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Introduction:Carboxylesterases (CXEs) and glutathione S-transferases (GSTs) can
terminate olfactory signals during chemosensation by rapid degradation of
odorants in the vicinity of receptors. The tea grey geometrid, Ectropis
grisescens (Lepidoptera, Geometridae), one of the most devastating insect
herbivores of tea plants in China, relies heavily on plant volatiles to locate the
host plants as well as the oviposition sites. However, CXEs and GSTs involved in
signal termination and odorant clearance in E. grisescens remains unknown.

Methods: In this study, identification and spatial expression profiles of CXEs and
GSTs in this major tea pest were investigated by transcriptomics and qRT-PCR,
respectively.

Results: As a result, we identified 28 CXEs and 16 GSTs from female and male
antennal transcriptomes. Phylogenetic analyses clustered these candidates into
several clades, among which antennal CXEs, mitochondrial and cytosolic CXEs,
and delta group GSTs contained genes commonly associated with odorants
degradation. Spatial expression profiles showed that most CXEs (26) were
expressed in antennae. In comparison, putative GSTs exhibited a diverse
expression pattern across different tissues, with one GST expressed specifically
in the male antennae.

Disscussion: These combined results suggest that 12 CXEs (EgriCXE1, 2, 4, 6, 8, 18,
20-22, 24, 26, and 29) and 5 GSTs (EgriGST1 and EgriGST delta group) provide a
major source of candidate genes for odorants degradation in E. grisescens.
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1 Introduction

Insects have a highly specific and sensitive chemosensory
system, which is extremely critical for sensing various chemical
signals and regulating a series of behaviors (Elgar et al., 2018;
Fleischer et al., 2018; Kang et al., 2021). Olfactory perception
involves various proteins, including odorant binding proteins
(OBPs), chemosensory proteins (CSPs), odorant receptors (ORs),
gustatory receptors (GRs), ionotropic receptors (IRs), sensory
neuron membrane proteins (SNMPs), and odorant degrading
enzymes (ODEs) (Fleischer et al., 2018; Sun et al., 2020; Liu
et al., 2021). Briefly, odorant molecules are bound and
transported by OBPs onto ORs, and then ORs are activated,
leading to signal transduction. Soon after, odor molecules are
rapidly degraded by various ODEs to terminate the stimulation,
ensuring that insect olfactory sensing systems keep stability and
sensitivity for odor identity (Leal, 2013; Suh et al., 2014; Li et al.,
2018; He et al., 2019).

ODEs, as multiple enzyme families expressed in the sensillar
lymph, include carboxylesterases (CXEs) (Liu et al., 2019; Yi et al.,
2021), glutathione S-transferases (GSTs) (Liu et al., 2021; Xia et al.,
2022), cytochrome P450 monooxygenases (P450s) (Baldwin et al.,
2021; Blomquist et al., 2021), UDP-glucuronosyltransferases
(UGTs) (Zhang et al., 2017a), alcohol dehydrogenases (ADs)
(Huang et al., 2016), and aldehyde oxidases (AOXs) (Zhang
et al., 2017b; Wang et al., 2017). The first identified ODE,
ApolPDE, a kind of CXE, could effectively degrade sex
pheromone E6Z11-160Ac in Antheraea polyphemus (Vogt and
Riddiford, 1981). Antennal-specific GSTs could quickly remove
or degrade the odorants from ORs to maintain chemoreceptor
sensitivity (Younus et al., 2014; Durand et al., 2018). The
antennal-enriched P450s could degrade plant volatiles,
insecticides, and pheromones (Cano-Ramirez et al., 2013; Keeling
et al., 2013). Antennal ADs have roles in olfaction, which further
necessitated investigating its odorant degradation function (Huang
et al., 2016). In vitro functional studies clarified the odorant
inactivation role of antennal AOXs, such as degrading sex
pheromones and plant volatile aldehydes in Amyelois transitella
(Choo et al., 2013).

Of these ODEs, CXEs and GSTs are the most well-studied and
involved in degrading pheromone/odorant degradation and harmful
volatile xenobiotics to maintain the sensitivity of the olfactory
receptor neurons (ORNs). So far, many insect CXEs and GSTs
have been identified, including Chilo suppressalis (Liu et al., 2015a),
Drosophila melanogaster (Chertemps et al., 2015), Ectropis obliqua
(Sun et al., 2017), Spodoptera littoralis (Durand et al., 2018),
Spodoptera exigua (He et al., 2019), Plodia interpunctella (Liu
et al., 2019; Liu et al., 2021), Holotrichia parallela (Yi et al.,
2021), and Sitophilus zeamais (Xia et al., 2022), and their
functions in insect olfactory perception have been characterized.

CXEs as multifunctional enzymes widely exist in insects,
microbes, and plants (Guo and Wong, 2020). In insects, most
CXEs are involved in detoxification of exogenous chemicals and
are responsible for insecticide resistance and metabolic resistance
(Mao et al., 2021). CXEs commonly share conserved active residues,
such as the pentapeptide “G-X-S-X-G” (X represents any amino
acid), oxyanion hole, glutamate (E), and histidine (H) residues
(Godoy et al., 2021). Insect antennal CXEs are characterized as

ODEs because they occur in the sensilla and can inactivate odor.
They could be divided into ten major clades: mitochondrial and
cytosolic esterases, dipteran microsomal α-esterases, cuticular and
antennal esterases, β-esterases and pheromone esterases,
Lepidopteran juvenile hormone esterases (JHEs), non-
Lepidopteran JHEs, moth antennal esterases, neuroligins,
neuroreceptors, and gliotactins (Durand et al., 2010a; Oakeshott
et al., 2015). To date, many insect antennae CXEs have been
identified and functionally characterized for their involvement in
the degradation of pheromones or/and plant volatiles. For example,
in the genus Spodoptera, two CXEs from S. littoralis (SlCXE7 and
10) (Durand et al., 2010b; Durand et al., 2011) and three from S.
exigua (SexiCXE4, 10, and 14) (He et al., 2014a; He et al., 2014b; He
et al., 2015) were functionally characterized and degraded both sex
pheromones and plant volatiles. A similar phenomenon was also
observed in D. melanogaster (EST6) (Chertemps et al., 2012;
Chertemps et al., 2015) and Plutella xylostella (PxylCCE16c)
(Wang et al., 2021). Additionally, a previous study indicated that
CXEs modulated insect mating and foraging behaviors through
inactivation of sex pheromones and host volatiles, which made
them a novel target for pest behavioral inhibition. For example,
the knockdown of GmolCXE1 and 5 had an impact on the mating
behaviors of male moths of Grapholita molesta (Wei et al., 2020).
Another CXE gene jhedup (duplication of the Juvenile hormone
esterase gene) regulated the electrophysiological response and food-
seeking ability by hydrolyzing various ester odorants of jhedup
mutant D. melanogaster (Steiner et al., 2017).

Similar to CXEs, GSTs also are a diverse family of
multifunctional enzymes with conserved amino-terminal domain
and carboxyl-terminal domain, which have conserved GSH-binding
site (G-site) and hydrophobic substrate (H-site), respectively
(Ketterman et al., 2011; Durand et al., 2018). Insect GSTs are
divided into six subclasses: delta, epsilon, omega, sigma, theta,
and zeta, with some GSTs remaining unclassified, of which the
delta- and epsilon-class GSTs are insect-specific (Shi et al., 2012;
Labade et al., 2018). Insect GSTs are implicated in the detoxification
of xenobiotic compounds (Huang et al., 2011). However, GST
expression and their activities demonstrated that they cause
signal termination within the olfactory organs (Durand et al.,
2018; Tang et al., 2019). For example, in G. molesta, the
biochemical characterization of GmolGSTD1 had confirmed its
high degradation preference for pheromone component (Z)-8-
dodecenyl alcohol and the host plant volatile butyl hexanoate,
which showed that it could inactivate odorant molecules and
maintain sensitivity to olfactory communication of G. molesta (Li
et al., 2018). The antenna-highly expressed CpomGSTd2 in the
codling moth, Cydia pomonella, interfered with odorant detection
by depredating the odorant (Huang et al., 2017). The antenna-
specific SzeaGSTd1 in S. zeamais also played a crucial role in host
location by degrading the host volatile, capryl alcohol (Xia et al.,
2022).

Ectropis grisescens (Lepidoptera, Geometridae), one of the most
destructive pests in tea plantations, causing serious economic losses,
is more widely distributed in major tea plantations in China than its
counterparts (E. obliqua Prout) (Zhang et al., 2014; Zhang et al.,
2016; Li et al., 2019). At present, control of this pest mainly depends
on chemical insecticides, leading to environmental pollution and
pest resistance (Pan et al., 2021). Moreover, pesticide residues affect
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the safety of drinking tea (Cao et al., 2018), so using insecticides is
forbidden on organic tea plantations (Ma et al., 2016). Therefore,
development of novel, effective, and environmentally friendly
strategies to control this pest is urgently needed. ODEs thus play
an important role in the termination of odorant signals and allow
restoration of sensitivity of the olfactory system (Li et al., 2018; He
et al., 2019). E. grisescensmainly depends on plant volatiles to search
for host plants and locate oviposition sites. Thus, analyses of its
mechanism of signal termination and odorant clearance in these
important behaviors are necessary. Previous studies considered
antennae CXEs or GSTs as potential molecular targets for
developing novel pest management strategies based on the
manipulation of chemoreception-driven behaviors (Wei et al.,
2020; Xia et al., 2022). However, there is no relative report about
CXEs or GSTs in E. grisescens yet.

In the present study, we sequenced and analyzed the antennal
transcriptome of E. grisescens using Illumina sequencing. Then, CXE
and GST gene families and subfamilies were identified and cloned;
sequence architecture and phylogenetic analysis were carried out;
and finally, quantitative real-time PCR (qRT-PCR) was used to
profile their expression patterns in various tissues from both sexes.
In addition, the potential roles of the identified CXEs and GSTs in
signal termination of olfaction or other physiological processes were
discussed. Our study on antennae-specific CXEs and GSTs is
particularly important for understanding the molecular
mechanism underlying odorant inactivation and subsequent
development of ODE-based pest control strategies in E. grisescens.

2 Materials and methods

2.1 Insect rearing and sample collection

Ectropis grisescens larvae were collected from Mount Zhenlei
(32°37′N, 114°42′E), Xinyang, Henan, China, and cultivated on fresh
tea leaves in the laboratory under the constant conditions of 24°C ±
1°C, 65% relative humidity, and a 16:8 h L: D photoperiod. Emerged
adults were fed with 10% honey solution. Antenna, head (without
antennae), thorax, abdomen, wing, and leg tissues from 2-day-old
unmated male and female insects were dissected, frozen in liquid
nitrogen immediately, and stored at −80°C in a refrigerator.

2.2 RNA extraction, cDNA library
construction, and sequencing

Total RNA was extracted from male and female antennae (n =
50, three replicates, respectively) using TRIzol reagent (Life
Technologies, Carlsbad, CA, United States). The concentration of
RNA samples was determined using a NanoDrop ND-1000
spectrophotometer (Thermo Scientific, Wilmington, DE,
United States). RNA integrity was assessed using the RNA Nano
6000 Assay Kit of the Bioanalyzer 2100 system (Agilent
Technologies, CA, United States). The cDNA libraries were
constructed from RNA samples for Illumina sequencing
following the Illumina protocol. Sequencing was carried out on
the Illumina Novaseq platform (Novogene Co., Ltd., Beijing), and
150-bp paired-end reads were generated.

2.3 Sequence assembly and functional
annotation

Raw data (raw reads) of FASTQ format were first modified into
clean data (clean reads) through in-house Perl scripts, and clean data
(clean reads) were obtained by removing reads containing adapter,
reads containing ploy-N, and low-quality reads from raw data. At
the same time, Q20, Q30, and GC content of the clean data was
calculated. All the downstream analyses were based on the clean data
with high quality.

Transcriptome assembly was performed using Trinity with
min_kmer_cov set to 2 (Grabherr et al., 2011) by default and all
other parameters set to default. Unigene functions were annotated
based on NCBI NR, NT, KO, Swiss-Prot, Pfam, GO, and KEGG
using Blastx and Blastn searches (E-value < 10−5), retrieving proteins
with the highest sequence similarity for each transcript and their
protein functional annotations. KEGG Automatic Annotation
Server (KASS) was used to search KEGG with E-value = 10−10

(Götz et al., 2008), and Blast2GO v2.5 was used for GO
annotation with E-value = 10−6 (Moriya et al., 2007).

Coding sequences (CDSs) were predicted through aligning
transcriptome sequences to the NR and Swiss-Prot databases or
using ESTScan 3.0.3 (Iseli et al., 1999). The read count for each gene
was obtained by mapping clean reads to the assembled
transcriptome using RSEM (Bowtie2 parameters: mismatch 0).
The read count was calculated as Fragments Per Kilobase of
transcript per Million mapped reads (FPKM) (Mortazavi et al.,
2008).

2.4 Identification and bioinformatics
analyses of candidate CXEs and GSTs

Candidate EgriCXEs and EgriGSTs were identified from the
transcriptome data. Furthermore, all candidate EgriCXEs and
EgriGSTs were manually checked by the BLASTx program at the
NCBI. The complete coding regions were predicted by ORF finder
(https://www.ncbi.nlm.nih.gov/orffinder/). Putative signal peptides
were predicted with SignalP 5.0 (http://www.cbs.dtu.dk/services/
SignalP). The isoelectric point (pI) and molecular weight (Mw)
were computed by the ExPASy tool (https://web.expasy.org/
compute_pi/). Multiple sequence alignment of the EgriCXE
protein was performed using the Clustal program in the Jalview
(v2.11.20) software with default parameters (Waterhouse et al.,
2009). Phylogenetic trees were constructed in MEGA 11.
0 software using the neighbor-joining method with 1000-fold
bootstrap resampling (Kumar et al., 2018). The phylogenetic tree
image was created by EvolView online software (https://www.
evolgenius.info/).

2.5 Tissue expression analysis by qRT-PCR

Total RNA was extracted separately from antennae (n = 50),
heads (without antennae; n = 10), thoraxes (n = 5), abdomens (n =
5), wings (n = 5), and legs (n = 10) from both sexes using TRIzol
reagent (Life Technologies, Carlsbad, CA, United States). cDNA was
synthesized by using TransScript One-Step gDNA Removal and
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cDNA Synthesis SuperMix (Tiangen, Beijing, China) following the
manufacturer’s instructions. Primers specific for EgriCXEs and
EgriGSTs were designed using Primer Premier 5.0 software
(Premier Biosoft International, Palo Alto, CA, United States;
Supplementary Table S1) and synthesized by Sangon Biotech
(Shanghai, China).

The reaction volume of 20 µL was prepared using TB Green
Premix Ex Taq (Tli RNase H Plus) (TaKaRa, Beijing) by following
instructions from the manual. qRT-PCR was conducted using an
Applied Biosystems 7500 Fast Real-Time PCR System (Applied
Biosystems, Carlsbad, CA) under the following conditions: 95°C for
30 s, then 40 cycles of 95°C for 5 s and 60°C for 34 s, last 95°C for 15 s,
60°C for 1 min, 95°C for 15 s followed by the melting curve analysis.
Three biological replicates and three technical replications were
carried out. The housekeeping gene glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) was used as an internal control to
normalize the data.

2.6 Statistical analysis

The relative quantification was calculated by the comparative
2−ΔΔCT method (Livak and Schmittgen, 2001). The significance of

each candidate EgriCXEs and EgriGSTs among various tissues was
determined using a one-way analysis of variance (ANOVA). The
significances of EgriCXEs and EgriGSTs from different tissues
between female and male adult insects were assessed using a
two-sample t-test in SAS statistical software 9.2 (SAS Institute
Inc., Cary, NC, United States), with thresholds set at a p < 0.05.

3 Results

3.1 Transcriptome analysis and assembly

After filtering the low-quality and adapter reads, a total of
21,733,434 (97.27%), 23,300,358 (97.54%), 22,180,396 (96.87%),
22,713,765 (96.91%), 22,797,995 (98.15%), and 22,378,252
(97.27%) clean reads were generated from three replicates of
female and male antennal libraries of E. grisescens
(Supplementary Table S2). The total bases of sequence data were
approximately 6.52–6.99 Gb from male and female samples. The
average error rates of the sequences were 0.03%. The Q20 and
Q30 values for each library exceeded 97% and 92%, respectively,
with a GC content of 42.68%–45.79% (Supplementary Table S2).
After merging and clustering, the 124,287 transcripts and

FIGURE 1
Characterization and transcriptome analysis of RNA sequences from antennae of E. grisescens. (A) Length distributions of the transcriptome and
unigenes of E. grisescens. (B) Species distribution from the Blastx results of E. grisescens unigenes in the NR database. (C) GO classifications of E.
grisescens unigenes. (D) KEGG classifications of E. grisescens unigenes; a: cellular processes, b: environmental information processing, c: genetic
information processing, d: metabolism, e: organismal systems.
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TABLE 1 CXE identification and bioinformatics analysis of E. grisescens antennal transcriptomes.

Gene
name

GenBank
accession

ORF
(aa)

SP MW
(KDa)

pI BLASTX best hit

(Name/species) Accession
number

Identity
(%)

EgriCXE1 OQ296948 565 Yes 63.56 7.17 Putative antennal esterase CXE1 [Ectropis
obliqua]

ARM65372.1 98.05

EgriCXE2 OQ296949 518 Yes 59.51 6.14 Putative antennal esterase CXE2 [Ectropis
obliqua]

ARM65373.1 97.30

EgriCXE3 OQ296950 535 No 59.94 5.94 Putative antennal esterase CXE3 [Ectropis
obliqua]

ARM65374.1 99.07

EgriCXE4 OQ296951 516 Yes 57.92 8.30 Putative antennal esterase CXE4 [Ectropis
obliqua]

ARM65375.1 97.68

EgriCXE5 OQ296952 595 Yes 66.35 6.65 Putative antennal esterase CXE5 [Ectropis
obliqua]

ARM65376.1 98.15

EgriCXE6 OQ296953 558 Yes 60.95 5.36 Putative antennal esterase CXE6 [Ectropis
obliqua]

ARM65377.1 98.92

EgriCXE8 OQ296954 429 No 48.31 6.03 Putative antennal esterase CXE8 [Ectropis
obliqua]

ARM65379.1 57.24

EgriCXE9 OQ296955 558 No 64.01 7.54 Putative antennal esterase CXE9 [Ectropis
obliqua]

ARM65380.1 97.67

EgriCXE11 OQ296956 523 No 58.24 5.89 Putative antennal esterase CXE11 [Ectropis
obliqua]

ARM65382.1 96.75

EgriCXE13 OQ296957 560 Yes 62.12 6.32 Putative antennal esterase CXE13 [Ectropis
obliqua]

ARM65384.1 98.57

EgriCXE15 OQ296958 401 No 45.25 9.60 Putative antennal esterase CXE15 [Ectropis
obliqua]

ARM65386.1 98.58

EgriCXE17 OQ296959 495 No 56.05 5.81 Putative antennal esterase CXE17 [Ectropis
obliqua]

ARM65388.1 97.72

EgriCXE18 OQ296960 542 No 61.16 6.43 Putative antennal esterase CXE18 [Ectropis
obliqua]

ARM65389.1 99.08

EgriCXE19 OQ296961 609 Yes 69.13 5.30 Putative antennal esterase CXE19 [Ectropis
obliqua]

ARM65390.1 99.84

EgriCXE20 OQ296962 501 No 56.55 6.13 Putative antennal esterase CXE20 [Ectropis
obliqua]

ARM65391.1 97.92

EgriCXE21 OQ296963 564 Yes 62.68 5.37 Putative antennal esterase CXE21 [Ectropis
obliqua]

ARM65392.1 98.70

EgriCXE22 OQ296964 568 Yes 63.42 5.93 Putative antennal esterase CXE22 [Ectropis
obliqua]

ARM65393.1 97.71

EgriCXE24 OQ296965 567 No 63.76 8.70 Putative antennal esterase CXE24 [Ectropis
obliqua]

ARM65395.1 97.88

EgriCXE25 OQ296966 570 No 64.10 8.72 Putative antennal esterase CXE25, partial
[Ectropis obliqua]

ARM65396.1 97.71

EgriCXE26 OQ296967 523 No 59.26 6.02 Putative antennal esterase CXE26 [Ectropis
obliqua]

ARM65397.1 99.24

EgriCXE27 OQ296968 567 No 53.99 6.53 Putative antennal esterase CXE27 [Ectropis
obliqua]

ARM65398.1 95.83

EgriCXE29 OQ296969 569 Yes 63.78 5.83 Putative antennal esterase CXE29 [Ectropis
obliqua]

ARM65400.1 96.74

EgriCXE30 OQ296970 438 No 49.61 5.50 Putative antennal esterase CXE30 [Ectropis
obliqua]

ARM65401.1 98.59

EgriCXE32 OQ296971 620 No 65.60 6.42 Putative antennal esterase CXE32 [Ectropis
obliqua]

ARM65403.1 99.22

(Continued on following page)
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52,856 unigenes with a mean length of 1,518 and 1,233 bp, with
N50 length of 2,552 and 2,170 bp, were identified, respectively
(Supplementary Table S3). The length of transcriptomes and
unigenes ranged from 301 to 30,857 bp, with an average length
of 1,518 and 1,233 bp, respectively (Figure 1A, Supplementary
Table S3).

3.2 Functional annotation

A total of 15,500 (29.32%), 7,321 (13.85%), 11,512 (21.77%),
14,325 (27.10%), 14,323 (27.09%), and 6,119 (11.57%) had BLASTn
hits in the NT, KO, Swiss-Prot, PFAM, GO, and KOG databases,
respectively (Supplementary Table S4). BLASTx results showed
19,118 (36.16%) unigenes had the best hits in the non-redundant
protein (NR) database. Moreover, most of the annotated unigenes
closely matched to Lepidoptera insect sequences (16,780), including
Helicoverpa armigera (1,841), Spodoptera litura (1,681),
Trichoplusia ni (1,618), Heliothis virescens (1,591), C. suppressalis
(1,486), Ostrinia furnacalis (1,293), H. virescens (1,141), Amyelois
transitella (817), Bombyx mori (808), and Hyposmocoma
kahamanoa (665), as shown in Figure 1B.

Based on the GO annotations, 60,045 unigenes could be
annotated into three functional categories: biological processes
(50.37%), molecular function (26.98%), and cellular components
(22.65%) (Figure 1C). A total of 42 GO terms were identified based
on GO level 2, including the odorant recognition process, e.g.,
binding, catalytic activity, and transporter activity in the
molecular function ontology, and localization, signaling, and
response to stimulus in the biological process ontology. In the
KEGG annotation, 7,936 unigenes were divided into five
metabolic pathways: cellular processes, environmental
information processing, genetic information processing,
metabolism, and organismal systems. Most unigenes were
assigned to signal transduction (11.98%), signaling molecules and
interaction (1.51%), and environment adaptation (1.11%) involved
in recognizing olfaction in insects (Figure 1D).

3.3 Identification of CXEs in E. grisescens

A total of 28 candidate EgriCXEs were identified from the
antennal transcriptome of E. grisescens. The sequences were

named EgriCXE1–6, 8–9, 11, 13, 15, 17–22, 24–27, 29–30, 32–34,
and 36–37 according to their presumptive orthologs of E. obliqua
(Sun et al., 2017) and were deposited in the GenBank database under
accession numbers OQ296948 to OQ296975 (Table 1). All putative
EgriCXEs shared relatively high identities (>60.93%) with their
respective orthologs from other species, particularly its
counterpart E. obliqua. The amino acid identity between these
EgriCXEs ranged from 7.84% to 60.11% (Supplementary Table
S5). EgriCXE sequences encoded 401 to 620 amino acid residues
with molecular weight ranging from 45.25 to 69.63 kDa and the pI
from 5.12 to 9.60. Furthermore, 11 EgriCXEs (EgriCXE1–2, 4–6, 13,
19, 21–22, 29, and 33) were predicted to have putative N-terminal
signal peptides (Table 1). Multiple sequence alignment analyses
showed that a conserved pentapeptide Gly–X–Ser–X–Glymotif (“X”
represents any residue) and more variable oxyanion hole residues
(Gly–Gly–Ala), conserved serine (S) residues, and glutamate (E) and
histidine (H) residues of the catalytic triad were found
(Supplementary Table S6).

3.4 Identification of GSTs in E. grisescens

A total of 16 candidate EgriGSTs were identified and named
EgriGSTe1 to EgriGSTu1, and they were deposited in the GenBank
database under the accession numbers OQ296976 to OQ296991
(Table 2). EgriGSTs encoded 179 to 298 amino acid residues, with
molecular weight ranging from 20.06 to 33.67 kDa and the pI from
4.95 to 9.46. Blastx search of the best hits showed that all EgriGST
sequences shared relatively high sequence identities (53.14%–

100.00%) with their respective orthologs from other insects
(Table 2). The sequence identities of these EgriGSTs range from
5.50% to 86.76% (Supplementary Table S7). Multiple sequence
alignment analyses of the EgriGSTs showed that a conserved
G-site can be found in the N-terminal domain and a more
variable H-site can be observed with a low sequence identity in
the C-terminal domain (Supplementary Figure S1).

3.5 Phylogenetic analysis

The phylogenetic tree of EgriCXEs was constructed with
127 CXE sequences from six kinds of Lepidoptera insects: E.
obliqua, S. littoralis, P. interpunctella, S. exigua, S. litura, and

TABLE 1 (Continued) CXE identification and bioinformatics analysis of E. grisescens antennal transcriptomes.

Gene
name

GenBank
accession

ORF
(aa)

SP MW
(KDa)

pI BLASTX best hit

(Name/species) Accession
number

Identity
(%)

EgriCXE33 OQ296972 555 Yes 62.35 5.12 Putative antennal esterase CXE33 [Ectropis
obliqua]

ARM65404.1 99.02

EgriCXE34 OQ296973 563 No 63.95 5.38 Putative antennal esterase CXE34 [Ectropis
obliqua]

ARM65405.1 98.76

EgriCXE36 OQ296974 532 No 59.13 5.42 Esterase FE4 [Bombyx mori] XP_004932947.1 64.98

EgriCXE37 OQ296975 615 No 69.63 6.69 Carboxylesterase 1C [Helicoverpa armigera] XP_021188868.2 60.93
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Sesamia inferens (Figure 2). The results showed that EgriCXEs were
distributed in eight different clades: 1) EgriCXE1, 2, 4, 6, 8, 17–18,
and 20–22 were clustered with the moth antennal esterase group; 2)
EgriCXE13 and 33 were assigned into β-esterase and pheromone
esterase group; 3) EgriCXE5 and 4) EgriCXE32 were distributed into
cuticular and antennal esterases and neuroligins, respectively; 5) two
EgriCXEs (EgriCXE9 and 37) and 6) four EgriCXEs (EgriCXE 9, 11,
34, and 36) were assigned into neuroreceptor and microsomal α-
esterases, respectively; 7) EgriCXE3, 24–27, 29, and 30 were
clustered with mitochondrial and cytosolic esterases; 8)
EgriCXE15 was assigned into Lepidopteran juvenile hormone
esterases.

The phylogenetic tree of EgriGSTs was constructed with
159 GST sequences from eleven insect species: P. interpunctella,
P. xylostella, C. pomonella, B. mori, C. suppressalis, Acyrthosiphon
pisum, D. melanogaster, Anopheles gambiae, Tribolium castaneum,

G. molesta, and S. zeamais (Figure 3). The results showed that the
EgriGSTs were divided into six different GST groups: 1) five epsilon
EgriGSTs (EgriGSTe1–5); 2) four delta EgriGSTs (EgriGSTd1–4); 3)
four sigma EgriGSTs (EgriGSTs1–4); 4) a theta EgriGSTt1; 5) an
omega EgriGSTo1, and 6) an unclassified EgriGSTu1.

3.6 Expression profiles of EgriCXEs and
EgriGSTs

qRT-PCR results of EgriCXEs (Figure 4) in antennae, heads,
thoraxes, abdomens, legs, and wings of both sexes showed that
26 EgriCXEs (EgriCXE1–6, 8–9, 11, 13, 17–22, 24, 26–27, 29–30,
32–34, and 36–37) displayed significant antennal bias expression
pattern, except for EgriCXE15 and EgriCXE25. Of them,
EgriCXE1–2, 4, 8, 11, 13, 18, 20–22, 24, 26, 29, 32, 34, and 36–37

TABLE 2 GST identification and bioinformatics analysis of E. grisescens antennal transcriptomes.

Clade Gene
name

GenBank
accession

ORF
(aa)

MW
(KDa)

pI BLASX best hit

Name/species Accession
number

Identity
(%)

Epsilon EgriGSTe1 OQ296976 179 19.69 4.64 Glutathione S-transferase 1 isoform
X2 [Helicoverpa armigera]

XP_021180950.2 55.93

EgriGSTe2 OQ296977 229 26.22 8.74 Glutathione S-transferase 1-like [Galleria
mellonella]

XP_031763098.1 69.33

EgriGSTe3 OQ296978 179 20.06 5.57 Glutathione S-transferase 10 [Streltzoviella
insularis]

QLI62206.1 55.31

EgriGSTe4 OQ296979 218 25.11 5.83 Glutathione S-transferase 1-like [Bombyx
mandarina]

XP_028040596.1 53.14

EgriGSTe5 OQ296980 241 27.64 6.52 Glutathione S-transferase epsilon class
[Spodoptera littoralis]

AYM01167.1 66.18

Delta EgriGSTd1 OQ296981 215 24.16 4.95 Glutathione S-transferase 1-1-like
[Pectinophora gossypiella]

XP_049871107.1 65.28

EgriGSTd2 OQ296982 216 24.23 6.17 Glutathione S-transferase 1-like [Bombyx
mandarina]

XP_028025239.1 79.17

EgriGSTd3 OQ296983 298 33.67 9.46 Glutathione S-transferase delta 3 [Ostrinia
furnacalis]

QIC35739.1 64.13

EgriGSTd4 OQ296984 216 24.25 6.44 Glutathione S-transferase 1 [Manduca
sexta]

XP_030035460.2 83.80

Sigma EgriGSTs1 OQ296985 204 24.06 5.50 Glutathione S-transferas-like
[Pectinophora gossypiella]

XP_049871113.1 60.20

EgriGSTs2 OQ296986 219 25.14 6.34 Glutathione S-transferase 2-like
[Manduca sexta]

XP_030022570.1 67.96

EgriGSTs3 OQ296987 218 25.97 7.72 Glutathione S-transferase Mu 1 isoform
2 [Mus musculus]

NP_034488.1 100.00

EgriGSTs4 OQ296988 204 23.96 5.71 Glutathione S-transferase sigma
3 [Operophtera brumata]

KOB62848.1 63.18

Theta EgriGSTt1 OQ296989 228 26.41 7.76 Glutathione S-transferase theta 1 [Bombyx
mori]

NP_001108463.1 71.62

Omega EgriGSTo1 OQ296990 104 12.09 5.07 Glutathione S-transferase omega
1 [Heortia vitessoides]

AWX68890.1 90.48

Unclassified EgriGSTu1 OQ296991 231 26.30 5.73 Unclassified glutathione S-transferase
[Chilo suppressalis]

AKS40352.1 78.26
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were significantly highly expressed in female antennae compared to
the male antennae (tEgriCXE1 = 17.21, p < 0.0001; tEgriCXE2 = 38.90, p <
0.0001; tEgriCXE4 = 12.52, p = 0.0002; tEgriCXE8 = 7.20, p = 0.0020;
tEgriCXE11 = 9.48, p = 0.0007; tEgriCXE13 = 12.77, p = 0.0002; tEgriCXE18 =
4.67, p = 0.0095; tEgriCXE20 = 3.71, p = 0.0207; tEgriCXE21 = 5.06, p =
0.0072; tEgriCXE22 = 3.28, p = 0.0304; tEgriCXE24 = 5.66, p = 0.0048;
tEgriCXE26 = 4.67, p = 0.0095; tEgriCXE29 = 19.63, p < 0.0001; tEgriCXE32 =
10.92, p = 0.0004; tEgriCXE34 = 8.03, p = 0.0013; tEgriCXE36 = 7.10, p =
0.0021; and tEgriCXE37 = 8.49, p = 0.0011). Only EgriCXE6were highly
expressed in male antennae, showing male-specific expression
(tEgriCXE6 = −8.02, p = 0.0013). Other EgriCXEs (EgriCXE3, 5, 9,
17, 19, 27, 30, and 33) showed no significant difference between the
two sexes (tEgriCXE3 = −2.08, p = 0.1061; tEgriCXE5 = 1.98, p = 0.1857;
tEgriCXE9 = 0.25, p = 0.8130; tEgriCXE17 = 1.49, p = 0.2115;
tEgriCXE19 = −2.19, p = 0.0934; tEgriCXE27 = −0.45, p = 0.6873;
tEgriCXE30 = 2.16, p = 0.0966; and tEgriCXE33 = 2.14, p = 0.0989),
whereas, EgriCXE15 and EgriCXE25 were highly expressed in a non-
chemosensory organ, heads and wings of both sexes, respectively.
Furthermore, all EgriCXE genes were detected in other non-
chemosensory organs with less expression levels.

The putative EgriGSTs showed a wide range of expression
patterns (Figure 5): EgriGSTe1, s4, and u1 were highly expressed
in male thoraxes and female wings, whereas EgriGSTe2 and d1 were
strongly expressed in female thoraxes and male wings. EgriGSTe3
was highly expressed in male thoraxes and female abdomens.
EgriGSTe4, s2, t1, and o1 were highly expressed in the wings of
both sexes. EgriGSTd2, d3, and d4 were strongly expressed in the
heads of both sexes. EgriGSTe5 and s3were strongly expressed in the
thoraxes of both sexes. EgriGSTs1 was specifically expressed in male
antennae, with a significant difference between the two sexes
(tEgriGSTs1 = −26.43, p = 0.0014). Some EgriGSTs were widely
distributed and detected in various tissues, e.g., EgriGSTs2 and
EgriGSTs3.

4 Discussion

In the present research, we identified 52,856 unigenes with a
mean length of 1,233 bp from the male and female E. grisescens
antennal transcriptome, indicating the high quality and great depth

FIGURE 2
Phylogenetic analysis of candidate EgriCXEs with other insect CXEs. MCEs: mitochondrial and cytosolic esterases; JHEs: Lepidopteran juvenile
hormone esterases; NR: neuroreceptor; NL: neuroligin; C/AEs: cuticular and antennal esterases; β-EPEs: β-esterases and pheromone esterases; MAEs:
moth antennal esterases; M-α-Es: microsomal α-esterases. Egri, Ectropis grisescens (N = 28); Eobl, Ectropis obliqua (N = 34); Slitt, Spodoptera littoralis
(N = 19); Pint, Plodia interpunctella (N = 19); Sexi, Spodoptera exigua (N = 8); Slitu, Spodoptera litura (N = 3); Sinf, Sesamia inferens (N = 16).
Candidate EgriCXEs are indicated by red. The GenBank accession numbers of the 127 CXEs protein used in the phylogenetic analysis are listed in
Supplementary Table S8.
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of sequencing at the transcriptome level. The results of Blastx
homology search in the NCBI database revealed that E. grisescens
unigenes shared relatively high homology with sequences from other
Lepidoptera species. Ultimately, 28 candidate CXE genes and
16 candidate GST genes were identified in the E. grisescens
antennal transcriptome.

In GO annotation of the transcriptome, several annotations
were associated with olfaction in insects such as binding, catalytic
activity, and transporter activity in the molecular function ontology,
localization, signaling, and response to stimulus in the biological
process ontology, which are vital steps of odorant recognition in
insects (Schmidt and Benton, 2020; Zhang et al., 2020; Rihani et al.,
2021; Tian et al., 2021). KEGG pathway analysis also had similar
function annotations about recognizing olfaction, such as signal
transduction and environment adaptation. The aforementioned
results of function annotation were similar to the finding in
Bemisia tabaci MED (Wang et al., 2017) and Athetis dissimilis
(Song et al., 2021), which further showed that the identified
EgriCXEs and EgriGSTs might participate in various chemical
communications of E. grisescens.

The number of CXE genes identified in E. grisescenswas the same as
that in Cnaphalocrocis medinalis (Zhang et al., 2017b) and Athetis
lepigone (Zhang et al., 2017c). However, this number was significantly
greater than that of CXE genes identified in other species reported, such
as C. pomonella (12) (Huang et al., 2016), C. suppressalis (19) (Liu et al.,
2015a), H. parallela (20) (Yi et al., 2021), and A. lepigone (20) (Zhang
et al., 2017c). The difference in gene numbers among different species
might depend on the evolution of divergent behaviors in the long term,
which resulted in gene duplication and loss (Zhang et al., 2017b; Huang
et al., 2021). In addition, the sample preparation and sequencing
method/depth might also be a reason. Multiple sequence alignment
analyses showed that most EgriCXEs had the oxyanion hole residues
Gly–Gly–Ala, the catalytic triad Ser–Glu–His, and the conserved
pentapeptide Gly–X–Ser-–X–Gly. These characteristics indicated that
most of the identified EgriCXEs might encode functional enzymes and
play a vital role in the catalytic activity of CXEs (Oakeshott et al., 2010).

The number of GST genes identified in E. grisescens was
different from that of S. zeamais (13) (Xia et al., 2022), P.
interpunctella (17) (Liu et al., 2021), S. littoralis (33) (Durand
et al., 2018), and C. medinalis (23) (Liu et al., 2015b). This

FIGURE 3
Phylogenetic analysis of candidate EgriGSTs with other insect GSTs. Egri, Ectropis grisescens (N = 16); Pint, Plodia interpunctella (N = 12); Pxyl,
Plutella xylostella (N = 19); Cpom, Cydia pomonella (N = 11); Bmor, Bombyx mori (N = 18); Csup, Chilo suppressalis (N = 15); Apis, Acyrthosiphon pisum
(N = 14); Dmel, Drosophila melanogaster (N = 20); Agam, Anopheles gambiae (N = 16); Tcas, Tribolium castaneum (N = 12); Gmol, Grapholita molesta
(N = 1); Szea, Sitophilus zeamais (N = 1). Candidate EgriGSTs are indicated by red. The GenBank accession numbers of the 159 GSTs protein used in
the phylogenetic analysis are listed in Supplementary Table S9.
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massive increase in the number of of GSTs in insects enables them to
detect plant compounds and resist the damage caused by
insecticides, as described in some reports (Durand et al., 2018;
Liu et al., 2021). The results of the EgriGST sequence analysis
showed a conserved G-site can be found in the N-terminal
domain, indicating function as GSH-binding. However, a more
variable H-site could be observed with a low sequence identity in
the C-terminal domain, which enabled GSTs to accommodate
various substrate selectivities (Lerksuthirat and Ketterman, 2008).
Furthermore, we also found that some full-length EgriCXEs or
EgriGSTs had low identities of amino acid sequences, which
suggested that these genes evolved rapidly during long-term
adaptation to various environmental factors (Campanini and De
Brito, 2016).

The phylogenetic tree showed that the EgriCXEs could be
divided into eight groups using classifications from the previous
studies (Durand et al., 2010a; Oakeshott et al., 2015). The majority of
the antennal EgriCXEs were assigned to the clade that contained
members of the esterase family. Among them, ten EgriCXEs
(EgriCXE1, 2, 4, 6, 8, 17–18, and 20–22) constituted the biggest
groups, moth antennal esterase branch, together with the
SexiCXE14 of S. exigua (He et al., 2014c), and SlittCXE7 of S.
littoralis (Durand et al., 2011), which caused the degradation of plant
volatiles and pheromone compounds. Of them, nine EgriCXEs
(EgriCXE1, 2, 4, 6, 8, 18, and 20–22) were significantly expressed
in female or male antenna, suggesting these CXEs might have a
similar function in odorant degradation. Seven EgriCXEs
(EgriCXE3, 24–27, 29, and 30) were clustered into mitochondrial
and cytosolic esterase clades with two well-characterized CXEs,
SlittCXE10 and SexiCXE10, which were specifically active to
plant volatiles pentyl acetate and Z3-6: Ac, respectively (Durand
et al., 2010b; He et al., 2015). Of them, three EgriCXEs (EgriCXE 24,
26, and 29) showed high antennal bias, indicating that these
EgriCXEs were potentially involved in odorant degradation.

Additionally, two EgriCXEs (EgriCXE13 and 33), along with
annotated pheromone and plant volatiles degrading enzymes (like
SexiCXE13 for plant volatiles pentyl acetate and the acetate sex
pheromone Z9E12-14: Ac, (He et al., 2014a)), were assigned to the
β-esterase and pheromone esterase clades. However, the expression
pattern of EgriCXE13 and 33 showed no antennal bias in our qRT-PCR.
This phenomenon was also observed in the microsomal α-esterase
clade, containing four EgriCXEs (EgriCXE9, 11, 34, and 36) without
antennal bias and SexiCXE11 which had a high degradation activity
against sex pheromones Z9-14: Ac and plant volatile esters pentyl
acetate (He et al., 2019). Therefore, functional confirmation of these
CXEs would require further functional analyses using in vitro and in
vivo methods.

EgriCXE32 constituted Lepidopteran JHEs, which could control
juvenile hormone (JH) titer and regulate larval to adult transition in
insects (Gu et al., 2015). Two EgriCXEs (EgriCXE19 and 37) and
EgriCXE5 were assigned into neuroreceptor and neuroligins clades,
respectively, which were mainly involved in neurological and
sensory developmental function (Durand et al., 2017). The
cuticular and antennal esterase clade only contained one
EgriCXE (EgriCXE15) without antennal-biased expression, and
this gene lacked CXE conserved characteristic, the oxyanion hole-

FIGURE 4
Tissue- and sex-specific expression pattern of the EgriCXEs. A
total of 28 EgriCXEs were clustered using relative expression values
from each of the tissues. Expression values are relative to female head
tissue (one-fold), with red and blue representing the highest and
the lowest values, respectively. FAn: female antennae; FH: female
head; FT: female thorax; FAb: female abdomen; FL: female leg; FW:
female wing; MAn: male antennae; MH: male head; MT: male thorax;
MAb: male abdomen; ML: male leg; MW: male wing.

FIGURE 5
Tissue- and sex-specific expression pattern of the EgriGSTs. A
total of 16 EgriGSTs were clustered using relative expression values
from each of the tissues.
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forming residues (Supplementary Table S6), indicating that it might
play other roles, such as detoxification of insecticides.

The phylogenetic tree showed that the EgriGSTs could be divided
into six groups. The epsilon class group was common GSTs in insects,
which was widely recognized to have a detoxification function
(Lalouette et al., 2016; Labade et al., 2018), mediating endocrine
plasticity (Bigot et al., 2012) and cholesterol transporter activity
(Enya et al., 2015). For instance, SlitGSTe1 and SlitGSTe2 in S.
littoralis antennae were induced by sublethal doses of deltamethrin
and were involved in protecting against insecticides (Lalouette et al.,
2016). The expression pattern suggested EgriGSTe1–5 was highly
expressed in thoraxes, abdomens, and wings, which further verified
their function as degraders of non-volatile substances.

Additionally, GSTs of the insect delta group in antennae were
commonly associated with odorant degradation, which had been
studied and verified in some moths. For example, PintGSTd1 of P.
interpunctella could efficiently degrade the sex pheromone component
Z9-12: Ac and host volatile hexanal (Liu et al., 2021). GmolGSTD1 ofG.
molesta exhibited high degradation activity to the sex pheromone
component (Z)-8-dodecenyl alcohol and the host plant volatile butyl
hexanoate (Li et al., 2018). SzeaGSTd1 of S. zeamais could degrade the
volatile of the host capryl alcohol (Xia et al., 2022). Unexpectedly, we
found that none of the delta genes in E. grisescens was restricted to
antenna-based qRT-PCR results, which were mainly expressed in the
male heads or ubiquitously expressed in tissues tested. However,
phylogenetic tree analysis showed that the delta genes in E.
grisescens were distributed among the well-defined insect GST
clades, together with GmolGSTD1, PintGSTd1, and SzeaGSTd1.
Considering this point, we hypothesized that the delta group
mediated the degradation of odorants in E. grisescens, which needed
to be further investigated.

The sigma class genes had diverse functions, e.g., recognizing
invasive pathogens (Huang et al., 2011) and detoxifying insecticides
(Qin et al., 2012; Qin et al., 2013). The expression pattern showed that
the sigma group genes in E. grisescens exhibited ubiquitous expression
patterns, with the exception of EgriGSTs1, whose expressionwas almost
restricted in the male antennae, suggesting that EgriGSTs1 might play a
crucial role in inactivating the chemical signals or pheromone-
degrading enzymes (PDEs). Other classes (theta, omega, and
unclassified group) were involved in the detoxification of xenobiotics
(Qin et al., 2013; Yamamoto and Yamada, 2016; Durand et al., 2018).

In conclusion, we characterized 28 carboxylesterases and
16 glutathione S-transferases encoding odorant-degrading enzymes
(ODEs) from E. grisescens antennal transcriptome. Furthermore, the
expression patterns of carboxylesterases and glutathione S-transferases
in different tissues were investigated to identify antennal enriched genes.
Finally, 12 EgriCXEs (EgriCXE1, 2, 4, 6, 8, 18, 20–22, 24, 26, and 29) and
five GSTs (EgriGST1 and EgriGST delta group) were identified as
candidate target genes involved in odorant degradation of E. grisescens.
The findings of this study revealed the potential involvement of ODEs
in the olfactory system of E. grisescens.
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