalized (Hubal et al., 2005; Buford et al., 2013). According
to Simpson’s paradox in statistics, these differences may affect the
statistical relationship between training load and injury risk to some
extent, so the statistical regularity based on mass data cannot be
better applied to different individuals (Tu et al., 2008). Furthermore,
these studies often use binary variables as the outcome variables for
injuries, which means that the outcome variable lacks some
information related to the injuries (i.e., injury severity). Huang
et al. (2022) pointed out that there are differences in the injury
risk patterns corresponding to different levels of injury severity,
which can lead to an inaccurate statistical relationship between
training load and injury risk (The injury risk was coded in the form
of a binary variable as the dependent variable). Thus, various factors
complicate the relationship between training load and injury risk.

Using statistical methods to explore the relationship between
training load and injury can not meet the requirements of injury
risk management in training practice. If a prediction tool for injury
risk can be developed using training load monitoring and data-
driven algorithms, it will be able to identify training load variation
patterns related to injuries accurately, help reduce injury risks, and
protect the body from harm.

With the rapid development of big data technologies and
artificial intelligence, developing injury risk prediction tools based
on data-driven algorithms has become possible. Fiscutean (2021)
argues that standard methods for sports injury prevention rely on
practitioners’ intuition and clinical experience, which may lead to
incorrect clinical decisions due to cognitive biases. Rossi et al.
(2022) believe that developing injury risk prediction models based
on machine learning will help improve the efficiency of clinical
diagnosis and promote the development of sports injury
prevention strategies from empirical assessment to data-driven
approaches. Currently, researchers have used some algorithms to
build injury risk prediction models. These include Principal
Component Analysis (PCA), Logistic Regression (LR), Decision
Tree (DT), Linear Support Vector Machine (LSVM), and eXtreme
Gradient Boosting (XGBoost). For example, Carey et al. (2018)
created a hamstring injury prediction model (AUC: 0.76) for the
Australian football club using training load data and the PCA-LR
algorithm. Rossi (2017) used the LSVC-DT algorithm to build a
non-contact lower limb injury prediction model for Italian
professional men’s football players (Precision: 0.80, Recall:
0.76, F1 score: 0.78, AUC: 0.88). Lövdal et al. (2021) applied
the Bagged-XGBoost algorithm in combination with the daily and
weekly approaches to construct an injury risk prediction model
for competitive runners (AUCday approaches: 0.724, AUCweek

approaches: 0.678). Although data-driven algorithms have
produced some valuable results in the field of sports injury risk
prediction, there are at least two problems that need to be
addressed. First, the model lacks sufficient generalizability.
According to a recent systematic review, regression is still the
primary method for predicting injury risk, accounting for 60% of
existing research reports (Bullock et al., 2022). The injury risk
prediction based on regression can provide reasonable
explanations, but this method is not sufficiently generalizable.
In the real world, different injury risk patterns may lead to similar
injury outcomes, which means that the correspondence between
the same injury outcomes and risk patterns may not be unique
(Bittencourt et al., 2016). If regression is used to solve this
problem, the model may be underfitting or overfitting. It is
worth noting that a few data samples are used to develop
injury risk prediction models (median data sample size is 152,
and median injury events are 57), which may lead to an optimistic
estimate of model performance and the clinical value that the
model can provide. There is a high risk of bias (Bullock et al.,
2022). Some scholars argue that predictive performance is likely to
deteriorate and uncertainty about clinical utility increases when
the current study models are used in training practice with other
groups of athletes (Carey et al., 2018; Bullock et al., 2022). Second,
the feature construction strategy highly depends on the
practitioner’s practical experience. The injury risk prediction
based on training load is a multi-variable time-series
classification problem. The feature construction of training
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load data is crucial in building an effective data-driven model. To
our knowledge, current research has used chiefly sliding window
algorithms for time-series data. For example, some scholars
construct features by calculating statistical indicators such as
the exponential weighted moving average and coefficient of
variation of training load in the aggregate sliding window are
training load markers for assessing injury risk (Colby et al., 2017;
Carey et al., 2018; Rossi et al., 2022). Although these feature
construction methods can effectively identify the injury risk, the
constructed features are highly dependent on the knowledge and
expert experience of the practitioner. Moreover, using these
statistical features alone to find all the training load variation
patterns associated with injury risk is insufficient, as individual
tolerance, response, and recovery to training load are highly
individualized (Collette et al., 2018). Lövdal et al. (2021)
aggregated multivariate time-series data within a sliding
window into one-dimensional feature vectors (i.e., one-
dimensional feature vector representations of feature vectors at
different moments) as input variables for the model. Although
translating multivariate time-series data into a one-dimensional
feature vector representation can capture the association between
variables and injury risk at different moments, this feature
construction approach loses the temporal and spatial
correlation of time series data, which can lead to a reduction
in the model’s predictive performance and make it difficult to
apply the injury risk information extracted from the model to
training practice. In recent years, modeling approaches that
combine time series image encoding transformation with deep
learning have been widely applied to address multivariate time
series prediction and classification in industries and yielding
promising results. The fundamental strategy behind this
modeling approach is to convert a time series classification
task into an image classification task by transforming one-
dimensional time series data into two-dimensional images.
This transformation enables automated feature extraction and
powerful data processing capabilities, allowing the model to
automatically capture potential patterns from dynamic and
nonlinear time series data and make accurate predictions.
However, this approach has yet to be extensively utilized in
assessing injury risk in sports science and medicine.
Consequently, there is an opportunity to leverage this
modeling approach to develop a prediction model based on
training load monitoring and capture potential patterns of
training load variation associated with injury risk, which is
critical for injury risk prevention.

This study aims to propose an injury risk prediction model
based on time series image encoding and deep learning algorithms.
Multiple time series image encoding, including Gramian Angular
Summation Field (GASF), Gramian Angular Difference Field
(GADF), Markov Transition Field (MTF), and Recurrence Plot
(RP), were used to reconstruct the features for the dataset. Then,
a Deep Convolutional Auto-Encoder (DCAE) is used to extract
features from the image data to obtain a highly discriminatory
representation of the features. Finally, the classifier was performed
by applying Deep Neural Network (DNN) algorithms. The findings
will help practitioners better understand the pattern of training load
changes before sports injuries occur and predict sports injury risk by
using data-driven models.

2 Materials and methods

2.1 Materials

The proposed methodology for this study was evaluated using a
published dataset (Lövdal et al., 2021). The dataset comes from a 7-year
training log (2012-2019) of a Dutch high-level running team and
contains two datasets with the frequency of training days and the
frequency of training weeks. Since runners’ endurance and recovery
from training load is very individual, the training day frequency dataset
was used in our study. According to Lövdal et al. (2021), this data set
was processed with a time-sliding window. Each data sample consists of
a vector of 70 variables (variables describe each data sample over the
7 days before the prediction day, and 10 variables describe each day).

2.2 Feature construction

2.2.1 Feature vector reshape
Previous studies have reported significant differences in individual

adaptability to different types of training loads (Collette et al., 2018),
which means that different training load evaluation metrics may be
sensitive to different types of injury risk. Compared to a single training
load evaluation metric (e.g., running distance, rating of perceived
exertion (sRPE), PlayerLoad™), including redundant and
complementary training load information may help the system
improve diagnostic precision and identify more injury risks (Buford
et al., 2013). Therefore, this study reshapes the 70 variables in the raw
data. The raw data was padded to satisfy the need for convolution
(Figure 1). Each variable X � x1,x2, . . . ,xn{ },n� 8 was arranged in
parallel and sorted by time to form a two-dimensional time-series
dataset D � X1,X2, . . . ,Xm{ },m� 10 of size N.

2.2.2 Image encoding transform
Time series image encoding is a feature transformation method that

converts information time series information into an image format with
rich feature information, ensuring the completeness of the data. This
study utilized three types of time series image encoding transformation
methods: Gramian angular field transformation, Markov transition field
transformation, and recurrence plot transformation, as shown in Figure 2.

Gramian Angular Field Transformation. Gramian Angular Field
(GAF) is a method of encoding time-series images that preserves the
time-series information and transforms it into an image format with
rich feature information. It addresses the problem of time-series
dependency while preserving the integrity of the information (Yang
et al., 2019). It is implemented in the following steps:

First, all values of the univariate time series are scaled to the
interval [0, 1] by the maximum-minimum normalization method
(Eq. 1) to obtain the normalized variables ~X � ~x1,~x2, . . . ,~xn{ }.

~x � x − x min

x max − x min
(1)

Next, the normalized values are encoded by using the arccos
function (Eq. 2) and mapping the original time-series X to the polar
coordinate using the timestamp encoding as the radius r (Eq. (3)).
Where θ is the time-series value in polar coordinates for each
observation. ti is the timestamp, and N is the total period of the
time series.
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θ � arccos ~xi( ),where 0≤ ~xi ≤ 1,~xi ∈ ~X (2)
r � ti

N
,ti∈ N (3)

Finally, there are two types of images generated by GAF image
encoding, the Gramian Angular Summation Field (GASF) and the
Gramian Angular Difference Field (GADF), which are
mathematically described in matrix format as Eqs 4, 5:

GASF �
cos θ1 + θ1( ) / cos θ1 + θn( )

..

.
1 ..

.

cos θn + θ1( ) / cos θn + θn( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

GADF �
sin θ1 − θ1( ) / sin θ1 − θn( )

..

.
1 ..

.

sin θn − θ1( ) / sin θn − θn( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5)

The GAF transformation can effectively preserve the
information of the original time series, with the original
information located in the main diagonal and the relationship
between other time series reflected in other regions of the matrix.

Markov Transition field Transformation. The Markov
Transition field (MTF) encodes time-series images using a
Markov transition matrix (Han et al., 2021). The features
extracted by this method can represent dynamic changes in time
and frequency. This method includes the following steps: First, the
time-series X is divided into Q bins (the Q was set to 5 in this study.)
according to the range of values so that each xi (i ∈ 1, 2, . . . ,n{ }) can
be mapped to its corresponding qi (i ∈ 1, 2, . . . ,Q{ }). Second, the
transition between qj is calculated in a first-order chain along each
time step and a Markov transition matrix TQ×Q is constructed
(Eq. (6)).

W �
w11 . . . w1Q

w21 . . . w2Q

..

.
1 ..

.

wQ1 . . . wQQ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

wi,j � P xt ∈ qi
∣∣∣∣∣xt−1 ∈ qj( )

(6)

Where ωij(i, j ∈ 1, 2, . . . ,Q{ }) represents the probability that
elements in qj are followed by qi elements. Finally, each

FIGURE 1
Feature vector structure: A data point is described by the features set during training for the 7 days before the prediction day. As the day approaches,
a data point is 70 variables. This is because 10 variables describe each day. This study padded the original time series because the convolution layer needs
to be the same size as the upsampling layer, both in the deep convolution auto-encoder.

FIGURE 2
The feature graph of the normalized time-series transformation. (A) Time series after normalization; (B)Markov Transition Field; (C)Gramian Angular
Summation Field; (D) Gramian Angular Difference Field; (E) Recurrence Plot.
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probability is arranged chronologically to extend the Markov
transition matrix, resulting in a Markov transformation field
matrix M of size n × n. Where Mij(i, j ∈ 1, 2, . . . ,n{ }) is the
probability that the bin corresponding to the time series xi is
transferred to the bin corresponding to xj.

M �

ω11

∣∣∣∣∣x1 ∈ qi, x1 ∈ qj . . . ω1n

∣∣∣∣∣x1 ∈ qi, xn ∈ qj
ω21

∣∣∣∣∣x2 ∈ qi, x1 ∈ qj . . . ω2n

∣∣∣∣∣x2 ∈ qi, xn ∈ qj

..

.
1 ..

.

ωn1

∣∣∣∣∣xn ∈ qi, x1 ∈ qj . . . ωnn

∣∣∣∣∣xn ∈ qi, xn ∈ qj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (7)

Recurrence Plot Transformation. Recurrence Plot (RP) is a
visualization method of recurrence characteristics proposed by
Eckmann et al. (1987). RP can obtain prior knowledge from the
internal structure of time series, explain the similarity and
information of time series, and analyze the predictability of
signals. It is an important method for analyzing time series’
periodicity, chaos, and non-stationarity. The main idea of the RP
is to reveal the movement of the trajectory from the current state to
the previous state, which can be expressed as follows (Equations 8
and 9):

Ri,j � θ ε − �Sl − �Sm
���� ����( ), �S .( ) ∈ Rn,l,m � 1,2, . . . ,K (8)

θ x( ) � 0 x ≤ 0
1 x > 0

{ (9)

Where K is the number of states of �S and ‖ �Sl − �Sm‖ means the
closeness of the two vectors �Sl and �Sm in the phase space. ε is the
threshold of distance and θ(.) is the Heaviside function. The two
vectors are close to each other, or recurrence occurs when
‖ �Sl − �Sm‖< ε. When Ri,j� 1, black points are used to indicate the
state of recursion, and when Ri,j � 0, white points indicate that no
recursion is occurring. This allows a two-dimensional recursive plot
to be created. This study uses an actual sample to show the
transformation process of time series and matrix by different
methods, which can be found in Supplementary File S1.

2.3 Data processing

Normalization. Because of the significant differences in the
stimulus-response of individual runners to different training loads,
the data from individual runners were processed with minimum-
maximum normalization transformation (Eq. (1)) so that the model
could identify similar injury risk patterns through cross-sectional
comparison.

Multiple Resampling. The dataset is highly imbalanced, which
may cause the classifier to identify a minority class poorly.
Therefore, this study uses multiple resampling to process the
dataset to reduce this imbalance. The procedure:

Step 1: Balanced sampling for each athlete dataset. There are
different injury events in each runner’s raw data (i.e., a biased
dataset). If the original dataset is used directly to train the model,
it may result in the model only identifying injury events for runners
with a higher risk of injury. Following Lövdal et al. (2021), this study
randomly selects an equal number of injured and uninjured samples
from all subsets of runners in the training set to generate an unbiased

and balanced dataset (i.e., an equal number of injured and uninjured
samples for all runners), to avoid this problem.

Step 2: Unbalanced sampling of the unbiased and balanced dataset.
The unbiased and balanced dataset hasmany duplicate samples, and the
injury distribution does not match the real-world situation, which can
easily make the model training slower and overfit. For this reason, the
unbiased and balanced dataset was unbalanced by a fixed number of
injury event samples and sampling ratio to produce a subset of unbiased
unbalanced data, where the number of injury event samples was set to
650 (i.e., The number of runners is multiplied by the average number of
runner injury events) and the sampling ratio was controlled to 0.136
(i.e., Ten times the number of minority samples divided by the number
of majority samples)

Step 3: The unbiased and unbalanced subset is synthetically sampled
using the SMOTETomek algorithm (which is a combination of
Synthetic Minority Oversampling Technique and Tomek Links
Undersampling). This study processed the tomek link (i.e., sample
points A and B from two different classes are nearest neighbors) in the
feature space to improve the model’s generalization ability to identify
injury events (Chawla et al., 2002). Because the number of minority
class and majority class samples in the dataset were very different, only
the sample points in the Tomek link that belonged to the majority class
were removed in this study. The minority samples were then
synthetically sampled using the Synthetic Minority Over-sampling
TEchnique (SMOTE) to generate the training set for model
construction. SMOTE is an improved technique based on random
oversampling proposed by Chawla et al. (2002). It can effectively solve
the problem of poor generalization due to random oversampling. The
algorithm determines the k-nearest neighbors of each minority class
sample by calculating the Euclidean distance from each minority class
sample to all minority class samples. The sampling ratio is set according
to the sample balance rate. Some samples are selected from the k nearest
neighbors of each minority class sample by generating a new sample
(Eq. (10)).

dnew � d + rand 0, 1( )* d − dn( ) (10)

2.4 Model architecture

Feature Representation. This study used deep convolutional
auto-encoder (DCAE) for feature representation extraction to solve
the problem of big data and limited a priori knowledge. DCAE is an
auto-encoder consisting of multiple convolutional, pooling,
compression, and hidden layers. This architecture gives the
model better representation capabilities and more robust features.
DCAE is implemented through a symmetric encoding and decoding
structure for the data reconstruction process, which is described as
follows (Equations 11 and 12):

h x( ) � σe w · x + b( ) (11)
x′ � σd w′ · h x( ) + b′( ) (12)

Where w, b are the encoding weights and biases, w′, b′ are the
decoding weights and biases, and σe, σd are the non-linear
transformations during encoding and decoding, respectively. The

Frontiers in Physiology frontiersin.org05

Ye et al. 10.3389/fphys.2023.1174525

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1174525


adadelta optimizer is used to optimize DCAE byminimizing theMean
Squared Error (MSE) of xi and x̂i. The epoch of the model training
process was set to 100 and the batch to 512. The initial learning rate of
the adadelta optimizer was set to 1.0 with a decay rate of 0.95. Its
reconstruction error function is expressed as follows (Eq. (13)):

Lmse � 1
n
∑n

i�1 x̂i − xi( )2 (13)

This study applies batch normalization and dropout to each hidden
layer in DCAE and uses Scaled Exponential Linear Units (SELU) as the
activation function (Hu et al., 2020). The output layer of the decoder
selects the hyperbolic tangent function as the activation function.
Figure 3 shows the number of neuron units per layer.

Classifier. According to the general opinion in sports science,
the relationship between training loads and injury risk is non-linear
(Bache-Mathiesen et al., 2021). Therefore, this study considers that
using a deep neural network to construct a classifier would benefit
training load-based injury risk management. The model will predict
whether an injury will occur the following day using the
representational features obtained from the DCAE as input. The
model’s architecture consists of an input layer, four hidden layers,
and an output layer. Each hidden layer contains 50 neurons, and
each is subjected to batch normalization and dropout, coupled with
the use of SELU as the activation function. The output layer of the
model uses the sigmoid function as the activation function. Since
the dataset has an extreme class imbalance distribution, this study
uses the adadelta optimizer and introduces the Focal loss function
to improve the model’s training process. The epoch of the model
training process was set to 100 and the batch to 512. The initial
learning rate of the adadelta optimizer was set to 1.0 with a decay

rate of 0.95. Focal Loss is a loss function proposed by Lin et al.
(2020) to solve the class imbalance problem, which allows the
model to focus more on the hard-to-classify samples during
training by reducing the weights of the easy-to-classify samples.
Introducing a balance coefficient α and a focus coefficient γ into a
single cross-entropy loss function to adjust the loss weights of
different class samples makes the model focus more on the minority
class samples that are difficult to classify. The loss function is shown
in Eq. (14).

LFL � −α 1 − ŷn( )γlogŷn if ŷn � 1
− 1 − α( )ŷnγlog 1 − ŷn( ) if ŷn � 0

{ (14)

In Eq. (14), ŷn is the probability that the predicted sample
category is 1, and 1-ŷn is the probability that the predicted sample
category is 0. The α coefficient is used to adjust the weight of
different categories of samples in the loss function. The loss weights
of the minority class samples will be increased when α∈(0.5, 1). The
focus factor γ is used to adjust the loss weights of the easy and hard-
to-classify samples. If the value of γ becomes greater, the loss value of
the easy-to-classify samples will be smaller. This study’s tuning
process for α and γ was based on empirical. The α for the optimal
model was approximately 0.986 (i.e., 1 minus the ratio of minority
samples to the total sample), while γ was set to 3.5. All of the model
parameters are shown in the Supplementary File S2.

2.5 Model training, validation, and testing

This study evaluated the model performance’s internal and
external validity using hold-out methods, which can provide

FIGURE 3
Model Architecture: Themodel proposed in this study consists of a feature representation module based on a deep convolution self-encoder and a
classifier module based on a deep neural network.
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discriminative power of predictive models regarding sports risk
injuries. The training set consisted of data from 64 athletes,
containing 39,189 uninjured and 533 injured samples, while the
test set consisted of data from 10 athletes, containing
2,994 uninjured and 50 injured samples. Following Lövdal et al.
(2021), this study randomly selected part of the dataset in a training
set for model fitting. It validated the model on the whole training set
to assess the internal validity of the model (Figure 4). The model’s
training, validation, and testing procedure was repeated five times
with consistent parameters in each experiment.

This study’s training set was divided by random sampling.
Because of the uneven distribution characteristics of random
seeds that may lead to additional sampling bias, our study used
the best discrepancy sequence suggested by Guo et al. (2019) to
randomize for each trial. The area under the receiver operating
characteristic curve (AUC), sensitivity, specificity, and geometric
mean (Gmean) were chosen as the metrics for evaluating model
performance. The calculation equation is described as follows (Eqs
(15)–(17):

Sensitivity � TP
TP + FN

(15)

S pecif icity � TN
TN + FP

(16)

Gmean �
��������������������
Sensitivity × Specif icity

√
(17)

TP, FP, TN , and FN indicate true positives, false positives, true
negatives, and false negatives. Sensitivity and specificity, also
known as true positive and negative rates, are significant

evaluation indicators in medical clinical diagnosis. Suppose a
predictive model has lower sensitivity or specificity. In that case,
it implies that the model has a higher rate of misdiagnosis or
underdiagnosis, which can prevent its deployment in real-world
applications. Gmean is an overall metric that incorporates
sensitivity and specificity. It effectively reflects the overall
classification performance of a model on both majority and
minority class samples. A higher Gmean is achieved when
both sensitivity and specificity are high.

2.6 Injury risk pattern analysis

The interpretation of the model’s decisions is particularly
important for training practice, which should provide the
practitioner with a full, logical explanation of the decision, which
can help coaches and team doctors develop good training programs
and make targeted interventions. Deep learning is a black box,
meaning the variable’s importance and working mechanism cannot
be as straightforward as a regression. Therefore, this study uses
SHapley Additive exPlanations (SHAP) for attribution analysis of
feature representation and classifier (Nohara et al., 2019). The
absolute weights of each variable were calculated from Eq. (18).
The Python 3.6 programming environment was used to train, test,
validate, and analyze the models.

Importance � ∑N
i�1 SHAP| |i( )

N
(18)

FIGURE 4
The flowchart for model training, validation, and testing.
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2.7 Statistical analysis

This study uses Welch’s analysis of variance (ANOVA) to
analyze differences and the Games-Howell Post-Hoc Test for
multiple comparisons and reporting Mean Difference (MD). All
hypothesis tests were conducted using two-sided hypothesis tests,
setting α in the hypothesis test to 0.05 and considering where p >
0.05 as not significant and p < 0.05 as significant.

3 Results

3.1 Injury prediction

As shown in Figure 5, the loss curves of the feature
representation module (time-series image encoding - deep
convolutional auto-encoder) tended to be the same overall in
the training and test sets, indicating that the deep convolutional
auto-encoder was able to fit the data well. The GADF-DCAE-
DNN model showed significant overfitting in the classifier,
indicating that the GADF-DCAE-DNN has poor generalization
ability. The loss curves of the other models tended to be the same
overall in the training and test sets, implying that they fit the
data well.

The training and test sets assessed the models’ internal and
external validity (Table 1). It should be pointed out that the model
construction program in this study is inconsistent with the internal
validity evaluation method proposed by Lovdal et al., so the internal
validity evaluation of Bag-XGBoost proposed by Lovdal et al. is not
included in Table 1. The results showed that the RP-DCAE-DNN
performed best in the training set, with the highest average-AUC
(0.998), average-Gmean (0.972), average-Sensitivity (0.998), and
average-Specificity (0.947). The average-Sensitivity of the MTF-
DCAE-DNN and the GASF-DCAE-DNN is second only to the
RP-DCAE-DNN, which are 0.998 and 0.997, respectively. At the
same time, the average-Specificity is significantly lower than the RP-
DCAE-DNN, which are 5.81% (MD = −0.054, p = 0.010) and 8.34%
(MD = −0.079, p < 0.001) lower respectively. It shows that the RP-
DCAE-DNN has the best internal validity.

This study found that GASF-DCAE-DNN has the best average-
AUC (0.891) and average-Specificity (0.845) in the test set. Although
the average-Gmean (0.830) of the GASF-DCAE-DNN was 1.43%
(MD = −0.012, p = 0.966) lower than that of the RP-DCAE-DNN,
this difference was not significant. It is worth noting that the
standard deviation of the performance metrics of the GASF-
DCAE-DNN is minimal, which indicates that the GASF-DCAE-
DNN can perform better in prediction while being less sensitive to
sampling bias. In addition, it is essential to note that RP-DCAE-

FIGURE 5
Loss curves for feature representation modules and classifiers.
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DNN has the best average-Sensitivity (0.920), which indicates that
RP-DCAE-DNN can identify injured samples well. However, the
average-Specificity of the RP-DCAE-DNN was only 0.772, which
means that 23.8% of the not-injured samples were misclassified as
injured. Overall, the GASF-DCAE-DNN has good discrimination,
robustness, and generalization ability, which makes the model more
appropriate for application in injury risk prediction for runners.

This study compares the performance of the best model with the
injury risk prediction model based on Bag-XGBoost proposed by
Lövdal et al. in the test set. It was found that the GASF-DCAE-DNN
significantly outperformed the Bag-XGBoost, with an improvement
of 23.9% (MD = −0.172, p < 0.001), 27.5% (MD = −0.180, p < 0.001),
39.7% (MD = −0.232, p < 0.001) and 16.2% (MD = −0.118, p <
0.001) in AUC, Gmean, Sensitivity, and Specificity, respectively.
This result implies that the best model proposed in this study can
diagnose more injury risks with fewer misdiagnoses.

3.2 Feature importance and risk pattern

SHAP was used to calculate the variable importance to latent
variables to understand the meaning of latent variables after
dimension reduction. Figure 6 shows a heatmap of variable
importance for the latent variable. “total km” and “alternative
hours” have greater variable importance for latent variable 1,
indicating that latent variable 1 may represent training volume
(including running and cross-training). “km Z3-4″, “total km”,
“strength training”, and “perceived training success” had greater
variable importance for latent variable 2, indicating that latent
variable 2 may represent the volume of anaerobic intensity
training (including medium to high-intensity running and
strength training). “strength training” and “perceived training
success” have higher variable importance for latent variable 3,
meaning that latent variable 3 may represent strength training.
“perceived training success” has greater variable importance for
latent variables 4 and 5, meaning that latent variables 4 and 5 relate
to what athletes thought about training.

Through feature attribution of model decisions, it was found
that although latent variable 1, latent variable 2, and latent variable
4 had high relative importance, their relative importance
significantly differed in the proportion of the training set and test
set (p < 0.01). As shown in Figure 7, there are significant differences
in the relative importance of latent variables 1 (MD = −0.043, p <
0.001), latent variables 2 (MD = −0.041, p < 0.001), latent variables 3

(MD = −0.026, p < 0.001), latent variables 4 (MD = 0.061, p < 0.001)
and latent variables 5 (MD = 0.049, p < 0.001) in both training and
test sets. Among them, the relative importance of latent variable 1,
latent variable 2, and latent variable 4 in the training set were 35.0%,
21.2%, and 24.1%, respectively. Latent variable 1, latent variable 2,
and latent variable 4 in the test set were 39.3%, 25.2%, and 18.0%,
respectively. The results suggest that there may be differences in
injury risk patterns between the training set and the test set. Among
them, the relative importance of latent variable 1 ranks first in the
training and test set, which means that the training volume is a
significant predictor of the model’s performance in predicting the
runner’s injury risk.

4 Discussion

This study constructed an injury risk prediction model based on
time series image encoding and deep learning algorithms by using
training load monitoring data. To a certain extent, this research can
provide the necessary reference for developing injury risk prediction
tools based on training load monitoring and data-driven algorithms.
There are three main findings: firstly, combining time-series image
encoding with deep learning feature representation can extract
latent information distinguishing injured and non-injured
samples. Secondly, it was found that the model constructed using
GASF combined with deep learning has discrimination, robustness,
and generalization capabilities, which is significantly better than the
existing model of injury risk prediction for runners. Finally, the
model’s feature attribution analysis identified that training volume
seems to be a significant predictor of runner injury risk.

4.1 Time series image encoding-feature
representations can extract latent feature
related to injury from training load

The relationship between training load and injury risk is
complicated, and extracting information that distinguishes
injury risk from training load data is difficult. Several
researchers have conducted a series of studies that sought to
extract features associated with injury risk from training load
data. For example, Foster, Gabbett, and others attempted to
predict injury risk using statistics indicators (e.g., coefficient
of variation and exponential weighted moving average) that

TABLE 1 Performance evaluation results of models in the training and test set.

Model AUC Gmean Sensitivity Specificity

Training set Test set Training set Test set Training set Test set Training set Test set

Bag-XGBoost — 0.719 ± 0.007 — 0.651 ± 0.021 — 0.584 ± 0.054 — 0.727 ± 0.027

RP-DCAE-DNN 0.998 ± 0.001 0.889 ± 0.016 0.972 ± 0.008 0.842 ± 0.015 0.998 ± 0.001 0.920 ± 0.028 0.947 ± 0.015 0.772 ± 0.043

MTF-DCAE-DNN 0.986 ± 0.001 0.759 ± 0.041 0.944 ± 0.009 0.682 ± 0.024 0.998 ± 0.002 0.644 ± 0.046 0.892 ± 0.018 0.724 ± 0.055

GADF-DCAE-DNN 0.646 ± 0.019 0.594 ± 0.070 0.537 ± 0.044 0.498 ± 0.104 0.376 ± 0.084 0.340 ± 0.154 0.783 ± 0.067 0.772 ± 0.063

GASF-DCAE-DNN 0.985 ± 0.001 0.891 ± 0.026 0.930 ± 0.007 0.830 ± 0.027 0.997 ± 0.003 0.816 ± 0.039 0.868 ± 0.013 0.845 ± 0.022

The bold value for the model performed best in the training or test set.
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quantify the variability and accumulation of training load (Foster
et al., 1995; Gabbett et al., 2016). Although the method provides
several practical metrics, the reliability and validity of the method

will significantly be affected by individual differences and the
training load quantification method. For instance, Gabbett et al.
(2016) found an association between exponentially weighted

FIGURE 6
The feature heat map corresponds to the latent variables. The image data in the figure are all derived from the original time series after the Gramian
Angular Summation Field transformation. The relative importance is normalized for presentation in this study to see the relatively important variables
better.
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moving averages of training load and injury risk that was not
found in some research (Suárez-Arrones et al., 2020). It is
important to note that most studies use a single evaluation
method to quantify training loads, such as distance, session
RPE, and other indicators, which may lead to statistical
indicators of training load associated with injury risk that are
not personalized. McLean et al. (2010) investigated the
neuromuscular, endocrine, and perceptual responses of elite
rugby league players in different recovery periods and found
that individual responses to training load were highly
individualized. Furthermore, adaptation and fatigue to training
load are associated with the accumulation, and using multivariate
time-series data prediction methods would ignore this
relationship. Thus, a complicated feature construction method
and automatic feature representation extraction are necessary.
To improve this shortcoming, we have attempted various time-
series image encoding transformation methods for the feature
reconstruction of multivariate time-series data, which add
representations of relationships between values at different
moments. Time series image encoding represents a
methodology for converting time series data into image
format. Compared to traditional time-series data
representations, this technique captures a greater abundance
of details and features by retaining the data’s time-series
dependencies and inherent structural features. This image-
based representation facilitates a more intuitive and
comprehensive visualization of the trends and patterns
underlying temporal changes in the data.

4.2 Advantages of deep learning in injury risk
prediction

Although numerous scholars have used various statistical
models and machine learning to develop predictive models for
sports injury risk and provide valuable findings, the models

developed have been poor in accuracy, generalization, and
stability, preventing the models from being deployed in
training practice. To our knowledge, the reasons for this
problem can be attributed to three aspects. Firstly, from a
sports science perspective, there is not always a direct
correlation between training load and injury risk. Instead, it
may indirectly influence injury risk by regulating the
adaptability and physical fitness of the human body (de Leeuw
et al., 2021). More specifically, the training adaptability of the
human body is a continuous process in which changes in intrinsic
risk factors such as previous injuries, age, sleep, biomechanics,
and psychological factors can influence the tolerance to training
load. Similarly, the effects of training load can affect these
intrinsic risk factors. As a result, the relationship between
training load and injury risk varies significantly between
individuals, obscuring the numerical relationship between the
two (Windt et al., 2018). Secondly, from the perspective of model
selection, parametric models have been widely used in sports
injury prediction modeling, which has simplicity, reliability, and
interpretability advantages. However, the poor generalization of
model coefficients and many assumptions in the models have led
to poor performance in injury risk prediction (Ruddy et al.,
2019). Finally, from a mathematical perspective, injury risk
patterns are theoretically unique in the real world. However,
they suffer from two significant limitations - insufficient a priori
knowledge and limited information on risk factors - which make
it impossible to find information on injury risk patterns and
predict injury risk using an analytical solution. Based on the
above three perspectives, we suggest that deep learning is more
applicable, which has the advantages of high accuracy, powerful
representation, and the ability to capture complex pattern
information in the data. This study has used deep learning to
build injury risk prediction models based on training load data
and achieve good prediction performance. By comparing the
model’s prediction performance in the training and test sets, it
was found that the RP-DCAE-DNN had the best AUC, Gmean,

FIGURE 7
The relative importance of latent variables in training and test sets. The dotted lines in the figure indicate the upper quartile, median, and lower
quartile.
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and Sensitivity, implying that this model could predict the injury
risk well. However, this model’s specificity was low, which may
lead to the model being abandoned due to the large number of
misdiagnoses in the application. It is noted that the GASF-
DCAE-DNN has overall better discrimination, robustness, and
generalization of the prediction performance in both the training
and test sets, even though the AUC, Gmean, and Sensitivity of the
GASF-DCAE-DNN are not the best. These are two reasons that
injury does not always occur due to conditions with injury risk
and that injury does not always happen caused by training load.
Therefore, GASF-DCAE-DNN is the best prediction model in
this study.

4.3 Training volume seems to be a significant
predictor of injury risk

Injury risk prediction needs not only to predict the occurrence
of sports injuries but also to identify essential features that predict
injury risk (Ruddy et al., 2019). This study used the SHAP
approach to analyze the feature representation module’s and
classifier’s variable importance. Then, it was found that training
volume may be a significant predictor for injury risk prediction,
followed by training volume at the anaerobic intensity and what
athletes thought about training. Previous studies have shown that
training volume is strongly associated with injury risk. Colby et al.
(2014) found that long-term cumulative and sprint distances were
positively associated with pre-season injury risk in 46 elite
Australian football players. Malone et al. (2018) found that
higher training loads were associated with a significantly higher
risk of injury in 48 professional football players. O’Keeffe et al.
(2019) identified short-term workload, training load monotony,
and the amount of weekly load change as risk factors for injury in
97 male youth athletes in Gaelic football. In contrast to previous
investigations, the dataset used in the present study incorporates a
comprehensive set of multi-dimensional training load assessment
metrics, including distance, distance covered under different
physiological states, training logs, and subjective perception of
exertion. By incorporating these diverse variables, our study
facilitates a multifaceted exploration of the associations between
training load and injury risk. This approach enables a more holistic
understanding of the relationships between training load and
injury risk, offering valuable insights from multiple
perspectives. However, more parameters mean more complex
correlation patterns. Although the training load variation
pattern associated with injury risk was identified using the
SHAP approach, an outstanding question remains: how does
this change pattern affect injury risk (e.g., a “dose-response
pattern”)? Since the current research evidence and prior
knowledge remain insufficient to provide a simplified and
definitive answer to this question, it must be investigated in
further studies. According to Bittencourt et al. (2016), the
limitation of the “explanatory power” of complex phenomena
should not prevent us from trying to improve the “predictive
power” of injury occurrence. Therefore, applying this model in
training practice is believed to reduce the incidence of injury in
runners effectively.

4.4 Practical applications and limitations

This study proposed an injury risk predictionmodel based on time-
series image coding and deep learning algorithms with sensitivity and
specificity to runners’ injury risk. It is important to note that the
variables used in this study are primarily available fromwearable device
recordings, which meant that integrating the method into a wearable
device analysis platform would help manage runners’ injury risk.
However, there are still several limitations to this study. Firstly, the
ability to predict injury risk using quantitative training load indicators is
limited. Injury risk in the real world results from a combination of
factors, and there is a limit to the amount of information on injury risk
that training load monitoring can provide. Secondly, our model has
limitations in its interpretability. Ideally, a predictivemodel for assessing
the risk of injury should not only exhibit high precision but also offer a
level of interpretability. This attribute would greatly assist coaches and
team physicians in formulating effective training programs and
implementing targeted intervention strategies. In the future, we will
investigate the interpretability of the model using methods such as
knowledge distillation.

5 Conclusion

This study proposes an injury risk prediction model for runners
based on time-series image encoding and deep learning that
automatically extracts information about injury risk patterns.
Compared to models reported in the literature, this approach
performs better in identifying injuries, confirming the
applicability of this modeling approach in the assessment of
sports injury risk. In addition, through attribution analysis of the
model, this study found that training volume is a significant
predictor of runner injury risk and discovered the potentially
high-dimensional and complex pattern of association between
training load and injury risk. However, due to the limitations of
a priori knowledge, this complex relationship has not been fully
revealed and further research is still needed. Nevertheless, given the
excellent discriminability, robustness, and generality of the model
proposed in this study, it can be applied to injury prevention practice
and provide a new analytical method for future injury prevention
research.
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