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Introduction: Coronary artery disease (CAD) is one of the most life-threatening
cardiovascular emergencies with high mortality and morbidity. Increasing
evidence has demonstrated that the degree of hypoxia is closely associated
with the development and survival outcomes of CAD patients. However, the
role of hypoxia in CAD has not been elucidated.

Methods: Based on the GSE113079 microarray dataset and the hypoxia-
associated gene collection, differential analysis, machine learning, and
validation of the screened hub genes were carried out.

Results: In this study, 54 differentially expressed hypoxia-related genes (DE-
HRGs), and then 4 hub signature genes (ADM, PPFIA4, FAM162A, and TPBG)
were identified based on microarray datasets GSE113079 which including of 93
CAD patients and 48 healthy controls and hypoxia-related gene set. Then, 4 hub
geneswere also validated in other three CAD relatedmicroarray datasets. Through
GO and KEGG pathway enrichment analyses, we found three upregulated hub
genes (ADM, PPFIA4, TPBG) were strongly correlated with differentially expressed
metabolic genes and all the 4 hub genes were mainly enriched in many immune-
related biological processes and pathways in CAD. Additionally, 10 immune cell
types were found significantly different between the CAD and control groups,
especially CD8 T cells, which were apparently essential in cardiovascular disease
by immune cell infiltration analysis. Furthermore, we compared the expression of
4 hub genes in 15 cell subtypes in CAD coronary lesions and found that ADM,
FAM162A and TPBG were all expressed at higher levels in endothelial cells by
single-cell sequencing analysis.

Discussion: The study identified four hypoxia genes associated with coronary
heart disease. The findings provide more insights into the hypoxia landscape and,
potentially, the therapeutic targets of CAD.
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1 Introduction

Coronary artery disease (CAD) has severe morbidity and mortality
globally (Chen et al., 2020). CAD comprises myocardial ischemia,
anoxia, and even necrosis attributed to atherosclerosis of the
coronary arteries, which results in myocardial injury and heart failure
(HF) (Ties et al., 2022).Most importantly, the firstmanifestation of CAD
may be either acute coronary syndrome (ACS) or sudden cardiac death
(SCD) after rupture and thrombosis of an unstable non-obstructive
atherosclerotic plaque, which was previously silent (Vahatalo et al.,
2021). It is estimated that 540,000 people die of SCD every year in China
and approximately 3 million people in the world every year (Refaat et al.,
2015). Even with good equipments and well-trained professionals, the
rescue success rate of SCD is still less than 5% (Zheng et al., 2022).
Therefore, finding effective therapeutic targets is critical to the
prevention and treatment of CAD.

Presently, the diagnoses of CAD, notably joint imaging techniques,
are well-established. However, patients with an early stage of CAD are
still difficult to diagnose because of the efficient and specific biomarkers
deficiency (Wang et al., 2020; Su et al., 2021). Many studies believe that
hypoxia is considered the initiating factor of fatal events in CAD
patients, which involves complex pathways (Lucero Garcia Rojas et al.,
2021; Ullah andWu, 2021; Yu et al., 2022). Studies have found a direct
relationship between chronic intermittent hypoxia and cardiovascular
diseases such as atherosclerosis (AS) and sudden cardiac death (SCD)
(AbdelMassih et al., 2021; Luo et al., 2022). Abnormalities in hypoxia-
inducible factors (HIFs) have been found to be involved in a variety of
cardiovascular injuries as themaster regulators of the hypoxia response
pathway (Ullah and Wu, 2021). The possible roles and specific
molecular mechanisms remain to be fully elucidated. Therefore, to
provide novel perspectives on prevention and treatment, more
potential targets and hypoxia-related genes in CAD should be
further explored.

The onset and progression of CADmay be significantly impacted
by immune cell infiltration, according to a growing number of studies.
By encouraging the recruitment of innate immune cells and
interfering with the differentiation and function of adaptive
immune cells, prior research has demonstrated that hypoxia can
control immune cell infiltration in malignancies (Palazon et al.,
2014). However, the relationship between hypoxia and immune
regulation in CAD remains unclear. Therefore, it is very important
to evaluate the relationship between hypoxia and immunity in CAD
for the diagnosis and treatment.

Recently, machine learning algorithms have been used to identify
disease biomarkers and therapeutic targets, investigate pathogenesis,
and forecast clinical outcomes. Examples include the least absolute
shrinkage and selection operator (LASSO), support vector machine
recursive feature elimination (SVM-RFE), and random forest (RF)
(Wang et al., 2022). Therefore, this study aims to identify potential
hypoxia-related genes (HRGs) in CAD. First, The GSE113079 dataset,
which was acquired from the Gene Expression Omnibus (GEO)
database, underwent bioinformatics studies to identify differentially
expressed genes (DEGs) and examined the kinds of immune cell
infiltration between CAD and control samples. Then, the DEGs and
the HRGs, which were obtained from GSEA MsigDB, were intersected
to identify hub genes. In particular, we analyzed the correlation between
hub genes and immune infiltrating cells or metabolism-related genes.
Furthermore, we constructed the “lncRNA-miRNA-mRNA” ceRNA

network. This study may provide new hypoxia-related biomarkers for
the diagnosis and treatment of CAD and subsequent fatal events.

2 Materials and methods

2.1 Data collection and preprocessing

The gene expression profile datawas collected from theGEO (http://
www.ncbi.nlm.nih.gov/geo/) database with series numbers GSE113079,
GSE48166, GSE141512 and GSE56885. The GSE113079 dataset
contains 93 CAD patients and 48 healthy controls; the analysis was
performed on the GPL20115 platform. The GSE48166 dataset contains
15 ischemic cardiomyopathy patients and 15 healthy controls; the
analysis was performed on the GPL9115 platform. The
GSE141512 dataset contains 6 myocardial infarction (MI) patients
and 6 healthy controls; the analysis was performed on the
GPL17586 platform. The GSE56885 dataset contains 4 CAD patients
and 2 healthy controls; the analysis was performed on the
GPL15207 platform (Table 1). Two hundred hypoxia-related genes
(HRGs) and 969 metabolism-related genes were obtained from gene
set enrichment analysis (GSEA, https://www.gsea-msigdb.org/gsea/).

2.2 Identification of hypoxia-related DEGs
in CAD

The “limma” R package (version 3.52.4) was used to identify the
DEGs and differentially expressed lncRNAs (DElncRNAs) between
the CAD and control samples. The threshold value was set to |
log2FC| > 0 and FDR <0.05. Genes that crossed over between DEGs
and HRGs were subsequently referred to differentially expressed
hypoxia-related genes (DE-HRGs). Based on the “ggplot2” (version
3.4.1) program, volcano plots displayed the DEGs and DElncRNAs.
The “Venndiagram” (version 1.7.3) software is used to create a Venn
diagram that displays the number of DE-HRGs.

2.3 GO and KEGG pathway enrichment
analysis of DE-HRGs

Gene Ontology (GO) biological process and Kyoto Encyclopedia
of Genes and Genomes (KEGG) annotation were performed to
analyze the biological functions of the DE-HRGs. Using the R
package “clusterProfiler,” (version 4.6.2) GO functional annotation
and KEGG pathway enrichment were carried out. The significance
threshold for enrichment analysis was set at 0.05. The top 10 results
were displayed in the enrichment scatter plots based on the
“enrichplot” (version 1.18.3) and “ggplot2” (version 3.4.1) packages.

2.4 Construction of the protein–protein
interaction network of DE-HRGs

It was done by using the STRING database (http://string-db.org)
to examine how the DE-HRGs interacted with each another. Then
the protein-protein interaction (PPI) network was built and
visualized using Cytoscape software 3.8.0 (http://cytoscape.org/).
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2.5 Screening hub genes based on machine
learning algorithms

We used three machine learning algorithms to screen hub genes
for CAD. First, Using the “glmnet” R package (version 4.1.6), the
LASSO logistic regression approach was used to identify candidate
genes. Then, LASSO classification was performed using binomial
distribution variables and a standard error λ value as the minimum
standard (1SE standard), and 10 cross-validation variables were
selected (Zhao et al., 2022). Next, Support Vector Machines (SVM-
REF) were supervised learning models for analyzing data in
classification and regression analysis. Given a set of training data
marked with two categories, SVM built a model that assigned testing
data into one category or the other, making it a non-probabilistic
binary linear classifier. Because of SVM’s excellent accuracy,
sensitivity and specificity, it is a suitable strategy for predicting
continuous variables and generating predictions without significant
changes, and it is not limited by the variable environments of Random
Forest at the same time. Then, LASSO regression, SVM and RF were
used to select the most important hub genes in this study.

Each chosen hub gene’s receiver operating characteristic (ROC)
graph was examined to confirm its precision. ROC curve analysis
was performed using the “pROC” software package (version 1.18.0),
and hub genes with AUC >0.7 were regarded as helpful for disease
detection (Wang et al., 2020).

2.6 Evaluation of the correlation between
hub genes and metabolism-related genes

969 genes involved in metabolism were obtained in total from
gene set enrichment analysis (GSEA). Metabolism-related genes that
intersect with DEGs were used as differentially expressed
metabolism-related genes. The “stats” package (version 4.2.2) was
used to conduct a Pearson correlation analysis between hub genes
and differentially expressed metabolism-related genes; the heatmap
displayed all the outcomes.

2.7 Validation of hub genes

Three microarray datasets for CAD (GSE48166, GSE141512,
GSE56885) (Table 1) were retrieved from the GEO database for
validation of hub genes expression. The “limma” package (version
3.54.2) was also used to identify differential genes with a threshold of
|log2FC| > 0 and p < 0.05.

2.8 Validation of mRNA expression of
hypoxia-related genes

Ten whole blood samples from CAD patients were collected from
the Second Hospital of Hebei Medical University, 10 whole blood
samples from the health check-up population were collected from the
Great Wall Physical Examination Center, and total blood RNA from
the population was extracted using the RNAprep Pure Hi-Blood Kit.

The mouse cardiomyocyte line HL1 was cultured in MEM
containing 10% fetal bovine serum (FBS) at 37°C in a 1%
O2 incubator. The coronary artery disease group was given
20 ng/mL TNFα treatment. Total cellular RNA was extracted
using TRIpure (Aidlab, CN). The procedure was performed
according to the manufacturer’s instructions.

RNA quality and concentration were assessed using a NanoDrop
2000 (Thermo Fisher Scientific, United States). Then, we used a cDNA
synthesis kit (Thermo Fisher Scientific, #K1622) to obtaine cDNA by
reverse transcription, and analyzed by using qRT‒PCR (Tiangen,
FP205). Finally,mRNAexpressionwas normalized to theGAPDHgene.

2.9 Gene set enrichment analysis

The hub genes’ potential role was determined using GSEA. The
Molecular Signature Database was used to obtain the reference gene
set of choice. (MSigDB). The standard for substantial enrichment
was p < 0.05.

2.10 Evaluation of immune cell infiltration
and its correlation with hub genes

The CIBERSORTmethod was utilized to assess the immune cells’
infiltration in the CAD samples from GSE113079. The software
program “ggplot2” (version 3.4.1) was used to plot cumulative
histograms to show the percentage of 22 immune cell infiltrates in
CAD patients after acquiring the expressionmatrix of immune cells as
per the instructions on the CIBERSORT website. Violin diagrams
were made to visualize differences in the 22 infiltrating immune cells
between the CAD and control groups using the “ggplot2” package.
Pearson correlations were calculated between the 22 infiltrating
immune cells, and the results were displayed by plot correlation
heatmaps using the “corrplot” (version 0.92) software package.
Spearman correlations between identified hub genes and
infiltrating immune cells were calculated using the “stats” package
and then visualized using the “ggplot2” package.

TABLE 1 The datasets used in the analysis. CAD: Coronary artery disease, HC: health controls, ICM: ischemic cardiomyopathy, MI: Myocardial infarction.

Dataset ID Tissue No. of samples GPL ID Usage here References

GSE113079 Blood 93 CAD, 48 HC GPL20115 Training set Li et al. (2018)

GSE48166 Heart 15 ICM, 15 HC GPL9115 validation set

GSE141512 Blood 6 MI, 6 HC GPL17586 validation set Osmak et al. (2020)

GSE56885 Blood 4 CAD, 2 HC GPL15207 validation set

GSE131778 Coronary artery 4 CAD GPL20301 Training set Wirka et al. (2019)
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2.11 Analysis of single-cell sequencing data

To further analyze the cellular distribution of the screened hub
genes in CAD samples, we downloaded the CAD-associated single-
cell sequencing dataset GSE131778, which contains 4 CAD samples.
The utilities in the Seurat package were used to scale and normalize
the gene expression data. The top 2000 highly variable genes were
then filtered using the “FindVariableFeatures” tool. Using the
“RunPCA” function, principal component analysis (PCA) was
also carried out on the single-cell expression matrix limited to
the highly variable genes. Cell clustering analysis was performed
using the “FindClusters” function. Subsequently, the RunUMAP
and RunTSNE functions were used for dimensionality reduction.
The type of each cell was determined according to the annotated
results provided in the original paper (Wirka et al., 2019).

2.12 Construction of the
lncRNA–miRNA–mRNA ceRNA network

Coexpression of DElncRNA and hub genes were analyzed by
Pearson correlation. Only DElncRNA-hub gene pairs with correlation
coefficients >0.5 and p < 0.05 were selected. Subsequently, the
“mircode” database was used to identify potentially interacting
lncRNA-microRNA pairs. The TargetScan database was selected to
identify miRNA-mRNA pairs. Finally, a lncRNA-miRNA-mRNA
network consisting of four hub genes was constructed.

3 Results

3.1 Identification of DE-HRGs and
DelncRNAs in patients with CAD

Through differential expression analysis of GSE113079,
4,900 DEGs and 4,766 DElncRNAs were differentially expressed
in CAD compared with the control samples, with thresholds of |
log2FC| > 0 and adjusted p < 0.05 (Figures 1A, B). To investigate the

differentially expressed hypoxia-related genes (DE-HRGs) in
patients with CAD, we downloaded 200 HRGs from GSEA
MSigDB. After taking the intersection of DEGs and HRGs, a
total of 54 DE-HRGs were obtained, among which 25 genes were
upregulated and 29 genes were downregulated (Table 2; Figure 1C).

3.2 Functional enrichment analysis of DE-
HRGs

On 54 DE-HRGs, GO and KEGG pathway studies were
conducted to investigate putative biological roles and pathways.
The enrichment scatter plot present the top 10 findings. GO analysis
revealed that the pathways for hypoxia, metabolism, membrane
microregions, and outer mitochondrial membrane were
considerably enriched in DE-HRGs (Figure 2A). The hypoxia-
inducible factor HIF1 signaling route, the AGE-RAGE signaling
pathway, metabolism, and other associated pathways were all
engaged in these DE-HRGs, according to KEGG pathway
analysis (Figure 2B).

To further investigate the protein interactions of the 54 DE-
HRGs, we constructed a PPI network. We submitted all DE-HRGs
to the STING database. Then, the obtained results were visualized by
Cytoscape software, which presented the network interaction among
these genes. After removing the separated DE-HRGs, 54 nodes and
83 edges were included (Figure 2C).

3.3 Screening for hub signature genes

We used three machine algorithms to identify hub signature
genes. For the SVM-RFE algorithm, 13 genes were selected when
classifier error was minimized, which contained FAM162A, KIF5A,
BGN, TPBG, AKAP12, PPFIA4, TIPARP, KDELR3, FOSL2,
CCNG2, NAGK, ADM and DDIT4 (Figure 3A, B. For the
LASSO algorithm, we chose the minimum criteria for building
the LASSO classifier due to higher accuracy, and 25 signature
genes were identified, including ADM, BGN, FOSL2, BRS3,

FIGURE 1
Identification of differentially expressed genes (DE-mRNAs) and differentially expressed long non-coding RNAs (DE-lncRNAs). (A, B) Volcano plot
showing differentially expressed mRNAs (A) and lncRNAs (B) in patients with coronary artery disease versus the normal control population. Red dots
represent upregulated genes and blue dots represent downregulated genes with a threshold of |log2FC| >0 and adjusted to p < 0.05. (C) Shows DE-
mRNAs and hypoxia-related genes taken to intersect to obtain differential hypoxia-related genes (DE-HRGs).
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TABLE 2 54 DE-HRGs’ differential expressions were analyzed in the GSE113079 datasets.

ID LogFC AveExpr t P. Value Adj.P.Val B

ADM 1.177898691 2.639613233 16.91687718 5.71E-36 5.69E-33 71.24674002

AK4 0.602814546 −0.853237677 11.06527353 5.91E-21 1.65E-19 36.98379847

BGN 0.773060954 0.719893874 9.957399096 4.47E-18 8.11E-17 30.41910353

FOSL2 −0.789111529 3.06663182 −9.543590565 5.18E-17 7.72E-16 27.99525002

BRS3 1.110478566 −3.452760102 8.947334419 1.70E-15 2.01E-14 24.54408149

PPFIA4 0.593092808 −1.628856157 8.763000817 4.95E-15 5.43E-14 23.48920287

KDM3A −0.508844792 0.754002161 −8.597543083 1.28E-14 1.33E-13 22.54793138

COL5A1 0.39433662 −2.958092439 7.712827781 1.90E-12 1.40E-11 17.62129869

VLDLR 0.513949643 −3.72646428 7.665238254 2.47E-12 1.78E-11 17.36212121

ZNF292 −0.370763153 2.590921986 −7.409683041 1.00E-11 6.57E-11 15.98200801

TNFAIP3 −1.106946977 3.026236157 −6.87830132 1.74E-10 9.59E-10 13.18126513

PGM1 0.381,608,887 2.081204243 6.717289189 4.04E-10 2.12E-09 12.35287457

PPP1R15A −0.915258134 3.08301881 −6.635053993 6.20E-10 3.16E-09 11.93369921

CDKN1B −0.388402362 3.137457981 −6.465686782 1.48E-09 7.15E-09 11.07905864

GPC1 0.302228389 −0.341871509 6.25357357 4.35E-09 1.96E-08 10.02589327

ISG20 −0.4150531 2.098440901 −6.188293323 6.04E-09 2.66E-08 9.705768249

FAM162A −0.287739553 −0.231950945 −6.115255069 8.69E-09 3.74E-08 9.349898394

LDHA −0.33815833 3.252647287 −5.86817191 2.93E-08 1.17E-07 8.164615449

NAGK 0.419358494 4.572588636 5.561814521 1.27E-07 4.69E-07 6.736959945

CCNG2 −0.320543881 −0.497989588 −5.224367568 6.05E-07 2.03E-06 5.222084866

HMOX1 0.428118499 1.289430301 4.934557957 2.20E-06 6.87E-06 3.972754253

GRHPR 0.208960604 1.521280325 4.872382583 2.89E-06 8.87E-06 3.711255043

BNIP3L −0.445126983 1.307232102 −4.689443816 6.32E-06 1.87E-05 2.955715862

TPBG 0.554799664 −3.08784889 4.652716803 7.38E-06 2.16E-05 2.806574854

PKP1 0.401753519 −3.856222634 4.553825222 1.12E-05 3.18E-05 2.409308824

CAV1 0.514966278 −2.657643106 4.290211391 3.27E-05 8.65E-05 1.381826824

SAP30 −0.371052544 −0.073451892 −4.255632538 3.75E-05 9.84E-05 1.250531678

ENO3 −0.22722186 −1.154129651 −4.210476456 4.48E-05 0.000116476 1.080315804

IL6 −0.909638394 −3.21582843 −4.192033335 4.82E-05 0.000124302 1.011200973

DPYSL4 0.263058085 −2.033101403 4.00560555 9.90E-05 0.00024259 0.325997987

PNRC1 −0.186695873 5.208128173 −3.810543147 0.000205196 0.000481407 −0.364191088

DDIT4 −0.490702596 2.205571939 −3.774292319 0.000234295 0.000544072 −0.489374392

AKAP12 −0.438773726 −3.31947005 −3.719078447 0.00028624 0.000656852 −0.678157081

ATP7A 0.14189323 0.94874353 3.702399409 0.000303963 0.000694325 −0.734734637

MAFF −0.386872667 −0.488479686 −3.624852195 0.000400885 0.000899735 −0.995022033

VHL 0.392024823 5.670599729 3.589504975 0.000454152 0.001014145 −1.112146126

PDK1 −0.387385851 −0.078648402 −3.575443857 0.000477142 0.001061618 −1.158471957

SULT2B1 0.326995183 −4.240134025 3.435962329 0.000772837 0.001666953 −1.609728949

(Continued on following page)
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PPFIA4, KDM3A, VLDLR, PGM1, PPP1R15A, FAM162A, NAGK,
CCNG2, TPBG, SAP30, IL6, DPYSL4, DDIT4, AKAP12, VHL,
KIF5A, PDK3, VEGFA, MT2A, TIPARP, and KDELR3
(Figure 3C). For the random forest algorithm, the top
5 important genes were selected: TPBG, PPFIA4, FAM162A,
PDK3, and ADM (Figure 3D, E). Four overlapping hub genes
(ADM, PPFIA4, FAM162A, and TPBG) were identified by the
intersection of the abovementioned three algorithms (Figure 3F).

3.4 Expression analysis and diagnostic
efficacy of hub genes for CAD

ADM, PPFIA4, and TPBG exhibited greater expression levels in
the CAD group than in the control group, but FAM162A showed
lower expression levels in the CAD group, when we compared the
expression of these genes between CAD and control samples in the
GSE113079 dataset (Figure 4A). We mapped ROC curves to
investigate the efficacy of the 4 hub genes as CAD diagnostic
biomarkers (Figure 4B). The AUC values for the 4 hub genes
were >0.7, indicating high diagnostic performance. In the four
hub genes, ADM’s AUC was the highest at 0.956, which is
significant.

3.5 Identification of correlations between
hub genes and metabolism-related genes

Since pathway analysis showed that DE-HRGs were enriched in
metabolism-related pathways, we analyzed the relationship between
hub genes and metabolism-related genes. Among 969 metabolism-

related genes, there were 235 differentially expressed genes between
CAD and control samples in the GSE113079 dataset, and Pearson
correlation analysis showed that most differential metabolism-
related genes were correlated with hub genes, either positively or
negatively (|r| ≥ 0.3, p < 0.05). Notably, three upregulated genes
(ADM, PPFIA4, TPBG) were more strongly correlated with
differentially expressed metabolism-related genes (Figure 5;
Supplementary Table S1).

3.6 External validation of 4 hub genes
for CAD

To verify whether the 4 hub genes are differentially expressed in
other CAD datasets, we selected three additional microarray datasets
(GSE48166, GSE141512 and GSE56885) for external validation. Of
the 4 hub genes, ADM was upregulated in CAD (GSE56885),
PPFIA4 and TPBG were upregulated in patients with ischemic
heart disease (GSE48166), and FAM162A was downregulated in
patients with myocardial infarction (GSE141512) (Table 3).

To further confirm the expression of hypoxia-associated genes,
we performed qRT‒PCR experiments in HL1 cells and human
whole blood samples.

To assess the expression of four hypoxia-related hub genes
(ADM, PPFIA4, FAM162A and TPBG) between CAD patients
and the control population, qRT‒PCR was used to quantify
mRNA expression levels. Compared to the control population,
ADM, PPFIA4 and TPBG expression was upregulated, and
FAM162A expression was downregulated in the whole blood of
CAD patients. In addition, we confirmed the mRNA levels of these
hub genes in mouse HL1 cells. Compared to the hypoxic cultured

TABLE 2 (Continued) 54 DE-HRGs’ differential expressions were analyzed in the GSE113079 datasets.

ID LogFC AveExpr t P. Value Adj.P.Val B

PRKCA −0.280966798 −0.370765449 −3.416685145 0.000825198 0.001773175 −1.670902328

PAM −0.268212621 −0.781255743 −3.321019084 0.001137942 0.002387911 −1.970146405

NOCT −0.496862247 0.380669063 −3.244267616 0.001465535 0.003023613 −2.204957998

KIF5A 0.233734832 −2.534858673 3.100223556 0.002328731 0.004637683 −2.6328015

PRDX5 −0.288973957 1.421154393 −3.09227385 0.002387945 0.004748491 −2.655921135

ZFP36 0.20174277 6.658195981 3.02444134 0.002952834 0.005785204 −2.851077838

MXI1 −0.162199423 1.382007366 −2.978041764 0.003407631 0.006609853 −2.982377781

PDK3 −0.097595743 2.6291518 −2.622727795 0.009666371 0.017316924 −3.927630933

HK1 −0.054582231 −5.167922069 −2.5990085 0.010327318 0.018414087 −3.986877142

VEGFA −0.263681718 −4.932100907 −2.573697138 0.0110772 0.019632601 −4.049559837

GAA 0.200306828 0.134587598 2.566478209 0.011299849 0.019996092 −4.067334834

ATF3 0.307700421 0.932697695 2.531895124 0.012423135 0.021804763 −4.151855918

MT2A −0.290126487 0.843244915 −2.476297183 0.014439407 0.025002378 −4.285537754

GAPDH 0.126840398 7.102301648 2.458303882 0.015151763 0.026144991 −4.328218456

TIPARP −0.180224942 −0.751647504 −2.397778697 0.017782872 0.030246438 −4.469683887

KDELR3 0.158662234 −1.470976755 2.202095 0.02925745 0.047795162 −4.904674271
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HL1 cells, ADM, PPFIA4 and TPBG expression were upregulated,
and FAM162A expression was downregulated in TNFα-treated
hypoxic HL1 cells (Figure 6A, B). All primer sequences were
shown in Supplementary Table S2.

3.7 GSEA identifies 4 hub gene-associated
signaling pathways

We performed in GSEA to further illustrate the role of the 4 hub
genes. The obtained results demonstrated that ADM, PPFIA4,
FAM162A, and TPBG were linked to immune responses (Toll-
like receptor signaling pathway, cytokine–cytokine receptor
interaction, TIL-17 signaling pathway, NF-kappa B signaling

pathway, etc.) in addition to metabolic signaling pathways
(Tyrosine metabolism, Glycine, serine and threonine metabolism)
(Figure 7A–D).

3.8 Analysis of immune cell infiltration

The association of immune cell infiltration between CAD and
control samples was further investigated in the GSE113079 dataset
using the CIBERSORT algorithm. The proportions of 22 immune
cell subtypes in each sample were shown in Figure 8A. The obtained
results showed that CD8 T cells were significantly enriched, and
macrophage M1 expression was deficient in both CAD and controls.
As shown in Figure 8B and ten immune cell types were significantly

FIGURE 2
Functional annotation of DE-HRGs. (A)GOenrichment analysis of the DE-HRGs. (B) KEGG enrichment analysis of the DE-HRGs. (C) Protein–protein
interaction (PPI) network of the DE-HRGs.
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different between the CAD and control groups (p < 0.05), including
naive B cells, memory B cells, CD8 T cells, activated memory
CD4 T cells, follicular helper T cells, activated NK cells,
monocytes, activated dendritic cells, resting mast cells and
neutrophils.

Furthermore, we used Pearson correlation to estimate the
correlation between the 24 immune cells. The obtained results
revealed positive correlations between activated NK cells and
resting mast cells, memory B cells and neutrophils. Meanwhile,
negative correlations were found between activated dendritic cells
and naive B cells or eosinophils, activated NK cells and memory
B cells or neutrophils, CD8 T cells and resting memory

CD4 T cells (Figure 8C). We then used Spearman correlation
analysis to estimate the correlation between the 4 hub genes and
immune cells. ADM was positively correlated with eosinophils
(r = 0.41) but negatively correlated with activated dendritic cells
(r = −0.31), resting mast cells (r = −0.25), and plasma cells
(r = −0.22). FAM162A was positively correlated with
regulatory T cells (r = 0.23). PPFIA4 was positively correlated
with eosinophils (r = 0.30) and resting dendritic cells (r = 0.23) but
negatively correlated with activated dendritic cells (r = −0.30) and
regulatory T cells (r = −0.31). TPBG was positively correlated with
resting dendritic cells (r = 0.25) (Figure 8D; Supplementary
Figure S1).

FIGURE 3
Identification of diagnostic genes using three machine learning algorithms. (A, B) Based on support vector machine-recursive feature elimination
(SVM-RFE) to screen hub genes. (C) Least absolute shrinkage and selection operator (LASSO) regression algorithm to screen hub genes. (D) Random
forest (RF) algorithm to screen hub genes. (E) The rank of genes in accordance with their relative importance. (F) Venn diagram of hub genes in three
machine learning algorithms (SVM, LASSSO, RF).
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FIGURE 4
Expression analysis and diagnostic efficacy of hub genes in the prediction of CAD. (A) Box plots showing the mRNA expression of hub genes in CAD
patients and Normal control in the GSE113079 dataset. (B) ROC curves estimating the diagnostic performance of hub genes.
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3.9 Single-cell RNA sequencing analysis

To evaluate the expression levels of the 4 hub genes at the
single-cell level, CAD-associated single-cell sequencing data from
GSE131778 were screened, which contained 4 CAD samples. The
t-SNE method was used for manual annotation of clusters, and a
total of 15 cell subtypes were identified, including endothelial,
fibroblast, macrophage, fibromyocyte, T cell, SMC, pericyte 1,

pericyte 2, B cell, plasma cell 1, NK cell, neuron, plasma cell 2,
mast cell, and unknown (Figure 9A). The obtained results showed
that ADM was mainly expressed in endothelial cells, plasma cells
1 and plasma cells 2. FAM162A was mainly expressed in
endothelial cells, macrophages, fibromyocytes, SMCs, pericytes1,
pericytes2, plasma cells 1 and mast cells. TPBG was mainly
expressed in endothelial cells. However, PPFIA4 was not
captured in these cells.

3.10 Construction of the lncRNA-miRNA-
mRNA ceRNA network

We created a lncRNA-miRNA-mRNA competition
endogenous RNA (ceRNA) network to investigate the role of
lncRNAs as miRNA sponges in CAD based on the endogenous
RNA competition hypothesis. The projected miRNAs were merged
with co-expressed upregulated lncRNAs and hub genes into the
upregulated ceRNA network. There were 4 hub genes, 43 miRNAs,
and 62 lncRNAs in the ceRNA network (Figure 10).

4 Discussion

Multiple reports have shown that hypoxia plays a central role in
the pathogenesis and pathophysiology of CAD (Yu et al., 2022).
However, due to the multiple roles of hypoxia, the mechanism
through which hypoxia initiates the development and progression of
CAD has not been clarified and needs to be further explored. In this
study, we identified hypoxia-related genes and associated pathways
in GSE113079 and further validated them in the GSE48166,
GSE141512 and GSE56885 datasets.

Herein, we first identified 54 DE-HRGs, and then 4 hub
signature genes (ADM, PPFIA4, FAM162A, and TPBG) were
screened by three machine algorithms (LASSO regression,
SVM-RFE and random forest), which showed reliable
diagnostic power for CAD. The 4 hub genes were also validated
in other microarray datasets (GSE48166, GSE141512 and
GSE56885). Organ protection, anti-inflammatory properties,
and tissue repair are just a few of the many different actions
and functions of the endogenous vasodilatory peptide that known
as adrenalmedullin. Also, there is compelling evidence linking
increased plasma and tissue levels of ADM with cardiovascular
disease (Yanagawa and Nagaya, 2007; Lucero Garcia Rojas et al.,
2021). Several studies have been previously reported to be
associated with coronary artery function and cardiovascular
outcomes (Nishida et al., 2001; Haberka et al., 2019; Theuerle
et al., 2019). PTPRF Interacting Protein Alpha 4 (PPFIA4), which

FIGURE 5
Heatmap indicating the correlation between the hub genes and
differentially expressed metabolism-related genes. The color
represents the p-value of the correlation, with positive correlations in
red and negative correlations in blue.

TABLE 3 Hub gene logFC value in CAD datasets (p < 0.05).

GSE48166 GSE141512 GSE56885

ADM 1.423750038

PPFIA4 0.503695578

TPBG 0.682006896

FAM162A −0.205765639
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belongs to the PPFIA family, possesses different physiological
functions in humans. A previous study discovered that variants
of PPFIA4 were associated with supernormal coronary arteries and
atrial fibrillation (Low et al., 2017; Kim et al., 2022). FAM162A
may serve as possible therapeutic and diagnostic targets for human
dilated and ischemic cardiomyopathies because it was
differentially expressed at the transcriptomic and proteomic
levels in a number of rodent and human heart disease models
(Lee et al., 2020). Recently, it was found that Trophoblast
Glycoprotein (TPBG) was expressed in adventitial pericyte-like
cells (APCs) in situ and after in vitro expansion and was essential
for migration and proangiogenic activities (Spencer et al., 2019).
Moreover, our results showed that PPFIA4 and TPBG were
significantly involved in CAD, including our 5 recurrent CAD
samples and 5 normal samples. ADM, PPFIA4, FAM162A, and
TPBG, which were all reported to be hypoxia-associated signature
genes, have been less explored in CAD.

In this study, vitro experiments showed that the relative mRNA
levels of ADM, PPFIA4, FAM162A, and TPBGwere increased in the
IH groups compared with the control groups, which revealed that
the relationship between the 4 hub genes and hypoxia was related to
CAD (Sun et al., 2022).

Both GO enrichment analysis and KEGG analyses suggest
that DE-HRGs are associated with hypoxic and metabolic
pathways. Abnormal metabolism is a very common feature in
CAD, and modulation of related metabolism-associated genes
may represent a novel therapeutic approach to treat CAD (Fan
et al., 2016). In addition, hypoxic signaling and metabolism

changes, such as the glycolytic pathway and fatty acid β-
oxidation pathway, are highly interlinked (Wong et al., 2017;
Lucero Garcia Rojas et al., 2021). However, the mechanism of
adaptive cardiac metabolism under chronic hypoxia remains to
be fully characterized (Su et al., 2021). In our previous studies, an
ADM antagonist played pivotal roles in metabolic regulation (Liu
et al., 2017). Notably, PPFIA4 and FAM162A were also both
glycolysis-related genes (Huang et al., 2021; Liu et al., 2022).
TPBG (trophoblast glycoprotein, HGNC: 12004), a heavily
N-glycosylated transmembrane protein, is a glucose
metabolism-related biomarker gene (Zhang et al., 2021). In
this study, we found that three upregulated hub genes (ADM,
PPFIA4, TPBG) were strongly correlated with differentially
expressed metabolic genes in CAD.

To further illustrate the role of hub genes in CAD, we
performed GSEA of hub genes. The obtained results showed
that the 4 hub genes were mainly enriched in many immune-
related biological processes and pathways. It is currently believed
that immune cell infiltration plays an important role in the onset
and development of CAD (Yang and Xu, 2021). By immune cell
infiltration analysis, we found 10 immune cell types that were
significantly different between the CAD and control groups,
especially CD8 T cells, which were apparently essential in
cardiovascular disease. Studies have reported that hypoxia
signaling plays a critical role in the initiation or regulation of
inflammation in cardiovascular disease (Abe et al., 2017).
Furthermore, several in vitro studies have demonstrated that
ADM and TPBG exert anti-inflammatory effects in

FIGURE 6
Validation of mRNA expression of hypoxia-related genes (A) Differential expression of hub genes in hypoxic control (hypoxia) and hypoxic coronary
artery disease groups (Hypoxia-TNFα). (B) Differential expression of hub genes in 10 pairs of CAD patients and healthy physical examination population
(N). *p < 0.05 and **p < 0.01.
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cardiovascular disease (Shindo et al., 2019; Spencer et al., 2019). In
this study, we speculated that ADM and PPFIA4 may influence
CAD by regulating the activity of eosinophils and that PPFIA4 and

TPBG may influence CAD by regulating the activity of resting
dendritic cells. However, FAM162A and PPFIA4 may play the
opposite roles in regulatory T cells. Direct evidence of these

FIGURE 7
GSEA identifies signaling pathways involved in the hub genes. (A–D) The main signaling pathways that are significantly enriched in high or low
expressions of characteristic genes. (A) ADM, (B) PPFIA4, (C) TPBG, (D) FAM162A.
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FIGURE 8
Analyzing and showing immune cell infiltration. (A) Immune cell kinds and ratios in patients with CAD. (B) A box plot showing the expression of
22 different immune cell types betweenCAD and controls. (C)A heatmap demonstrating correlation for 21 different immune cell types. The degree of the
correlation is shown by the size of the colored squares; red indicates a positive correlation, and blue indicates a negative correlation. The association is
greater the darker the hue. (D) Correlation between immune cells and important genes.
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FIGURE 9
The cell distribution of 4 hubHRGs in CAD. (A) t-distribution randomneighbor embedding (t-SNE) plot showing annotation and color coding of CAD
cell types. The single-cell data were downscaled by the TSNE algorithm to obtain 2 dimensions, tSNE_1 and tSNE_2. (B) Scatter plot and (C) violin plot
show the distribution of 4 hub HRGs in CAD.
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associations was not mentioned in previous studies. Further
experimental research is needed for classification.

Single-cell sequencing is a ground-breaking approach that
enables us to better understand the biological diversity of cells
and assess gene expression in individual cells (Song et al., 2022).
To screen which cell types the 4 hub hypoxia-related genes are
mainly expressed in, we performed single-cell sequencing analysis.
We compared the expression of 4 hub genes in 15 cell subtypes in
CAD coronary lesions and found that ATM, FAM162A and TPBG
were all expressed at higher levels in endothelial cells. It is worth
noting that PPFIA4 was not captured in these cells. The functional
influence of the 4 hub hypoxia-related genes in these cells on plaques
and their relevance in vivo are worth further exploration.

As far as we know, this is the first study to report the molecular
and immune characteristics associated with hypoxia-related genes in
CAD. Our study provides new insights into hypoxia in CAD,
thereby providing more evidence for CAD prevention and
treatment. However, this study also has several limitations. First,
the sample size included is relatively small. Second, the potential
molecular mechanisms of hypoxia in CAD, including immune
infiltration and metabolism, need to be further explored.

In conclusion, we identified and validated 4 hub hypoxia-related
genes that can be used as diagnostic markers for CAD by
comprehensive analysis. The 4 hub hypoxia-related genes may
influence CAD progression through immune cell infiltration and
metabolism. This study provides new insights into hypoxia and CAD.

FIGURE 10
Developing the ceRNA Network. The expected lncRNAs were shown by red nodes. The expected miRNAs were shown by green nodes. Hub genes
were represented by blue nodes.
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