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Background: In recent years, identifying players with injury risk through physical
fitness assessment has become a hot topic in sports science research. Although
practitioners have conducted many studies on the relationship between physical
fitness and the likelihood of injury, the relationship between the two remains
indeterminate. Consequently, this study utilized machine learning to preliminary
investigate the relationship between individual physical fitness tests and injury risk,
aiming to identify whether patterns of physical fitness change have an impact on
injury risk.

Methods: This study conducted a retrospective analysis by extracting the records
of 17 young female basketball players from the sport-specific physical fitness
monitoring and injury registration database in Fujian Province. Sports-specific
physical fitness tests included physical performance, physiological, biochemical,
and subjective perceived responses. The data for each player was standardized
individually using Z-scores. Synthetic minority over-sampling techniques and
edited nearest neighbor algorithms were used to sample the training set to
address the negative impact of class imbalance on model performance.
Feature extraction was performed on the dataset using linear discriminant
analysis, and the prediction model was constructed using the cost-sensitive
neural network.

Results: The 10 replicate 5-fold stratified cross-validation showed that the lower
limb non-contact injury prediction model based on the cost-sensitive neural
network had achieved good discrimination and calibration (average Precision:
0.6360; average Recall: 0.8700; average F2-Score: 0.7980; average AUC: 0.8590;
average Brier-score: 0.1020), which could be well applied in training practice.
According to the attribution analysis, agility and speed were important physical
attributes that affect youth female basketball players’ non-contact lower limb
injury risk. Specifically, there was enhance in the performance of the 1-min double
under, accompanied by an increase in urinary ketone and urinary blood levels
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following the agility test. The 3/4 basketball court sprint performance improved,
while urinary protein and RPE levels decreased after the speed test.

Conclusion: The sport-specific physical fitness change pattern can impact the
lower limb non-contact injury risk of young female basketball players in Fujian
Province, specifically in terms of agility and speed. These findings will provide
valuable insights for planning athletes’ physical training programs, managing
fatigue, and preventing injuries.
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1 Introduction

Sports injuries are a common condition in basketball that
considerably impact sports performance, health, and team
finances. Previous studies have shown that the incidence of
sports injuries is increasing year after year. The investigation by
Meeuwisse et al. (2003) reported that training injuries accounted for
70% of sports injuries in basketball players, with 47% of training
injuries not due to physical contact. Of these non-contact injuries,
approximately 28% would result in the player being unable to
participate in training for a short time. In a recent study, the
average weekly injury rate among youth female basketball players
was 20.7%, with approximately 58% of these injuries being non-
contact (Sommerfield et al., 2020). It can be seen that most of the
injuries are not due to physical contact, which means that they can
be prevented, at least to a certain extent. Therefore, limiting the
incidence of injury is a significant concern of the sports industry,
sports science, and sports medicine, which is essential to maximize
the effectiveness of sports training (Drew et al., 2017; Kester et al.,
2017).

Basketball is a high-intensity intermittent team sport that
combines speed, agility, strength, and speed endurance, which
requires players to have a high level of physical fitness and sport-
specific skills (Fort-Vanmeerhaeghe et al., 2016). If a player lacks
high levels of speed, strength, agility, and speed endurance, it will be
challenging to perform competitively in intense on-court match-
ups, increasing the likelihood of injury risk (Hrysomallis, 2007;
Herman et al., 2012; Lauersen et al., 2013; Emery et al., 2015). When
injuries occur to these fewer fitness players, it takes them longer to
recover their fitness levels (McGuigan, 2017). Therefore, identifying
the potential risk of injury according to players’ physical fitness and
intervening in time is an important practical issue. Although
numerous studies have reported the association between physical
fitness and injury risk in Australian football, rugby, and football
(Harrison and Johnston, 2017; Macmillan et al., 2021; Leppänen
et al., 2022), the findings are contradictory due to factors such as age,
gender, sport-specific, and testing protocol. For example, cross-
sectional studies have shown that better speed and strength
characteristics were associated with a lower risk of injury
(Gabbett et al., 2012; Gastin et al., 2015; Watson et al., 2017).
Meanwhile, Some scholars showed no association between
aerobic capacity, strength, speed, agility, and injury risk (Arnason
et al., 2004; Emery et al., 2005; Kennedy et al., 2012). Furthermore,
the studies by Quarrie et al. (2001) and Henderson et al. (2010)
showed that higher levels of speed and strength performance were
associated with higher injury risk. These conflicting findings make

the regularity between physical fitness and injury risk unclear,
particularly in basketball, where is limited research on youth
players (Chang and Lu, 2020).

Through comparative analysis of current research, three
limitations of this research area can be noted. Firstly, assessing a
player’s physical fitness solely based on physical performance is a
limited approach. Some research evidence showed that the physical
fitness level strongly correlates with the player’s physiological status.
The investigation by McLean et al. (2010) found significant
differences in physiological responses between players with
similar physical performance. Meanwhile, Clemente-Suárez et al.
(2021) research reported differences in physical performance
between players with different physiological statuses. So far, only
a few studies have been reported to investigate the relationship
between physical fitness and injury risk by combining physical
performance with physiological indicators (e.g., maximal oxygen
uptake). Unfortunately, these studies have not combined physical
performance with post-test physiological, biochemical (e.g., blood
lactate and creatine kinase), and subjective perceived responses for
co-analysis (Eliakim et al., 2018). Secondly, most studies used cross-
sectional study designs to investigate the relationship between
physical performance and injury risk, which may be logically
flawed. According to Simpson’s paradox, the correlations
obtained this way are only relationships at the overall level and
do not reflect correlations for each individual (Mangalam and Kelty-
Stephen, 2021). Therefore, the correlation obtained through cross-
sectional research is challenging to apply in training guidance. To
address this issue, some scholars have conducted prospective cohort
studies on the relationship between physical fitness and injury risk.
Bennett et al. (2022) explored the relationship between physical
fitness and injury risk by collecting four consecutive seasons of
physical performance indicators and weekly injury status for
Australian football players to obtain more accurate results.
However, it is essential to note that the study’s physical
performance indicators were collected before the season, meaning
that changes in players’ physical fitness through different training
stages were not fully considered, which may make it challenging to
apply the findings to staged training programs. Thirdly, most studies
used univariate statistical association strategies for analysis, which
may have methodological shortcomings. Ruddy et al. (2019) pointed
out that univariate statistical association methods can clarify the
direct effects between measure variables and injury risk, which only
obtain information on certain factors in the injury risk pattern and
do not identify the injury risk pattern as a whole. In addition, this
statistical strategy is challenging to identify the non-linear
relationship between independent and dependent variables and

Frontiers in Physiology frontiersin.org02

Huang et al. 10.3389/fphys.2023.1182755

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1182755


the interaction between variables. Moreover, the extreme value of
samples also dramatically influences the model, so there are still
some methodological limitations.

Consequently, based on the above-mentioned limitations, this
study employs the machine learning approach to preliminary
investigate the relationship between sport-specific physical fitness
and injury risk. The objective is to determine whether changes in an
individual’s sport-specific physical fitness impact their injury risk
and to identify patterns in physical fitness changes associated with
injury risk. This study collected data on sport-specific physical
fitness monitoring and injury registration of youth female
basketball players in Fujian Province. The machine learning
algorithm was used to construct a lower limb non-contact injury
risk prediction model and to discover their injury risk pattern. The
findings will help coaches and researchers to understand players’
lower limb non-contact injury risk and to predict lower limb non-
contact injury risk through the data-driven model.

2 Materials and methods

The data used in this study were obtained from the sport-specific
physical fitness monitoring and injury registration database of youth
female basketball players established by the Fujian Provincial
Basketball and Volleyball Sports Management Centre during the
preparation for the 13th National Games. The database recorded
data for seventeen youth female basketball players (age: 15.00 ±
0.61 years; height: 176.58 ± 6.46 cm; weight: 64.42 ± 8.47 kg; training
year: 1.62 ± 0.65 years) between January and December 2014. All
players were affiliated with Fujian Provincial Basketball and
Volleyball Sports Management Centre. Prior to participation, all
players provided informed consent, and the study was conducted in
accordance with the Declaration of Helsinki guidelines. The Fujian
Province Basketball and Volleyball Sports Management Centre
approved the study. These data were collected by the Fujian
Provincial Basketball and Volleyball Sports Management Centre
and shared with the researchers involved in this study through a
non-disclosure agreement. The center has the right to choose which
information, results, and data can be made publicly available and
grant access to these data for research purposes only to the authors
of this paper.

2.1 Data collection

The dataset used in this study evaluated sport-specific physical
fitness from four dimensions: physical performance, physiological,
biochemical, and subjective perceived response.

2.1.1 Physical performance
The database’s sport-specific physical performance test protocol

was based on the Chinese Youth Basketball Training Syllabus. The
15 m × 13 shuttle run test was selected to assess the speed endurance
of the players. The 3/4 basketball court sprint test assessed the
player’s speed. The 1-minute double under and hexagon agility test
assessed the player’s agility. The 30-second 35 kg squat, 30-second
20 kg bench press, 30-second sit-up, and 30-second back extensions
test assessed the player’s strength. Data were collected at 6-week

intervals for a total of 6 sessions. Further information can be found
in Supplementary File S1.

2.1.2 Physiological response
The dataset used in this study contains players’ physiological

responses after physical performance tests. According to Fujian
Provincial Basketball and Volleyball Sports Management Centre
test records, players will be asked to test the instantaneous heart rate
and heart rate recovery (heart rate at 1 min after testing) after the
speed, speed endurance, and agility test. Instantaneous heart rate
(IHR) and heart rate recovery (HRR) were acquired using the Polar
team telemetry heart rate device.

2.1.3 Biochemical response
The dataset contains the biochemical responses of the players after

the physical fitness test. Players were required tomeasure creatine kinase
immediately after the strength test and the following day, and blood
lactate at 3 min after the speed endurance test. Within 15 min of each
physical performance test completion, the player’s first mid-phase
urinary was tested for urinary composition using the CLINITEK
STATUS Urinary Decathlon Analyser. The urinary protein, urinary
specific gravity, urinary blood, urobilinogen, pH, and urinary ketones
were assigned to the urinary components (Table 1). The Medical
Department of Fujian Provincial Basketball and Volleyball Sports
Management Centre did all measurements.

2.1.4 Subjective perceived response
This study used the Borg-10 ratings of perceived exertion (RPE)

scale designed by Foster et al. (1995) to quantify the perceived
exertion level of players after a physical performance test. Numerous
studies have confirmed this quantification method’s validity and
reliability Chen et al. (2002). Within 10 min of completing the test,
the researcher verbally asks the players about their fatigue level.

2.1.5 Injury registration
Based on the injury data collection procedure (Fuller et al., 2006),

medical staff from the Fujian Province Basketball and Volleyball Sports
Management Centre diagnosed injuries through medical examination,
medical imaging diagnosis, and other methods. The injury registry
recorded location, type, injury occurrence (contact, non-contact), and
diagnosis mode. Following the definition of Bahr et al. (2020), Non-
contact injuries of lower limbs were defined as those caused by
mechanisms other than direct contact, including overuse injuries and
chronic injuries. Following the definition of Enright et al. (2019), the
lower limb includes the hips, thighs, knees, calves, ankles, and feet.

2.2 Data processing

The missing values in the dataset were analyzed using the SPSS
26.0 software, multiple imputations were performed at the
individual level for independent variables with no more than
10% missing values, and independent variables with more than
10% missing values were excluded. According to research reports
(Hubal et al., 2005; Gabbett and Domrow, 2007; Buford et al., 2013;
Halson, 2014), there are significant differences in the development
potential of physical fitness among players, so this study employs the
within-individual difference approach to perform the numerical
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TABLE 1 Assignment rules and independent variable encoding of physical performance, physiological, biochemical, and subjective perceived response indicators
for each physical fitness attribute.

Physical fitness attributes Indicator Assignment Encoding

Agility 1-minute double under Original value input A1

1-minute double under IHR (1min) Original value input A2

1-minute double under HRR
(1min)

Original value input A3

hexagon agility test Original value input A4

hexagon agility test IHR (1min) Original value input A5

hexagon agility test HRR (1min) Original value input A6

RPE Original value input A7

urinary protein Negative = 1; Microscale = 2; 0.3 g/L = 3; 1 g/L = 4; 3 g/L = 5 A8

urobilinogen 3.2 mg/dL = 1; 16 mg/dL = 5; 33 mg/dL = 10 A9

urinary-PH Original value input A10

urinary specific gravity ≤1.025 = 1; ≥1.030 = 2 A11

urinary blood Negative = 1; Microscale = 2; Ca25 Ery/µL = 3; Ca80 Ery/µL = 4; Ca200 Ery/µL = 5 A12

urinary ketones Negative = 1; Microscale = 2; 1.5 nmol/L = 3 A13

Speed Endurance 15 m × 13 shuttle run time Original value input B1

15 m × 13 shuttle run IHR Original value input B2

15 m × 13 shuttle run HRR (1min) Original value input B3

15 m × 13 shuttle run BLA (3min) Original value input B4

RPE Original value input B5

urinary protein Negative = 1; Microscale = 2; 0.3 g/L = 3; 1 g/L = 4; 3 g/L = 5 B6

urobilinogen 3.2 mg/dL = 1; 16 mg/dL = 5; 33 mg/dL = 10 B7

urinary-PH Original value input B8

urinary specific gravity ≤1.025 = 1; ≥1.030 = 2 B9

urinary blood Negative = 1; Microscale = 2; Ca25 Ery/µL = 3; Ca80 Ery/µL = 4; Ca200 Ery/µL = 5 B10

urinary ketones Negative = 1; Microscale = 2; 1.5 nmol/L = 3 B11

Strength 30-second 35 kg squat Original value input C1

30-second 20 kg bench press Original value input C2

30-second sit up Original value input C3

30-second back extensions Original value input C4

CK change Original value input C5

RPE Original value input C6

urinary protein Negative = 1; Microscale = 2; 0.3 g/L = 3; 1 g/L = 4; 3 g/L = 5 C7

urobilinogen 3.2 mg/dL = 1; 16 mg/dL = 5; 33 mg/dL = 10 C8

urinary-PH Original value input C9

urinary specific gravity ≤1.025 = 1; ≥1.030 = 2 C10

urinary blood Negative = 1; Microscale = 2; Ca25 Ery/µL = 3; Ca80 Ery/µL = 4; Ca200 Ery/µL = 5 C11

urinary ketones Negative = 1; Microscale = 2; 1.5 nmol/L = 3 C12

Speed 3/4 basketball court sprint time Original value input D1

(Continued on following page)
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transformation of panel data. The independent variables for each
player were standardized using the Z-score transformation.
Numerous studies have reported that the occurrence of sports
injuries in the real world tends to show a skewed distribution
(Rossi, 2017; Rossi et al., 2018), which may lead to machine
learning models not correctly classifying the minority class
samples (injury samples). In addition, some samples may harm
the model performance, which will make the classification boundary
between the majority and minority samples may be blurred.
Therefore, the synthetic minority over-sampling techniques and
edited nearest neighbor (SMOTEENN) algorithm were used to
sample training sets in each folding of cross-validation to reduce
the impact of class imbalance on model training (Manju and Nair,
2019).

2.3 Feature extraction

Multi-dimensional evaluation can provide players’ physical
fitness information to practitioners more comprehensively.
However, more independent variables mean more complex
models, making the model more prone to over-fitting under
limited data. Consequently, this study employed the linear
discriminant analysis (LDA) algorithm to diminish the
dimensional of the training set based on four distinct
dimensions: strength, speed, agility, and speed endurance.

2.4 Model construction

This study used a cost-sensitive neural network algorithm (Cost-
NN) to construct a prediction model for lower limb non-contact
injury risk. The network model consists of an input layer, a hidden
layer, a dropout layer, and an output layer. The adaptive moment
estimation (Adam) was used in this study to optimize the network
by minimizing the binary cross entropy of the independent and
dependent variables. Meanwhile, the validation set was also used for
parameter adjustment, and training was stopped early when the
precision of the validation set decreased for more than 30 iterations.
This study set the training parameter epoch to 100. To illustrate that
the Cost-NN used in this study can effectively identify patterns of
non-contact injury risk in the lower limbs of youth female basketball

players. This study constructed the dummy classifier (DC) as a
model performance baseline, randomly assigning a category to a
sample while respecting the category distribution. The model was
also compared to logistic regression (LR), random forest (RF),
extreme gradient boosting (XGBoost), balanced random forest
(BRF), and random undersampling Adaboost (RUSBoost)
algorithms used in research reports (López-Valenciano et al.,
2017; Ruddy et al., 2018; Bryan et al., 2020; Jauhiainen et al.,
2020; Rommers et al., 2020). The model was built and evaluated
using a 5-fold stratified cross-validation with 10 repeated iterations.
Metrics such as precision, recall, the area under the receiver
operating characteristic curve (AUC), and the F2-score were used
to evaluate the model’s discrimination. The Brier score was used to
evaluate the probabilistic calibration of the model. The decision
curve analysis was performed for the clinical applicability of the
model.

2.5 Model interpretation

Since the model in this study was constructed through cross-
validation, which means that multiple models were generated, the
Wald χ2 test was used to estimate the significance of the discriminant
coefficients. The Wald χ2 test was conducted using a two-sided
hypothesis test with the significance level set (α) at 0.05 and
considered p > 0.1 as insignificant, p < 0.1 as marginally
significant, and p < 0.05 as significant. In addition, the
independent variables in the LDA and the Cost-NN were
analyzed using the Shapley additive explanations (SHAP)
method, and the relative feature importance of each independent
variable was calculated (Nohara et al., 2019). The injury risk pattern
analysis was performed by calculating the mean relative importance
of the independent variables in LDA and Cost-NN. The abovemodel
construction, validation, and important analysis were performed in
the Python 3.6 programming environment.

3 Results

Through the missing value analysis, this study included 84 valid
data samples, of which 18 data samples occurred with lower limb
non-contact injuries in the next 6 weeks. The mean values and 95%

TABLE 1 (Continued) Assignment rules and independent variable encoding of physical performance, physiological, biochemical, and subjective perceived
response indicators for each physical fitness attribute.

Physical fitness attributes Indicator Assignment Encoding

RPE Original value input D2

urinary protein Negative = 1; Microscale = 2; 0.3 g/L = 3; 1 g/L = 4; 3 g/L = 5 D3

urobilinogen 3.2 mg/dL = 1; 16 mg/dL = 5; 33 mg/dL = 10 D4

urinary-PH Original value input D5

urinary specific gravity ≤1.025 = 1; ≥1.030 = 2 D6

urinary blood Negative = 1; Microscale = 2; Ca25 Ery/µL = 3; Ca80 Ery/µL = 4; Ca200 Ery/µL = 5 D7

urinary ketones Negative = 1; Microscale = 2; 1.5 nmol/L = 3 D8

Abbreviations: IHR, instantaneous heart rate; HRR, heart rate recovery; RPE, ratings of perceived exertion; BLA, blood lactate; CK: creatine kinase.
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TABLE 2 The discriminant coefficient and significance of the LDA function for each physical attribute.

Physical fitness attributes Indicator Encoding Coef SE Wald p

Agility 1-minute double under A1 1.792 0.720 6.195 0.013**

1-minute double under IHR (1min) A2 −0.853 0.656 1.691 0.194

1-minute double under HRR (1min) A3 −1.921 0.470 16.705 <0.001***

hexagon agility test A4 0.948 0.433 4.793 0.029**

hexagon agility test IHR (1min) A5 2.563 0.525 23.833 <0.001***

hexagon agility test HRR (1min) A6 1.902 0.704 7.299 0.007***

RPE A7 −1.807 0.399 20.510 <0.001***

urinary protein A8 2.439 0.559 19.037 <0.001***

urobilinogen A9 2.319 0.443 27.403 <0.001***

urinary-PH A10 0.654 0.414 2.495 0.114

urinary specific gravity A11 1.156 0.413 7.835 0.005***

urinary blood A12 5.306 0.728 53.122 <0.001***

urinary ketones A13 5.698 0.659 74.761 <0.001***

Speed Endurance 15 m × 13 shuttle run time B1 1.230 0.294 17.503 <0.001***

15 m × 13 shuttle run IHR B2 −0.506 0.304 2.770 0.096*

15 m × 13 shuttle run HRR (1min) B3 1.505 0.271 30.841 <0.001***

15 m × 13 shuttle run BLA (3min) B4 −1.407 0.340 17.125 <0.001***

RPE B5 −3.469 0.274 160.290 <0.001***

urinary protein B6 1.582 0.443 12.753 <0.001***

urobilinogen B7 0.010 0.384 0.001 0.978

urinary-PH B8 −0.964 0.394 5.986 0.014**

urinary specific gravity B9 −1.046 0.298 12.321 <0.001***

urinary blood B10 0.842 0.281 8.979 0.003***

urinary ketones B11 0.524 0.311 2.839 0.092*

Strength 30-second 35 kg squat C1 −1.440 0.260 30.675 <0.001***

30-second 20 kg bench press C2 −1.529 0.278 30.250 <0.001***

30-second sit up C3 0.692 0.233 8.821 0.003***

30-second back extensions C4 0.393 0.211 3.469 0.062**

CK change C5 3.681 0.288 163.360 <0.001***

RPE C6 −2.565 0.351 53.402 <0.001***

urinary protein C7 −2.521 0.272 85.903 <0.001***

urobilinogen C8 1.716 0.330 27.040 <0.001***

urinary-PH C9 −1.959 0.273 51.492 <0.001***

urinary specific gravity C10 −1.357 0.308 19.411 <0.001***

urinary blood C11 1.459 0.206 50.162 <0.001***

urinary ketones C12 −0.301 0.272 1.225 0.270

Speed 3/4 basketball court sprint time D1 −3.940 0.257 235.032 <0.001***

RPE D2 −2.119 0.204 107.895 <0.001***

(Continued on following page)
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confidence intervals for each player were described in
Supplementary File S2.

Since each physical fitness attribute was assessed
comprehensively from four aspects: physical performance,
physiological, biochemical, and subjective perceived response,

LDA was used for dimensional reduction separately for each
physical fitness attribute. The feature variables of each physical
fitness attribute were obtained by extracting the discriminant
coefficients of the LDA function of each fold in the cross-
validation and calculating the average value of the discriminant
coefficients. The discriminant formula of variables is shown in
Table 2.

The mean and 95% confidence intervals of the precision, recall,
F2-score, AUC, and Brier score of the model were evaluated in this
study by 5-fold cross-validation with 10 replicates (Table 3). As
shown in Table 3, compared with the baseline and commonly used
models in research reports, the lower limb non-contact injury risk
prediction model constructed based on Cost-NN has better
discrimination and probabilistic calibration, which indicates that
the model was effective in identifying potential risk patterns for
lower limb non-contact injury in the next 6 weeks.

The model’s applicability in training practice was assessed using
decision curve analysis, and the net benefit was corrected using
cross-validation. As shown in Figure 1, it was evident that the
prediction model of lower limb non-contact injury constructed
by the Cost-NN algorithm has a higher area under the net
benefit curve, which indicates that applying the risk prediction
model of lower limb non-contact injury based on the Cost-NN
algorithm to training practice will help to reduce the incidence of
lower limb non-contact injury.

TABLE 2 (Continued) The discriminant coefficient and significance of the LDA function for each physical attribute.

Physical fitness attributes Indicator Encoding Coef SE Wald p

urinary protein D3 −2.459 0.229 115.304 <0.001***

urobilinogen D4 0.461 0.261 3.120 0.077*

urinary-PH D5 −0.654 0.129 25.703 <0.001***

urinary specific gravity D6 −0.800 0.160 25.000 <0.001***

urinary blood D7 2.537 0.260 95.213 <0.001***

urinary ketones D8 −2.292 0.205 125.003 <0.001***

*p < 0.1, **p < 0.05, ***p < 0.01.

Abbreviations: IHR, instantaneous heart rate; HRR, heart rate recovery; RPE, ratings of perceived exertion; BLA, blood lactate; CK, creatine kinase.

TABLE 3 Evaluation results of the model’s discrimination and calibration performance metrics.

Model Precision Recall F2-score AUC Brier-score

Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

DC 0.1930 0.1365–0.2500 0.1880 0.1303–0.2460 0.1800 0.1258–0.2340 0.4840 0.4536–0.5130 0.3110 0.2824–0.3390

LR 0.4280 0.3905–0.4650 0.7720 0.7175–0.8260 0.6530 0.6108–0.6960 0.7350 0.7023–0.7670 0.2090 0.1913–0.2270

RF 0.5270 0.4376–0.6160 0.4230 0.3470–0.5000 0.4270 0.3542–0.4990 0.6630 0.6239–0.7010 0.1340 0.1224–0.1460

BRF 0.4560 0.4076–0.5040 0.8000 0.7468–0.8530 0.6780 0.6337–0.7230 0.7530 0.7204–0.7860 0.1800 0.1634–0.1960

XGBoost 0.4370 0.3921–0.4810 0.7170 0.6512–0.7820 0.6220 0.5698–0.6740 0.7250 0.6894–0.7610 0.2310 0.2070–0.2540

RUSBoost 0.5000 0.4103–0.5910 0.4080 0.3394–0.4770 0.4060 0.3404–0.4720 0.6310 0.5912–0.6700 0.1640 0.1490–0.1790

Cost-NN 0.6360 0.5875–0.6850 0.8700 0.8148–0.9250 0.7980 0.7499–0.8460 0.8590 0.8269–0.8900 0.1020 0.0863–0.1170

Abbreviations: DC, dummy classifier; LR, logistic regression; RF, random forest; BRF, balanced random forest; XGBoost, extreme gradient boosting; RUSBoost, random undersampling

adaboost; Cost-NN, cost-sensitive neural network.

FIGURE 1
Decision curve analysis.
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This study performed feature attribution analysis on the
model to clarify each independent variable’s contribution to
the model’s decision outcome. The hierarchical clustering
analysis of feature importance in the linear discriminant
analysis was performed using the SHAP. The results showed
that urinary ketones (A13), urinary blood (A12), and the number
of double under in 1 minute (A1) in the agility attribute test had
greater importance (Figure 2A). In the assessment of speed
endurance attribute (Figure 2B), 1-minute HRR (B3) after
15 m × 13 shuttle run, 15 m × 13 shuttle run performance
(B1), IRR after 15 m × 13 shuttle run (B2), and urinary
protein (B6) had more significant importance. In the strength

attribute test (Figure 2C), indicators such as the rate of creatine
kinase change (C5) and urinary specific gravity (C10) had greater
importance. The 3/4 basketball court sprint performance (D1),
urinary protein (D3), and RPE (D2) in the speed attribute test
had greater importance (Figure 2D).

Through the feature importance analysis of the injury risk
prediction model based on Cost-NN, this study found that the
agility attribute has the most significant feature importance, followed
by the speed, strength, and speed endurance attributes (Figure 3). These
results indicate that the agility attribute is an important feature affecting
the model to predict the non-contact lower limb injury risk of youth
female basketball players in Fujian Province.

FIGURE 2
Feature importance of linear discriminant analysis: (A) agility attribute; (B) speed endurance attribute; (C) strength attribute; (D) speed attribute.

FIGURE 3
Feature importance of the injury risk prediction model based on cost-sensitive neural network.
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4 Discussion

This study preliminary investigated the lower limb non-contact
injury risk patterns of female youth basketball players in Fujian
Province by retrospectively analyzing their sport-specific physical
fitness monitoring database and injury registration database. The
findings can provide theoretical references and analytical
approaches for future research on injury risk patterns and
developing non-contact injury prevention tools for lower limbs.
There were two main findings from the study. Firstly, based on
sport-specific physical fitness test data, the machine learning
algorithm was used to develop the prediction model for lower
limb non-contact injury risk. This model exhibited superior
discrimination and calibration in identifying lower limb non-
contact injury risk compared to the models typically utilized in
research reports. Secondly, the model proposed in this study can
provide practitioners with information on injury risk patterns. The
feature attribution analysis identified the changes in agility and
speed as important physical attributes influencing the lower limb
non-contact injury risk of youth female basketball players in Fujian
Province.

4.1 Lower limb non-contact injury risk
prediction based on sport-specific physical
fitness

Physical fitness monitoring is essential to a player’s training
routine (McGuigan, 2017). Identifying players’ risk of sports injuries
from physical fitness has become a topical issue in sports science
research. However, the relationship between physical fitness and
sports injuries is unclear due to heterogeneity between studies.
Ruddy et al. (2019) point out that the misuse of statistical
strategies is one reason for this problem. Ruddy et al. (2019)
emphasized that regression has been widely used in sports
science research due to its simplicity, reliability, and
interpretability. However, regression has many assumptions (e.g.,
linearity and additivity), which has led to limitations in applying
regression to injury risk prediction problems. Bittencourt et al.
(2016) pointed out that, from the perspective of physics, the
human body is an open system, which means that the occurrence
of sports injury must result from the interaction and continuous
development between the human body and the environment.
Furthermore, the relationship between risk factors and injury
outcomes is not always linear due to environmental influences,
and there can be linear or non-linear interactions between injury risk
factors. Thus, it is evident that regression is not the best approach to
use for investigating injury risk prediction problems. To address this
issue, some researchers have used machine learning algorithms to
construct injury risk prediction models based on physical fitness
tests and have achieved some valuable findings (López-Valenciano
et al., 2017; Ruddy et al., 2018; Bryan et al., 2020; Jauhiainen et al.,
2020; Rommers et al., 2020).

Therefore, based on sport-specific physical fitness, this study
used machine learning to develop a model for predicting the risk of
lower limb non-contact injuries in young female basketball players.
Through comparative analysis, the model proposed in this study
achieved a precision of approximately 63.6% in predicting the risk of

lower limb non-contact injury, while the misdiagnosis rate was only
13%, which was significantly better than the baseline and models
commonly reported in the literature such as logistic regression,
balanced random forest, and XGBoost (López-Valenciano et al.,
2017; Ruddy et al., 2018; Bryan et al., 2020; Jauhiainen et al., 2020;
Rommers et al., 2020). It is important to note that this study used the
occurrence of a lower-limb non-contact injury within the next
6 weeks as a dependent variable, which means that the injury
outcome is precise. However, in the real world, the injury does
not necessarily occur in the population at risk of injury. Meanwhile,
different injury risk patterns may lead to similar injury outcomes
(Huang et al., 2022). Therefore, it is suggested that the predictive
performance of the model proposed in this study is acceptable. In
addition, this study has further investigated the benefits of the model
in practice by using the decision curve analysis. It can be observed
that the lower limb non-contact injury risk prediction model
proposed in this study has the largest area under the net benefit
curve, which implies that the model can benefit players who have
lower limb non-contact injury risk. These results indicate that the
prediction model proposed in this study is a more effective and
practical tool for lower limb non-contact injury risk assessment,
which can provide coaches with the likelihood of an athlete’s lower
limb non-contact injury in the following training period based on
the stage physical fitness change patterns of athletes. Applying the
model in training practice will help coaches pay attention to athletes’
physical fitness shortcomings and improve the periodized fitness
training program on time, which is very important to reduce the
sports injury rate.

4.2 Association between sport-specific
physical fitness and lower limb non-contact
injury risk

Which sport-specific physical fitness attributes were more
strongly associated with lower limb non-contact injury risk
patterns? This study investigated the relationship between specific
physical fitness attributes and injury risk using feature attribution
analysis of the model. It was found that agility and speed were
important physical fitness attributes influencing the lower limb non-
contact injury risk of young female basketball players in Fujian
Province. The findings were similar to those found in male rugby
players and teenage male football players (Quarrie et al., 2001;
Caswell et al., 2016). Then, what were the patterns between
agility attributes, speed attributes, and lower limb non-contact
injury risk? This study found some patterns of change after
analyzing the discriminant function of the LDA.

In the assessment of agility attribute, this study found that the
likelihood of lower limb non-contact injury was significantly
increased when players performed poorly on the hexagon agility
test (more time to complete the hexagon agility test, higher IHR, and
higher HRR) and had increased urinary protein, urobilinogen,
urinary specific gravity, urinary blood, and urinary ketones after
the agility attribute test. Among these, increased urinary blood and
urinary ketones were important features that influenced the risk of
lower limb non-contact injury. To our knowledge, this phenomenon
can be explained from two perspectives. Firstly, from the perspective
of energy metabolism in sports physiology, it reflects excessive

Frontiers in Physiology frontiersin.org09

Huang et al. 10.3389/fphys.2023.1182755

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1182755


intensity. According to the practical experience of training, after
excluding female athletes who were menstruating, urinary protein
and urinary blood indicators, which are positive after exercise, imply
that the exercise intensity is excessive (especially for glycolytic
energy-driven sports intensity). This finding may indicate that
players have not yet adapted to the intensity of glycolytic energy-
driven exercise, which makes them not yet develop the ability to
change direction in line with competitive demands (Latzel et al.,
2017). Secondly, from the sports biomechanics perspective, it could
be that the player’s movements during the test were unreasonable,
resulting in their movements being less efficient and increasing the
energy metabolism losses. According to Cook et al. (2014),
movement patterns that are poor not only lead to a decreased
efficiency of the player’s movement but also increase the player’s
injury risk during movement (Cook et al., 2014). Furthermore, there
was an interesting finding in our study that the lower limb non-
contact injury risk was increased when players performed well on
their 1-min double under (Increase in the number of 1-min double
under, decrease in IHR and HRR), which appears to be paradoxical.
We speculate that this phenomenon could be linked to the
inadequate maturation of the skeletal musculature in adolescent
athletes. Although youth players’ physical performance and
physiological adaptations have enhanced quickly after training,
the delayed development of the skeletal-muscular system results
in them having to carry additional mechanical loads.

In the assessment of speed attribute, this study noticed that
players would have a significantly increased risk of lower limb non-
contact injury when their 3/4 full-court sprint performance
improved, similar to the findings by Bennett et al. (2022) in the
Australian football program. Bennett et al. (2022) suggest that, on
the one hand, players with a superior speed attribute may experience
more acceleration and deceleration forces, which can increase stress
on the skeletal-muscular system. On the other hand, players with a
superior speed attribute may be involved in more training and
competition, causing them to experience fatigue, which may impact
the player’s athletic performance, increase recovery time and
increase the likelihood of player injury (Chalmers et al., 2013;
Ramos et al., 2019). However, the study by Bennett et al. could
not provide physiological and biochemical response data after speed
testing for evidence. Our findings revealed that there is a higher
probability of lower limb non-contact injuries among players who
experience a significant decrease in RPE, urinary protein, urinary
specific gravity, and urinary ketone levels after the speed test, along
with significant increases in urobilinogen and urinary blood levels.
Among these, the decrease in RPE and urinary protein after speed
attribute assessment were important features that influenced the risk
of lower limb non-contact injury. This phenomenon is similar to the
agility attribute results, meaning the physical function may not be
well adapted to the increased mechanical loads associated with
enhanced physical performance. These findings may provide
physiological evidence to support the views of Bennett et al.
(2022) and Chalmers et al. (2013) that players with a superior
speed attribute may experience more acceleration and deceleration
forces, leading to exhaustion due to increased loading on the
musculoskeletal system, thereby increasing the likelihood of injury.

Although the link between sport-specific physical fitness and
injury risk is controversial, our research suggests that there is an
association between sport-specific physical fitness and injury risk

that is not simply linear but a complex non-linear relationship,
which may be modified by biological maturity. Some studies would
support this speculation (Ramos et al., 2019). For example,
Wilczyński et al. (2022) found a strong positive association
between biological maturity, vertical jump, and distance long
jump. A moderately positive association with dynamic balance
and maturity offset in 72 healthy, youth male elite football
players. In addition, le Gall et al. (2006) analyzed the relationship
between biological maturity and injury incidence, severity, and
distribution in 233 players. They found that injury incidence,
severity, and distribution significantly differed between biological
maturity subgroups. The results were similar to the findings by
Monaco et al. (2018) on 164 football players. Steidl-Müller et al.
(2020) found that changes in biological maturity and jump agility
tests were important injury risk factors in 89 elite junior skiers.
However, this study did not measure the biological maturity of
youth female basketball players in Fujian Province to estimate its
effect. Further research will be conducted to investigate the
relationship between sport-specific physical fitness and injury risk
in combination with biological maturity.

4.3 Limitations and perspectives

Despite these promising results, there are still limitations in this
study. Firstly, the study sample size was limited. As this study aimed
to investigate whether individual physical fitness change patterns
impact the risk of lower limb non-contact injuries, only players
affiliated with the same basketball team were analyzed in this study
to avoid the effect of confounding factors such as age, gender, and
training style. It is important to note that this team was affiliated
with the Fujian Province Basketball and Volleyball Sports
Management Centre, which means that the players were elite
athletes in Fujian Province and can reflect the population
characteristics of female youth basketball players in the region.
However, the limited amount of data used in this study
somewhat impacts the extrapolation value of the findings.
Therefore, a multi-center prospective cohort study will be
conducted to improve the extrapolation value of the findings in
the future. Secondly, the measured indicators used in the study were
limited. According to our understanding, the dataset used in this
study was initially designed to evaluate sport-specific physical fitness
developing trends in female youth basketball players rather than
being applied to injury risk prediction and risk pattern research.
Accordingly, the physical fitness testing protocols were mainly
derived from field testing rather than laboratory conditions,
which may impact the findings to some extent. It will be further
investigated with laboratory tests (e.g., metabolomic and isometric
muscle testing systems). Thirdly, the granularity of data for injury
outcome variables remains large. Since different patterns of injury
risk may lead to similar injury outcomes, there may be some
limitations in using only binary variables as outcome variables.
According to available research, parameters such as injury severity,
the type of injury, and the actual time of injury occurrence can
influence the injury risk pattern. Further studies, which take these
variables into account, will need to be undertaken. In addition, it is
worth noting that the problem of injury prediction is not the
problem of simply classifying events as injury or non-injury, but
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rather a process of developing from non-injury to injury outcomes,
so we suggest that the introduction of fuzzy mathematics will be able
to promote the research in this area. Finally, the model proposed in
this study still needs to be externally validated. As this study is a
retrospective study based on historical data, there is still a lack of
sufficient data to validate the external validity of the model. The data
will be further collected, and the external validity of the model will be
investigated.

5 Conclusion

This study preliminary investigated the relationship between
sport-specific physical fitness change patterns and lower limb
non-contact injury risk of female youth basketball players in
Fujian Province using machine learning algorithms and field-
based physical fitness tests, and proposed a lower limb non-
contact injury risk prediction model. The model proposed in this
study could effectively identify the lower limb non-contact injury
risk of female youth basketball players in Fujian Province.
Meanwhile, through model analysis, this study has identified
change patterns in agility and speed attributes that impact the
lower limb non-contact injury risk among youth female
basketball players in Fujian Province, which were reflected not
only in physical performance but also in physiological,
biochemical, and subjective perceptual responses. These
findings suggest that the player’s physical fitness change
pattern can impact the lower limb non-contact injury risk.
Although there are still many variables not taken into account,
the findings and the data-driven model proposed in this study
will provide valuable insights for fitness training program
planning, fatigue management, and injury prevention in
training practice.
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