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Editorial on the Research Topic
Mitochondrial disorders and cardiovascular diseases

Mitochondrial dysfunction is defined as a loss of efficiency in the electron transport
chain and reductions in the synthesis of high-energy molecules. The manifestation of
mitochondrial dysfunction includes a decrease in ATP production, an increase in reactive
oxygen species (ROS) generation, mitochondrial swelling, alterations of mitochondrial
dynamics and mitophagy, opening of mitochondrial permeability transition pore
(mPTP), and concomitant leak of damage-associated molecular patterns (DAMPs),
which transform mitochondria from a powerhouse into a death engine. Mitochondrial
dysfunction is commonly observed in cardiac and vascular tissues of patients with
cardiovascular diseases and animal models of cardiovascular diseases (Ait-Aissa K. et al.,
2019; Ait-Aissa K. et al., 2019). Of note, the above-mentioned mitochondrial alterations, to a
certain extent, precede and accompany the development of various cardiovascular diseases.
When these dysfunctional processes are reversed or blocked, cardiovascular diseases may be
alleviated. Therefore, mitochondrial dysfunction is considered a contributing factor in
various cardiovascular diseases. The articles on the Research Topic “Mitochondrial
disorders and cardiovascular diseases” provides some new insights into our present
knowledge and understanding of mitochondrial dysfunction in cardiovascular diseases.

Pulmonary arterial hypertension (PAH) is an uncurable vascular remodeling disease of
the lung with high mortality and poor prognosis. The pathogenesis has not been investigated
fully yet. Mitochondrial dysfunction has been involved in the development of PAH by
generating ROS (Bonnet S. et al., 2006; Sutendra. and Michelakis, 2014; Kikuchi N. et al.,
2018). In the Research Topic, Zhang and colleagues summarized the alterations of
mitochondria during the development of PAH and discussed the involvement of the
organelle in the pathogenesis of the disease. It is now well-known that the contractile to
synthetic phenotype switching of vascular smooth muscle cells (VSMCs) has been
considered a cause of PAH and microgravity-related vascular diseases. One of the most
evident alterations during this phenotype switching is mitochondrial remodeling
characteristic of decreased mitochondrial biogenesis, increased fission, decreased fusion
dynamic, and decreased mitophagy. In this Research Topic, Jiang and colleagues indicated
that contractile to synthetic phenotype switching of VSMCs and concomitant mitochondrial
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remodeling is dependent on the loss-of-function of ERα-NRF1-OMI
signaling secondary to decreased transcription. Thus, it suggests that
the reactivation of the ERα-NRF1-OMI signaling is a potential
strategy to treat cerebrovascular remodeling under simulated
microgravity. Indeed, the administration of Propyl pyrazole triol,
an ERα agonist, ameliorates vascular remodeling. This study
supports a well-established epidemiologic survey that the
predisposition of females to PAH is more than 1.8 times beyond
males and that the use of hormonal therapy in postmenopausal
women with PAH is advisable (Frost A. E. et al., 2011; Franco V.
et al., 2019). Of note, Jiang and colleagues did not target
mitochondrial dysfunction to ameliorate the proliferation of
VSMCs.

Mitochondria and Ca2+ positively regulate each other (Duchen M.
R., 2000). Instant Ca2+ entry via opening the mitochondrial calcium
uniporter (mtCU) may enhance oxidative metabolism to meet the
energy requirement of muscle contraction. Mitochondria are also
endowed with the ability to buffer local cellular Ca2+ levels during
physiological fluctuations of cytosolic Ca2+ (Williams G. S. et al., 2013).
Numerous stimuli such as electric pulse, elevated extracellular K+ levels,
and caffeine may enhance cellular Ca2+ levels, thereby increasing
mitochondria Ca2+ entry (Duchen M. R., 2000) (Gherardi G. et al.,
2019). In addition, studies have shown that some cell signaling such as
estrogen receptor signaling, adrenergic signaling, and insulin signaling
may activate mitochondria Ca2+ entry (Lobaton C. D. et al., 2005;
Gutierrez T. et al., 2014; Jhun B. S. et al., 2018). In the Research Topic,
Pablo Sánchez-Aguilera and colleagues reported insulin-like growth
factor-1 (IGF-1) as a booster of mitochondrial Ca2+ uptake and
subsequent oxidative metabolism during cardiomyocyte adaptive
growth, which supports the positive inotropic actions of IGF-1 (Ren
J. et al., 1999). In addition, IGF-1 signaling can promote mitochondrial
biogenesis and mitophagy (Lyons A. et al., 2017). It, therefore, remains
intriguing whether mitochondrial Ca2+ entry contributes to
physiological cardiac hypertrophy induced by persistent activation of
IGF-1 signaling. Of note, excessive Ca2+ influx occurs in the settings of
high and persistent cellular Ca2+ environments, which eventually
impairs mitochondrial function by multiple mechanisms. In the
Research Topic, Liu and colleagues summarized the current
knowledge of cytosolic Ca2+ overload and mitochondrial
homeostasis, while highlighting the interplays between T-tubule, ER,
and mitochondria during Ca2+ cycling in cardiomyocytes. When
excessive Ca2+ entry occurs, a vicious cycle is established inevitably:
mitochondrial Ca2+ overload reduces the mitochondrial membrane
potential, which potentially induces the generation of mitochondrial
reactive oxygen species (mtROS) with superoxide anions as the most
abundant species and reduces the rate of mitochondrial energy
production, mitochondrial motility, and morphology. Increased
mtROS promotes SR calcium leak, which further loads more Ca2+

into mitochondria. This vicious cycle causes mitochondrial dysfunction
and stress.

MtROS is a concomitant and inevitable event of the electron
transport chain during oxidative phosphorylation, which accounts
for approximately 90% of cellular ROS (Mailloux R. J., 2020;
Tirichen H. et al., 2021). To counteract mtROS, mitochondria have
an anti-oxidative system to scavenge ROS. When the mitochondrial
anti-oxidative system is impaired, mtROS accumulates and impairs the
mitochondrion itself including mitochondrial DNA (mtDNA). In
addition, mtROS leaks out to destroy cellular components in the

cytosol (Zorov D. B. et al., 2014). MtROS accumulation
accompanied by increased 8-oxo-dG content in the mtDNA is
frequently detected in aging tissues. MtROS accumulation is,
therefore, considered a critical risk factor for aging-associated
cardiovascular diseases, and various strategies have been developed
to counteract mtROS. One of the most common strategies is the
administration of antioxidants that may be transported into
mitochondria (Apostolova N. and Victor V. M., 2015). As a critical
component of the mitochondrial antioxidative system, glutathione may
be transported into mitochondria from the cytosol to counteract
mtROS. Therefore, glutathione administration has been used to
counteract oxidative stress. In this Research Topic, Nataliіa and
colleagues indicated that the administration of glutathione to the
aging animal may largely decrease mtROS production and the
sensitivity of mPTP to Ca2+, to preserve mitochondrial structure,
improve cardiac oxygen consumption, restore endothelium-
dependent vasorelaxation in a NO-synthase-dependent manner and
confers to the heart resistance to ischemia/reperfusion-induced injury.
This study illuminates the present view of mtROS as a cause of aging-
related cardiovascular diseases. It should be pointed out that the study
by Nataliіa and colleagues exhibits the transient efficacy of glutathione
administration. Given some clinical trials showing that long-term
supplementation of vitamin E, another well-known antioxidant, does
not prevent major cardiovascular events and may even increase the risk
for heart failure (Eidelman R. S. et al., 2004; Lonn E. et al., 2005), it is
intriguing that long-term administration of glutathione persistently
prevents mtROS production, thereby protecting against aging-
associated cardiovascular diseases and, more attractively, prolonging
lifespan.

Mitochondria in endothelial cells occupy only 2%–6% of
cytoplasmic volume, much lower than that in other cell types
including cardiomyocytes, and generate only less than 20% of
cellular ATP. Endothelial mitochondria sense blood oxygen levels
and relay this information to cardiomyocytes as well as modulate
the vasodilatory response mediated by endothelial nitric oxide. In
addition, the opening of mPTP and activation of mitochondrial
pathways of apoptosis both result in endothelial cell death. Although
relatively lower than that in other cell types, mtROS is a key signaling
mediator in endothelial cells. Therefore, mitochondria in endothelial
cells are considered a signaling hub, but not a powerhouse. Some articles
have reviewed the relationship between mitochondrial dysfunction,
endothelial dysfunction, and atherosclerosis (Kirkman D. L. et al.,
2021). In this Research Topic, Qu and colleagues focused mainly on
mitophagy and atherosclerosis, with updates on elucidating the
involvement of endothelial mitochondria in the formation and
development of atherosclerosis. However, a comprehensive and solid
conclusion that mitophagy is involved in the development of
atherosclerosis warrants further studies.

Although mitochondrial dysfunction has been considered a risk
factor for various cardiovascular diseases, there are only a few
compounds that have been approved so far for the treatment of
rare mitochondrial diseases (Singh A. et al., 2021). In the Research
Topic, Zhang and colleagues extend the list of compounds that have
been clinically tested in the treatment of PAH and related cardiac
diseases. Nevertheless, numerous drugs that effectively ameliorate
mitochondrial dysfunction in vitro and in animals have shown little
effect in clinical trials. This is likely attributable to the complexity of
primary mitochondrial diseases (PMD) and secondary
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mitochondrial dysfunctions (SMD). Therefore, the diagnosis of
primary causes of cardiovascular diseases might be a prerequisite
for targeting mitochondrial dysfunction.

Taken together, the articles on the Research Topic
“Mitochondrial disorders and cardiovascular diseases” advance
our knowledge of mitochondrial dysfunction and strengthen the
causal role of mitochondrial dysfunction in the development of
cardiovascular diseases. More significantly, the articles highlight
the importance to illuminate the mechanisms underlying
mitochondrial dysfunction in the setting of cardiovascular
diseases, because a limited understanding of the mechanisms
of mitochondrial dysfunction currently retards the treatments
and preventions of cardiovascular diseases via ameliorating
mitochondrial dysfunction. Predictably, once the mechanisms
underlying mitochondrial dysfunction are comprehensively
illustrated, it will be likely to treat and prevent cardiovascular
diseases via targeting mitochondria in the near future.
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