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Background: Secondhand smoke (SHS) is a significant risk factor for
cardiovascular morbidity and mortality with an estimated 80% of SHS-related
deaths attributed to cardiovascular causes. Public health measures and smoking
bans have been successful both in reducing SHS exposure and improving
cardiovascular outcomes in non-smokers. Soluble epoxide hydrolase (sEH)
inhibitors have been shown to attenuate tobacco exposure-induced lung
inflammatory responses, making them a promising target for mitigating SHS
exposure-induced cardiovascular outcomes.

Objectives: The objectives of this study were to determine 1) effects of
environmentally relevant SHS exposure on cardiac autonomic function and
blood pressure (BP) regulation and 2) whether prophylactic administration of
an sEH inhibitor (TPPU) can reduce the adverse cardiovascular effects of SHS
exposure.

Methods: Male C57BL/6J mice (11 weeks old) implanted with BP/
electrocardiogram (ECG) telemetry devices were exposed to filtered air or
3 mg/m3 of SHS (6 hr/d, 5 d/wk) for 12 weeks, followed by 4 weeks of recovery
in filtered air. Some mice received TPPU in drinking water (15 mg/L) throughout
SHS exposure. BP, heart rate (HR), HR variability (HRV), baroreflex sensitivity (BRS),
and BP variability were determined monthly.

Results: SHS exposure significantly decreased 1) short-term HRV by ~20% (p <
0.05) within 4 weeks; 2) overall HRV with maximum effect at 12 weeks (−15%, p <
0.05); 3) pulse pressure (−8%, p < 0.05) as early as week 4; and 4) BRS with
maximum effect at 12 weeks (−11%, p < 0.05). Four weeks of recovery following
12 weeks of SHS ameliorated all SHS-induced cardiovascular detriments.
Importantly, mice exposed to TPPU in drinking water during SHS-related
exposure were protected from SHS cardiovascular consequences.

Discussion: The data suggest that 1) environmental relevant SHS exposure
significantly alters cardiac autonomic function and BP regulation; 2)
cardiovascular consequences from SHS can be reversed by discontinuing SHS
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exposure; and 3) inhibiting sEH can prevent SHS-induced cardiovascular
consequences.
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1 Introduction

Secondhand smoke (SHS), a major indoor air pollutant,
consists of 80%–85% sidestream smoke from the burning
cigarette and 15%–20% mainstream smoke exhaled from the
smoker (Penn et al., 1994; Zhang et al., 2001). While SHS
exposure decreased by seven percent points between 2009 and
2018, the prevalence of SHS exposure remained higher in some
demographic groups, including non-Hispanic black (40%),
family income below the federal poverty level (35%), and
younger adults (26% for adults aged 18-39) (Brody et al.,
2021). About 80% of SHS-related deaths are due to
cardiovascular causes in adults over 20 (Max et al., 2012)
suggesting that the cardiovascular system is extremely
vulnerable to SHS. Smoking bans that have reduced SHS
exposure in public places have been associated with improved
cardiovascular outcomes in non-smokers (Meyers et al., 2009;
Kelleher and Frazer, 2014).

Altered autonomic function, as indexed by decreased heart rate
variability (HRV), is a well-established risk factor for cardiac events
including arrhythmias and sudden cardiac death (Villareal et al.,
2002) and an important role in SHS exposure-induced acute cardiac
consequences (Pope et al., 2001; Raupach et al., 2006; Zhang et al.,
2013). In humans, 2 hours of SHS exposure (up to 0.15 mg/m3) in a
public airport was sufficient to attenuate HRV during the exposure
period (Pope et al., 2001); HRV recovered after the subjects were
removed from smoking areas (Pope et al., 2001). Previously
published work from our laboratory found that 3 days of
exposure to a high concentration of SHS (30 mg/m3) reduced
HRV and increased arrhythmia susceptibility 24 h post-exposure
in mice (Chen et al., 2008). However, 3 days of exposure to a more
environmentally relevant concentration of SHS (3 mg/m3) was not
sufficient to produce a sustained effect on HRV beyond the exposure
period (Chen et al., 2008). Thus, the first goal of this study was to
determine whether a more prolonged environmentally relevant SHS
exposure induces changes in autonomic function beyond the
exposure period using telemetry recordings in conscious, freely
moving mice.

Chronic exposure to SHS contributes to the development of
cardiovascular and cardiometabolic diseases, such as hypertension,
atherosclerosis, coronary heart diseases, insulin resistance, and
diabetes (Glantz and Parmley, 1991; Raupach et al., 2006).
Epidemiological studies consistently demonstrated strong
associations between SHS exposure and hypertension prevalence,
however, the effect of SHS on blood pressure (BP) is often trivial
(2–4 mmHg increase in BP) (Wu et al., 2017; Park et al., 2018;
Tamura et al., 2018; Kim et al., 2021).While high BP is a well-known
risk factor for cardiovascular morbidity and mortality, altered
baroreflex function and increased BP variability (BPV) have been
shown to cause more cardiovascular end-organ damage than

elevated BP (Lanfranchi and Somers, 2002; Stevens et al., 2016).
However, the impact of SHS on baroreflex function and BPV are not
well characterized. Thus, the second goal of this study was to
characterize the effect of SHS on BP regulation.

At the point of entry, cigarette smoke activates macrophage
release of proinflammatory cytokines, leading to the recruitment of
inflammatory cells into the lung where they subsequently release
inflammatory mediators and deplete protective antioxidants (Li
et al., 1994; Gardi and Valacchi, 2012). Soluble epoxide hydrolase
(sEH) catalyzes the metabolism of anti-inflammatory epoxides such
as EETs to pro-inflammatory diols such as dihydroxyeicosatrienoic
acids (DHETs) (Yang et al., 2011; Pillarisetti and Khanna, 2012;
Wang et al., 2013). Stabilizing EETs through the inhibition sEH is an
effective approach to reduce and resolve inflammation (Ingraham
et al., 2011; Qiu et al., 2011). Of relevance, sEH inhibitors have been
shown to significantly attenuate acute tobacco exposure-induced
increase in macrophages, neutrophils, and lymphocytes in the lung
bronchoalveolar fluid (Smith et al., 2005; Nording et al., 2015). In a
sub-chronic tobacco smoke exposure study (4 weeks), sEH
inhibitors significantly inhibited exposure-induced lung
inflammatory responses, respiratory resistance, tissue damping,
and vascular remodeling (Wang et al., 2012). Thus, the third goal
of this study was to determine whether sEH inhibition can attenuate
SHS-induced autonomic dysfunction and cardiovascular
dysregulation.

2 Materials and methods

All protocols were approved by the University of California,
Davis Institutional Animal Care and Use Committee in compliance
with the Animal Welfare Act and Public Health Service Policy on
Humane Care and Use of Laboratory Animals. All animals were
housed individually on 12-h dark-light cycles (6:00 a.m.—6:00 p.m.)
with regular rodent chow and water available ad libitum
(temperature 21°C ± 2°C and relative humidity 60% ± 15%,
means ± SD).

2.1 Telemetry implant

Male C57BL/6J mice (11 weeks old, The Jackson Lab,
Sacramento, CA) were anesthetized with isoflurane (5%
induction, 1%–3% maintenance). The criteria for adequacy of
anesthesia include 1) no eye blink reflex, 2) no paw pinch
withdrawal, 3) no whisker movement, and 4) no irregular or
sudden changes in breathing frequency. A pressure + biopotential
telemetry device (HD-X11, Data Sciences International, St. Paul,
MN, United States) was implanted subcutaneously in the left side of
the body via a small midline incision at the ventral neck region. The
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pressure catheter tip was placed in the aortic arch through the left
carotid artery, and the biopotential leads were tunneled
subcutaneously. The negative lead was secured to the upper right
pectoral muscle wall, and the positive lead was sutured just medial of
the xiphoid process for recording the electrocardiogram (ECG) in
the lead II configuration. Mice were given buprenex (0.05 mg/kg)
subcutaneously prior to surgery and twice daily for 2 days after
surgery to manage post-op pain.

2.2 SHS exposure

Two weeks after the telemetry implantation, mice were randomly
assigned to either SHS exposed (n = 18) or filtered air (FA, n = 20)
control group. SHS exposure was comparable to that of a “smoky bar”
(3 mg/m3 of total suspended particulate [TSP]) (Semple et al., 2007;
Pacheco et al., 2012) for 6 hours per day (9 a.m.–3 p.m., during light
cycle) and 5 days per week (Monday through Friday). Animals in the
SHS group were exposed to SHS for 12 weeks, followed by 4 weeks of
SHS cessation (‘recovery’ from smoke) to model the effects of a smoke-
free environment following SHS exposure.

3R4F cigarettes, an international standard reference cigarette for
smoke research (Hamad et al., 2017), from the University of
Kentucky Tobacco and Health Research Institute (Lexington, KY,
United States) were used to generate sidestream cigarette smoke as a
surrogate for SHS (Chen et al., 2008; Sekizawa et al., 2008; Wang
et al., 2018; Sun et al., 2021). Two cigarettes at a time were smoked in
a staggered fashion under Federal Trade Commission conditions at a
rate of 1 puff/min (35 mL/puff, 2 s duration). The smoke was diluted
to the target concentration with FA in a mixing chamber and then
passed into a 0.44 m3 stainless steel-and-glass Hinners-type
exposure chamber. Air sample from the outlet of the exposure
chamber was collected for 15 min during the exposure period
every day to determine nicotine concentration in the air with gas
chromatography. Mice were exposed (whole-body exposure) in their
home cage with wire lids and were provided with regular rodent
chow and water ad libitum. TSP concentration was sampled
gravimetrically taken in the morning and again in the afternoon
daily. Carbon monoxide concentration was measured every 30 min
during the exposure period using a carbon monoxide analyzer
(X-STREAM Gas Analyzer, Rosemount Analytical, Orrville, OH).
The SHS exposure condition was TSP 3.0 ± 0.2 mg/m3, nicotine

FIGURE 1
Body weight (BW) and activity over the 16 weeks of study. (A). BW before exposure (week 0). There was no difference between filter air (FA)- and
secondhand smoke (SHS)-exposed mice (t-test, p > 0.05). (B). Weight gain over the 16 weeks. The SHS group had significantly less weight gain (two-way
repeated ANOVA). (C). Activity levels after 4, 8, and 12 weeks of exposure. SHS-exposed mice had higher activity levels (two-way repeated ANOVA
followed by Fisher’s LSD tests). (D). Activity levels after 4 weeks of cessation from SHS. The SHS-exposed mice still had higher activity level during
dark cycles (t-test). Significant main effects from ANOVA tests are indicated with “+”. *p < 0.05, FA vs. SHS. Numbers in parentheses indicate sample sizes.

Frontiers in Physiology frontiersin.org03

Pan et al. 10.3389/fphys.2023.1185744

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1185744


0.2 ± 0.1 mg/m3, and carbon monoxide 15.6 ± 1.8 ppm
(means ± SD).

2.3 sEH inhibitor treatment

In separate groups of mice, an sEH inhibitor, 1-
trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU),

was added to the drinking water (15 mg/L) during the 12 weeks of
FA/SHS exposure period. This TPPU concentration in drinking water
has been shown to reduce neuroinflammation (Ghosh et al., 2020),
inflammation associated with myocardial infarction (Sirish et al., 2020),
and an inflammation model of depression (Ren et al., 2016). Since
TPPU is a high melting and lipophilic crystal, it was added to drinking
water in a true solution of PEG 400 to give a final concentration of PEG
of under 1%. The water intake for C57BL/6J mice is ~0.25 mL/g/day

FIGURE 2
Blood pressure (BP) and heart rate (HR) over the 16 weeks of study. (A). HR increased over time in both FA- and SHS-exposed groups. There was no
exposure effect. (B). SHS exposure lowered systolic BP (SBP) during the light cycle. (C). Diastolic BP (DBP) initially was higher in the SHS group after
4 weeks of exposure but subsequently dropped to below those of FA. The SHS group had significantly lower DBP in the light cycle 4 weeks after recovery
from SHS exposure. (D). Pulse pressure (PP) was significantly lower in the SHS group that lasted for all three light cycles but recovered after the 4-
week recovery period. Significant main effects from two-way ANOVA tests are indicated with “+”. *p < 0.05, FA vs. SHS. Numbers in parentheses indicate
sample sizes.
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(Bachmanov et al., 2002) and the estimated TPPU dose was 3.75 μg/g/
day. Mice were randomly assigned to one the of the following three
groups: 1) FA exposure + regular drinking water (FA-H2O, n = 12); 2)
FA exposure + TPPU in drinking water (FA-TPPU, n = 12); and 3) SHS
exposure + TPPU in drinking water (SHS-TPPU, n = 22).

2.4 Recording protocol

BP and ECG signals were recorded continuously for 36 h every
month when mice were not exposed (Friday night to Sunday
morning). Recordings were performed in a dedicated animal
housing room in which no personnel entered or disturbed
animals during the recording period. ECG was recorded at 4 kHz
and BP was recorded at 500Hz with Ponemah software (Data
Sciences International). Data were stratified by 12-h circadian
window: The dark cycle (dark 1) immediately after Friday’s
exposure and the following light and dark (dark 2) cycles.

2.5 Stress protocol

On Sunday morning, 2 hours into the light cycle (which served
as the “baseline” for the stress response), mice were placed in a clear,
plastic restrainer for 2 hours (“restraint” period). Mice were freed
from restraints after this window, and an additional 6 hours of BP
and ECG data were recorded.

2.6 Generating time-domain HRV measures

ECG R-waves were marked using the Analysis Attributes
feature of Ponemah (Data Sciences International): 25% for QRS
detection threshold; 0.03–0.25 mV for minimum R deflection;
1,500 bpm for maximum heart rate; 400 bpm minimum heart
rate; and 20% peak bias. All R-R intervals longer than 400 ms
were excluded. In addition, any R-R intervals that differed from
either adjacent RR intervals by more than 20% were excluded
using Data Insights software. This 20% change exclusion
criterion has been shown to correctly identify nearly all
normal-to-normal R-R intervals without compromising the
specificity of excluding abnormal R-R intervals for reliable
time-domain HRV analysis in rodents (Karey et al., 2019).
Standard time-domain HRV measures (Malik et al., 1996)
were calculated for each 12-h period.

2.7 Assessing baroreflex function

Baroreflex sensitivity (BRS) was evaluated with the sequence
method (Bertinieri et al., 1985; Horwitz et al., 2013) using Data
Insights software (Data Sciences International). Spontaneous
baroreflex sequences of three or more consecutive beats in which
systolic BP (SBP) and R-R interval (with three beats delay)
progressively rose (or decreased) were identified by the software
(Laude et al., 2009). The threshold for changes in SBP was set at
0.5 mmHg and the threshold for changes in R-R interval was set at
5 ms. The slope of the linear regression on R-R interval vs. SBP was

generated for each baroreflex sequence. Slopes with r2

values >0.85 were accepted and averaged for each 12-h period.

2.8 Statistical analysis

Data are expressed as means ± SEM unless otherwise indicated. All
statistical analyses were performed with GraphPad Prism (GraphPad
Software, San Diego, CA). For determining SHS effects, each light cycle
was analyzed separately. A two-way repeated measure ANOVA was
used to evaluate the effect of exposure (FA vs. SHS) and exposure time
(4, 8, and 12 weeks), followed by Fisher’s LSD post-hoc tests when
appropriate. A t-test was used to evaluate the difference between the FA-
and SHS-exposed mice after 4 weeks of recovery from SHS exposure
(week 16). For stress tests (weeks 4, 8, and 12), peak BP and HR
responses were compared with a two-way repeated measure ANOVA
(exposure x time). A t-test was used to analyze stress responses after
4 weeks of recovery from SHS exposure (week 16). In addition, diurnal
variations (day-night differences) were calculated by subtracting
measures in the light cycle from those in dark 2 cycle and analyzed
the same way as described above.

For determining effects of the sEH treatment, data from FA-TPPU
and SHS-TPPU groups were expressed as Δ% from the mean values of
the FA-H2O group and analyzed with a two-way repeated measure
ANOVA (exposure x time), followed by Fisher’s LSD post-hoc tests
when appropriate. A t-test was used for comparing the difference
between FA-TPPU and SHS-TPPU mice after 4 weeks of recovery
from SHS exposure. P < 0.05 was considered statistically significant.

3 Results

Body weights before the exposure were similar between FA (n =
19) and SHS (n = 18) groups (Figure 1A). Mice in the SHS group
gained less weight over 12 weeks of SHS exposure and during
4 weeks of FA recovery (Figure 1B). The DSI telemetry system
estimates the animal’s activity level based on the strength of the
telemetry signal transmitted to the receiver antennas. Both the
orientation of the animal relative to the receiver and the distance
from the animal to the receiver antennas can change the signal
strength. An activity count was generated when the signal strength
changes by a software pre-defined amount and the recording system
reports activity in counts per minute. Mice decreased their nighttime
activity levels over the 12 weeks FA/SHS exposure period
(Figure 1C). SHS-exposed mice had higher activity levels across
all three light cycles (Figure 1C), an effect that was greatest after
4 weeks of exposure. The higher activity level in the SHS group
persisted in dark cycles 4 weeks after cessation of SHS exposure
(Week 16, Figure 1D). The higher activity level may indicate SHS-
induced sleep disturbances (Morioka et al., 2018; Safa et al., 2020).

3.1 SHS exposure on BP and HR

At least 12 weeks of BP signals were successfully recorded from
26 mice in the no TPPU treatment experiment (12 FA and 14 SHS
mice). There was a gradual increase in HR over the 12-week FA/SHS
exposure period, however, no significant SHS effect on HR was
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observed throughout the whole experiment period (Figure 2A). There
was a significant overall exposure effect on SBP during the light cycle,
with 3 mmHg lower SBP in the SHS group (compared to the FA group)
after 12 weeks of exposure (Figure 2B). This SHS-induced decrease in
SBP recovered after removal from SHS exposure for 4 weeks (Figure 2B,
right). Diastolic BP (DBP) showed an initial elevated trend after 4 weeks
of exposure (compared to the FA group) but subsequently dropped
below those of FA (Figure 2C). Interestingly, DBP during the light cycle
was significantly lower in the SHS group at week 16, 4 weeks after
cessation of SHS exposure (3.2 mmHg lower than the FA group). Mice
from the SHS-exposed group showed a lower pulse pressure (PP) across

all three light cycles (Figure 2D). This SHS-induced decrease in PP was
most significant after 4 weeks of exposure and recovered after the
cessation of SHS exposure (Figure 2D, right). The reduced PP in the
SHS-exposed mice raises the possibility of SHS-induced reduction in
the cardiac function.

3.2 SHS exposure on HRV and BP regulation

In the no TPPU treatment experiment, 32 mice (19 FA and
13 SHS mice) had at least 12 weeks of ECG signals for obtaining

FIGURE 3
Heart rate variability (HRV) and BP regulation over the 16 weeks of study. SHS-exposed mice had significantly lower short-term (A1) and overall (A2)
HRV during dark cycles. Four weeks after the cessation of SHS exposure, there was no difference in HRV between the FA- and SHS-exposed groups. (B).
Baroreflex sensitivity (BRS) was reduced in the SHS-exposed group only during the first dark cycle. (C). There was no significant SHS exposure effect on
SBP variability. RMSSD, root mean square of successive differences; SDNN, standard deviation of normal-to-normal RR intervals; SBP-SD, standard
deviation of SBP. Significant main effects from two-way repeated ANOVA tests are indicated with “+”. *p < 0.05, FA vs. SHS. Numbers in parentheses
indicate sample sizes.
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measures of HRV. Short-term HRV (RMSSD, root mean square of
successive difference), a measure of parasympathetic regulation, was
significantly lower in the SHS-exposed group (21% lower than the
FA group at week 4) during the dark cycles (Figure 3A1). The SHS
effect on RMSSD recovered 4 weeks after the cessation of SHS
exposure (Figure 3A1, right).

Overall HRV (SDNN, standard deviation of all normal-to-
normal RR intervals), a measure of both sympathetic and
parasympathetic regulation, decreased over time in both FA- and
SHS-exposed groups during the dark cycles (Figure 3A2). For
exposure effects, SHS significantly decreased SDNN during the
first dark cycle (Figure 3A2). This reduction in SDNN was most
pronounced after 12 weeks of SHS exposure (15% lower than the FA
group in the first dark cycle). There was a complete recovery 4 weeks
after the cessation of SHS exposure (Figure 3A2, right). A reduction
in RMSSD and SDNN suggests that SHS exposure significantly
altered autonomic function.

A total of 24 (12 FA and 12 SHS) mice with both BP and ECG
signals were used for BRS analysis in the no TPPU treatment

experiment. There was an overall exposure effect on BRS during
the first dark cycle (Figure 3B). The BRS in the SHS-exposed group
was 6%, 7%, and 11% lower than those of the FA control group
(weeks 4, 8, and 12, respectively), suggesting a lessened BP
regulation. This SHS-induced lowering of BRS did not persist
beyond the first dark cycle, as no significant differences were
detected during the subsequent light and second dark cycle. After
the 4-week recovery from SHS window, the reduced BRS observed
during SHS exposures could no longer be detected (Figure 3B, right).
Despite a trend for lower HRV and BRS in the SHS-exposed group,
there was no detectable difference in BP variability (standard
deviation of SBP) throughout the 12 weeks of exposure (Figure 3C).

3.3 SHS exposure on diurnal variation and
stress response

As expected, mice were three times more active during the
dark cycle compared to the light cycle. This dark-light difference

FIGURE 4
Dark-light difference (subtracting measures in the light cycle from those in dark 2 cycle) over the 16 weeks of study. SHS-exposed group had
significantly greater diurnal variation in activity level (A) than the FA-exposed group, an effect that persisted 4 weeks after the cessation of SHS exposure.
FA- and SHS-exposedmice had similar diurnal variation in MBP (B) and HR (C). Significant main effects from two-way repeated ANOVA are indicated with
“+”. *p < 0.05, FA vs. SHS. Numbers in parentheses indicate sample sizes.
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in activity was significantly greater in SHS-exposed mice, an
effect that persisted 4 weeks after the cessation of SHS exposure
(Figure 4A). Nighttime mean BP (MBP) was ~15 mmHg higher
than daytime MBP, and this diurnal variation in MBP was similar
in FA- and SHS-exposed mice (Figure 4B). Similarly, HR was
~80 bpm higher during the dark cycle for both FA- and SHS-
exposed groups (Figure 4C).

As shown in Figure 5A, restraint stress increased MBP and HR.
SHS exposure had no effect on the magnitude of pressor and
tachycardic responses to the 2-h restrain stress throughout the
16 weeks of experiment (Figure 5B).

3.4 sEH inhibitor on SHS-induced changes in
body weight and activity level

Body weights before the exposure were similar among the three
groups: FA-H2O, FA-TPPU, and SHS-TPPU (Figure 6A). FA-TPPU
mice had greater weight gain over the 16 weeks compared to the FA-
H2O and SHS-TPPU groups (Figure 6B). To determine the effects of
the sEH inhibitor treatment on SHS-induced changes in activity
levels, data from FA-TPPU and SHS-TPPU groups were expressed
as Δ% from the mean values of the FA-H2O group (Figures 6C,D).
TPPU did not prevent SHS exposure-related increase in activity
levels (Figure 6C). As observed in the no TPPU treatment
experiment, the higher activity levels in the SHS-TPPU group
persisted in dark cycles 4 weeks after cessation of SHS exposure
(Figure 6D). These data suggest that the SHS-induced increase in
activity level is mediated by mechanism(s) other than inflammatory
responses involving the sEH pathway.

3.5 sEH inhibitor on SHS-induced changes in
BP and HR

BP signals were successfully recorded from 33 mice in the
TPPU-treatment experiment (8 FA-H2O, 9 FA-TPPU, and
16 SHS-TPPU mice). All data were expressed as Δ% change from
the mean values of the FA-H2O group. As observed in the no-
treatment experiment, there was no significant SHS effect on HR
throughout the whole experiment period (Figure 7A). TPPU
treatment eliminated the SHS-induced changes in SBP and DBP
seen in the no TPPU treatment experiment (Figures 2B,C), resulting
in similar SBP and DBP between FA-TPPU and SHS-TPPU groups
(Figures 7B,C). TPPU treatment also prevented the SHS-induced
decrease in PP (Figure 7D).

3.6 sEH inhibitor on SHS-induced changes in
HRV and BP regulation

ECG signals were successfully recorded from 45 (12 FA-H2O,
12 FA-TPPU, and 21 SHS-TPPU) mice. TPPU treatment attenuated
the SHS-induced decrease in nighttime HRV seen in the no TPPU
treatment experiment (Figures 3A1,A2)—there was no significant
SHS effects with TPPU treatment over the 12-week exposure period
(Figures 8A,B). Interestingly, there was a trend (but not significant)
for lower HRV in the SHS-TPPU group during the light cycle. There
was no difference in HRV after 4 weeks of the cessation from SHS
exposure and TPPU treatment (Figures 8A,B).

A total of 33 (8 FA-H2O, 9 FA-TPPU, and 16 SHS-TPPU) mice
with both BP and ECG signals were used for BRS analysis. TPPU

FIGURE 5
BP and HR responses to restraint stress. (A). Group data of MBP and HR before, during, and after a 2-h restraint stress in mice after 12 weeks of FA or
SHS exposure. (B). Group data of peak pressor and tachycardic response to restraint stress over the 16 weeks of experiment. There was no exposure
effect (two-way repeated ANOVA for weeks 4–12, t-test for week 16). Numbers in parentheses indicate sample sizes.
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treatment blocked the SHS exposure-induced decrease in BRS seen
in the no TPPU treatment experiment (Figure 3), resulting in no
difference in BRS between FA-TPPU and SHS-TPPU groups
throughout the 12 weeks of exposure and 4 weeks of recovery
period (Figure 8C). There was also no difference in BP variability
throughout the 16 weeks (Figure 8D).

4 Discussion

There are three main findings in this study (Figure 9): First,
environmentally relevant SHS exposure (3 mg/m3 TSP) significantly
reduced 1) two measures of HRV (RMSSD and SDNN), suggesting
altered cardiac autonomic function, 2) a measure of baroreflex
function (BRS), suggesting altered BP regulation, and 3) PP,
suggesting a reduced cardiac function. The onset of SHS-induced
attenuation of RMSSD and PP had the fastest onset, with maximum
effect at week four. Conversely, SDNN and BRS decreased more
gradually, reaching a maximum reduction at week 12. Second,
cardiovascular consequences from SHS exposure can be reversed
by removing from SHS exposure for 4 weeks. Third, oral TPPU
treatment can prevent SHS-induced cardiovascular consequences.
Furthermore, SHS exposure increased activity levels that persisted

4 weeks after cessation of SHS that were not prevented by TPPU
treatment.

A somewhat unexpected finding of this study was the lower PP
in the SHS group during the 12 weeks of exposure, an effect that
recovered 4 weeks after cessation of SHS exposure. The PP is
proportional to stroke volume and arterial stiffness. A lower-
than-normal PP often results from a reduced stroke volume
(reduced cardiac function) such as in heart failure (Schillaci
et al., 2004; Yildiran et al., 2010; Petrie et al., 2014), while an
abnormally high PP often comes from arterial stiffness such as in
hypertension (Benetos et al., 2002). It is well-documented that SHS
exposure increases arterial stiffness (Al-Dissi and Weber, 2011;
Chen et al., 2015; Wang and Hu, 2015; Le et al., 2021) and
decreases cardiac contractile function (de Paiva et al., 2003; Al-
Dissi and Weber, 2011; Wu et al., 2014). In nonsmokers and never
smokers, higher levels of serum cotinine were positively associated
with higher brachial-ankle pulse wave velocity (an index of arterial
stiffness) and brachial PP (Wang and Hu, 2015). Similarly, SHS
significantly increased SBP, DBP, and PP in pigs (Weber et al., 2011).
In contrast, in human with hypertension, SHS did not change PP
despite a higher index for arterial stiffness, suggesting a
counteraction from a reduced cardiac function (Gac et al., 2015).
Thus, the lower PP in the SHS group seen in this study may suggest a

FIGURE 6
BW and activity in sEH inhibitor treatment experiment. (A). BW before exposure (week 0). There was no difference among the three groups (p > 0.05,
one-way ANOVA). (B). Weight gain over the 16weeks. FA-TPPU group had significantly greater weight gain than the FA-H2O and SHS-TPPU groups (two-
way repeated ANOVA). (C). Activity level (expressed as Δ% of the mean values from the FA-H2O group) after 4, 8, and 12 weeks of exposure. SHS-TPPU
mice had significantly higher activity levels than those of FA-TPPUmice (two-way repeated ANOVA followed by Fisher’s LSD tests). (D). Activity levels
after 4 weeks of cessation from SHS exposure and TPPU treatment. The SHS-TPPUmice still had higher activity level during dark cycles (t-test). Significant
main effects from ANOVA are indicated with “+”. *p < 0.05, FA-TPPU vs. SHS-TPPU. Numbers in parentheses indicate sample sizes.
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significant reduction in cardiac function. In this regard, it is
conceivable that SHS-induced compromised cardiac function may
explain a small and inconsistent effect of SHS on BP.

Our results showed that 12 weeks of SHS exposure significantly
reduced BRS. Prior studies showed that 3 weeks of SHS exposure
had a modest, but not statistically significant, decrease in baroreflex
gain assessed by infusion of vasoactive drugs in rats (Valenti et al.,
2010; Valenti et al., 2011). These data suggest that the effect of SHS
on baroreflex function developed over time. A reduced BRS has been
shown to be associated with increased cardiovascular morbidity and
mortality, including increased risks for end-organ damage and
progression/development of cardiovascular disease (La Rovere
et al., 2008). It has been proposed that a blunted BRS may

contribute to a more delayed sustained sympathetic activation
(Middlekauff et al., 2014). The sustained sympathetic activation
with more chronic exposure may contribute to myocardial electrical
remodeling of increased susceptibility to cardiac alternans and
modification of intracellular calcium handling, known precursors
to ventricular arrhythmia (Wang et al., 2018). Our results provide
evidence that chronic exposure to SHS, at an environmentally
relevant concentration, altered the baroreflex function that could
contribute to SHS-related cardiovascular morbidity and mortality.

In general, the short-term HRV (RMSSD) reflects alterations in
autonomic tone that are predominantly vagally mediated and the
overall HRV (SDNN) reflects changes in both sympathetic and vagal
inputs (Malik et al., 1996). Our data reveal a maximal reduction in

FIGURE 7
BP and HR in sEH inhibitor treatment experiment. Data were expressed as Δ% of the mean values from the FA- H2O group. With TPPU treatment,
there was no SHS exposure effect on HR (A), SBP (B), DBP (C) and PP (D). p > 0.05, two-way repeated ANOVA for weeks 4–12. p > 0.05, t-test for week 16
(recovery).
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FIGURE 8
HRV and BP regulation in sEH inhibitor treatment experiment. There was no significant SHS exposure effect for short-term HRV (A), overall HRV (B),
BRS (C), and SBP variability (D). RMSSD, root mean square of successive differences; SDNN, standard deviation of normal-to-normal RR intervals; BRS,
baroreflex sensitivity; SBP-SD, standard deviation of SBP. Significant main effects from ANOVA are indicated with “+”. Numbers in parentheses indicate
sample sizes.

FIGURE 9
Summary of SHS exposure effects. Data points are SHS readouts expressed as Δ%of their respective FA controls. SHS’s effects on RMSSD and PP had
a faster onset with maximum effect at week 4. SDNN and BRS decreased over time with maximum reduction at week 12. BP was modestly increased at
week 4, followed by a modest decrease at week 12. The activity levels were higher in the SHS exposed group. Changes in cardiovascular parameters
showed recovery 4 weeks after cessation of SHS. Oral TPPU treatment during prevented SHS-induced cardiovascular consequences but not activity
level.
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parasympathetic regulation (RMSSD) after just 4 weeks of exposure
and the measure of parasympathetic + sympathetic regulation
(SDNN) showed an accumulative pattern with maximal effect
after 12 weeks of exposure, suggesting that effects of SHS on
sympathetic nervous system may have a slower onset and the
effect is accumulative over time. Furthermore, the reduced
RMSSD lasted for at least 36 h after the exposure while SDNN
was only reduced in the first 12 h after the exposure (Figures 3A1,
3A2). Together, these data suggest that the parasympathetic nervous
system may be more sensitive to SHS exposure with a faster onset
and that continued exposure may further tip the balance of
autonomic regulation towards more permanent dysfunction
through activation of the sympathetic nervous system.

The parasympathetic regulation of the heart is mediated by
innervations from the cardiac vagal neurons located in the nucleus
ambiguous (Corbett et al., 1999; Pham et al., 2009; Sun et al., 2021).
Our previous study showed that 4 weeks of SHS exposure, at the
same concentration as the present study, resulted in a decreased
neuronal input-output relationship of these cardiac vagal neurons
(Sun et al., 2021). The reduced neuronal output is due to a higher
voltage/current threshold required for action potential generation
and lower spiking responses to depolarizing stimuli (Sun et al.,
2021). This SHS exposure-induced decrease in neuronal output
may be a general feature of particulate matter pollution as
exposures to particulate matters in the form of iron-soot also
decreased HRV and neuronal outputs of these cardiac vagal
neurons (Pham et al., 2009).

The most significant effect of SHS on HRV attenuation occurred
during the dark cycle (nighttime), when mice are generally more
active. This suggests a circadian-specific effect of SHS given that SHS
did not augment HR, irrespective of SHS duration or time of day.
While our study models a passive smoking environment, similar
circadian effects were observed in humans who smoked cigarettes,
where active smoking reduced HRV—but most significantly during
daytime (when humans, as a diurnal species, are typically most
active). In these same individuals, HR was also not altered by
smoking (Eryonucu et al., 2000).

Four weeks after removal from SHS exposure, all SHS-induced
changes in BP, PP, BRS, and HRV returned to normal. These results
further underscore the importance of implementing smoke-free
policies. Growing evidence showed that the implementation of
smoke-free laws resulted in a reduction in hospital admissions
for acute myocardial infarction, coronary syndrome, and heart
attack (Juster et al., 2007; Pell et al., 2008; Herman and Walsh,
2011). In 2003, New York State implemented a statewide
comprehensive smoke-free law to restrict smoking in workplaces,
bars, and restaurants. It has been shown that, upon the
implementation of the smoke-free policy, there was a 50%
decrease in the population exposed to SHS and a reduction in
hospital admissions for acute myocardial infarction by 8% (Juster
et al., 2007). Similarly, Herman and Walsh showed that the
implementation of smoking ban in the State of Arizona resulted
in a significant reduction in hospital admissions for acute
myocardial infarction, stroke, asthma, and angina (Herman and
Walsh, 2011). Thus, a smoke-free environment not only helps
prevent non-smokers from being exposed to harmful SHS, but
also helps improve the health of those who were previously
exposed to SHS.

It is well recognized that SHS exposure increased lung epithelial
cell permeability, increased release of proinflammatory cytokines
and chemokines, and enhanced recruitment of macrophages and
neutrophils (Strzelak et al., 2018). Inflammation initiated from the
lungs in response to tobacco smoke results in the release of soluble
substances that can trigger systemic and vascular inflammatory
responses (Barnoya and Glantz, 2005; Raupach et al., 2006;
Zhang et al., 2013; Raghuveer et al., 2016). In rodent animal
models, tobacco smoke has been shown to induce pulmonary
inflammation, increase infiltrated white blood cells recovered by
bronchoalveolar lavage (Smith et al., 2005; Hartney et al., 2012) and
increase pro-inflammatory cytokines (Wang et al., 2012; Strzelak
et al., 2018).

Lipids such as epoxyeicosatrienoic acids (EETs) regulate
important biological processes, including inflammation and
immune cell behavior (Imig and Hammock, 2009; Yang et al.,
2011; Pillarisetti and Khanna, 2012; Wang et al., 2013). Soluble
epoxide hydrolase (sEH) catalyzes the metabolism of anti-
inflammatory epoxides (such as EETs) into pro-inflammatory
diols (such as dihydroxyeicosatrieneoic acids [DHETs]) (Yang
et al., 2011; Pillarisetti and Khanna, 2012; Wang et al., 2013). It
has been shown that exposure to tobacco smoke significantly shifted
lipid mediators from anti-inflammatory epoxides to
proinflammatory diols both in the lungs and plasma (Smith
et al., 2005; Wang et al., 2012). Inhibiting the conversion of
epoxides to diols with sEH inhibitors significantly attenuated
tobacco smoke exposure-induced lung inflammatory responses
(Smith et al., 2005), production of pro-inflammatory cytokines
(Hartney et al., 2012), and the shift in epoxide to diol ratios
(i.e., attenuated the exposure-induced decrease in epoxide-to-diol
ratio) (Smith et al., 2005; Wang et al., 2012).

TPPU is metabolically stable and is absorbed efficiently through
drinking water (Ostermann et al., 2015). TPPU levels in the plasma,
whole blood and tissues have a remarkable linear relation to TPPU
concentrations in the drinking water (Ostermann et al., 2015; Ghosh
et al., 2020). TPPU concentrations in drinking water also showed a
dose-dependent inhibition of the sEH activity, having a dose-
dependent increase in epoxide to diol ratios of fatty acids, such
as linoleic acid epoxide (EpOME) to linoleic acid diol (DiHOME)
ratio (Ostermann et al., 2015). At the concentration used in the
present study, the steady-state TPPU concentration was ~1,200 ng/g
in the plasma and ~200 ng/g in the brain (Ghosh et al., 2020) and has
been shown to increase epoxide to diol ratios from arachidonic acid
(EETs/DHETs) and linolenic acid (EpODE/DiHODE) (Sirish et al.,
2020). Our study showed that oral TPPU treatment eliminated SHS
exposure-induced decreases in HRV, PP, and BRS. These data
suggest that activation of inflammatory pathways contributes
importantly to SHS-induced autonomic dysfunction and
cardiovascular dysregulation.

Our results show that SHS exposure increased the mouse’s
activity level that persisted 4 weeks after cessation of SHS
exposure. As mice go through sleep-wake cycles throughout the
day (Soltani et al., 2019), the higher activity level may be related to
SHS-induced sleep disturbances seen in humans. In a meta-analysis,
Safa and others reported that SHS exposure is significant associated
with short sleep duration and poor sleep quality (Safa et al., 2020).
Similarly, a cross-sectional survey of high school students
throughout Japan also showed higher insomnia symptoms and
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sleep disturbance symptoms such as insufficient sleep and short
sleep duration in never smokers with SHS exposure, compared to
never smokers without SHS exposure (Morioka et al., 2018). The
underlying mechanism mediating the exposure-induced sleep
disturbance is not well-understood but may be related to
neuronal effects of nicotine in the tobacco smoke. Saint-Mleux
and others showed that activation of nicotinic receptors
facilitated the release of noradrenaline in the Ventrolateral
Preoptic Area, resulting in inhibition of sleep-promoting neurons
and activation of wake-promoting neurons through disinhibition
(Saint-Mleux et al., 2004). Taken together, these data suggest that
nicotine’s effects on sleep-related neurons in the Ventrolateral
Preoptic Area may contribute to the higher activity levels after
SHS exposure.

In summary, the present study demonstrates that SHS exposure, at
an environmentally relevant concentration, significantly reduced HRV,
BRS, and PP, suggesting altered autonomic, baroreflex, and cardiac
contractile functions. Evidence of these exposure-induced cardiovascular
consequences were reversed during the recovery period, pointing to the
importance of establishing a smoke-free environment in improving
public health by preventing SHS in non-smokers as well as improving
health of non-smokers with prior SHS exposure. Oral TPPU treatment
prevented SHS-induced cardiovascular effects, suggesting that activation
of inflammatory pathways is important in SHS effects and that sEH
inhibitors maybe great candidates for preventing cardiovascular
consequences of SHS exposure.
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