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The importance of mechanical
conditions in the testing of
excitation abnormalities in a
population of electro-mechanical
models of human ventricular
cardiomyocytes
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Nathalie A. Balakina-Vikulova1,2, Leonid B. Katsnelson1,2 and
Olga Solovyova1,2*
1Laboratory of Mathematical Physiology, Institute of Immunology and Physiology, Ural Branch of
Russian Academy of Sciences, Ekaterinburg, Russia, 2Laboratory of Mathematical Modeling in
Physiology and Medicine Based on Supercomputers, Ural Federal University, Ekaterinburg, Russia

Background: Populations of in silico electrophysiological models of human
cardiomyocytes represent natural variability in cell activity and are thoroughly
calibrated and validated using experimental data from the human heart. The
models have been shown to predict the effects of drugs and their pro-arrhythmic
risks. However, excitation and contraction are known to be tightly coupled in the
myocardium, with mechanical loads and stretching affecting both mechanics
and excitation through mechanisms of mechano-calcium-electrical feedback.
However, these couplings are not currently a focus of populations of cell models.

Aim: We investigated the role of cardiomyocyte mechanical activity under
different mechanical conditions in the generation, calibration, and validation of
a population of electro-mechanical models of human cardiomyocytes.

Methods: To generate a population, we assumed 11 input parameters of ionic
currents and calcium dynamics in our recently developed TP + M model as
varying within a wide range. A History matching algorithm was used to generate
a non-implausible parameter space by calibrating the action potential and
calcium transient biomarkers against experimental data and rejecting models
with excitation abnormalities. The population was further calibrated using
experimental data on human myocardial force characteristics and mechanical
tests involving variations in preload and afterload. Models that passed the
mechanical tests were validated with additional experimental data, including the
effects of drugs with high or low pro-arrhythmic risk.

Results: More than 10% of the models calibrated on electrophysiological data
failed mechanical tests and were rejected from the population due to excitation
abnormalities at reduced preload or afterload for cell contraction. The final
population of accepted models yielded action potential, calcium transient, and
force/shortening outputs consistent with experimental data. In agreement with
experimental and clinical data, the models demonstrated a high frequency of
excitation abnormalities in simulations of Dofetilide action on the ionic currents,
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in contrast to Verapamil. However, Verapamil showed a high frequency of failed
contractions at high concentrations.

Conclusion: Our results highlight the importance of considering
mechanoelectric coupling in silico cardiomyocyte models. Mechanical tests
allow a more thorough assessment of the effects of interventions on cardiac
function, including drug testing.

KEYWORDS

mathematical models, human ventricular cardiomyocyte, mechanical function, cardiac
electrophysiology, repolarization abnormalities, drug testing

1 Introduction

The use of populations of in silico cardiac models is actively
applied in the simulation of physiological objects and phenomena
in the heart. This approach employs many different sets of input
parameters for the mathematical description of an object rather
than just one. The aggregation of input parameter sets and
mathematical description of an object provide a population of
mathematical models. The population of models can then be used
to analyze and predict variability in the responses of the natural
organ/cell/tissue population to various types of exposure. By analogy
with the analysis of a set of experimental recordings, a statistical
analysis of the entire set of model responses in the population
provides information about the statistically significant influence
of the test factors on the characteristics of the processes being
studied.

Populations of models have been effectively used to study
the function of the heart (Ni et al., 2018). The team of Prof.
B. Rodriguez has developed populations of electrophysiological
models of ventricular cardiomyocytes in animals (Gemmell et al.,
2016) and human (Muszkiewicz et al., 2016; Passini et al., 2020).The
models in the populations are selected so that the output parameters
of the models fall within the range of acceptable values that can
be estimated from experimental data. In the research work of this
team, priority is given to studying arrhythmia conditions and the
cardiotoxicity of various pharmacological compounds (Passini et al.,
2019; Tomek et al., 2019; Paci et al., 2020; Margara et al., 2021).
There is another approach to assessing uncertainty in model
predictions. Pathmanathan andGray built a population of the canine
action potential (AP) models on the basis of a complete set of
input parameters whose ranges were determined experimentally
(Pathmanathan et al., 2020). Estimating the variability of the model
parameters allowed them to determine the effects of parameter
uncertainties on the prediction of AP characteristics under drug
testing and on the dynamics of spiral waves.

The distinctive feature of our study is the creation of a
population of cellular models based on a mathematical description
of the human ventricular cardiomyocyte, which combines
both the electrophysiology of the cell (AP and ionic currents,
intracellular calcium dynamics) and the mechanical function of
the cardiomyocyte (force generation and length changes). Such
a description allows us to obtain a physiologically consistent
population of mathematical models of human ventricular
cardiomyocytes calibrated and validated by both the experimental
properties of the AP and the time and amplitude characteristics of

the force, as well as the characteristic dependencies of mechanical
variables (e.g., ‘length - force’, etc.) obtained in the experiment.

2 Materials and methods

2.1 Electro-mechanical model of the
human ventricular cardiomyocyte (TP + M
model)

In this researchwork, we use themathematical description of the
electro-mechanical activity of human ventricular cardiomyocytes
that we developed recently (Balakina-Vikulova et al., 2020). Here,
we utilize an improved variant of themodel with a corresponding set
of input model parameters as recently described in (Bazhutina et al.,
2021). Hereafter in the text, this model is reffered to as a reference
TP +Mmodel, and we use the latter parameter set as a starting point
to build a population of models.

The TP + M model combines the description of cardiomyocyte
electrophysiology from the ten Tusscher-Panfilov (TP) model
(ten Tusscher and Panfilov, 2006) with the original description of
the mechanical (M) activity of the cardiac muscle developed by the
Ekaterinburg team (Sulman et al., 2008). It contains a biophysically
detailed description of ion channels, pumps, and exchange currents,
as well as a detailed description of intracellular sodium (Na+),
calcium (Ca2+), and potassium (K+) kinetics. The description
of intracellular Ca2+ kinetics interlinks both the electrical and
mechanical blocks of the model. The description of the Ca2+ release
via the ryanodine receptor channels was improved in the TP + M
model compared to the original TP model (Bazhutina et al., 2021).

The mechanical activity of the virtual cardiomyocyte is
described by the rheological scheme (Figure 2 in Balakina-
Vikulova et al., (2020)), which contains a contractile element
representing the sarcomeres and elastic and viscous elements that
can be used to describe the passive and viscous properties of the
cardiac preparation. The mechanical part of the model describes
the time dependent deformations and the force generation in the
elements of the rheological scheme during contraction cycle. The
equations for the contractile element describe the generation of
active force in the cardiomyocytes as a result of cross-bridge (Xb)
formation by myosin heads attaching to the thin actin filaments.

Interactions between the electrical and mechanical activity
in the cardiomyocytes realized through the mechanisms of the
excitation-contraction coupling and mechano-electric feedback
(mechano-electric coupling) (Quinn and Kohl, 2021). There are two

Frontiers in Physiology 02 frontiersin.org

https://doi.org/10.3389/fphys.2023.1187956
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Dokuchaev et al. 10.3389/fphys.2023.1187956

main mechanisms of mechano-electric coupling that are generally
considered in the heart: ionic currents via mechano-sensitive
(e.g., stretch-activated) channels, and mechano-dependence of
intracellular calcium handling. In our study, we consider only
the mechano-calcium-electric feedbacks given by the cooperative
mechanisms of the kinetics of calcium-troponinC complex (CaTnC)
(Sulman et al., 2008). We allow for the slowing down of CaTnC
decay when a larger number of Xbs and/or a larger number of other
CaTnC form in its vicinity along the actin filament. Dependence
of the Xb attachment/detachment on sarcomere length also affects
CaTnC kinetics via cooperative effects of a bound Xb on the affinity
of CaTnC complexes.

The TP + M model was validated using experimental data
from human cardiac muscle preparations. It reproduced well
the main temporal and amplitude characteristics of AP, Ca2+

transient (time-dependent change in the concentration of free
Ca2+ in the cytosol) and force twitches (time-dependent change
in the generated force) during excitation-contraction cycle under
isometric conditions at different mechanical preloads (initial cell
lengths) and contractions at different afterloads applied to the virtual
cardiomyocyte (Balakina-Vikulova et al., 2020; Bazhutina et al.,
2021).

Then, we additionally validated the TP + M model with the
experimental data summarized in (Margara et al., 2021). Some of
these data were then used here as biomarkers of the electrical and
mechanical function of cardiomyocytes when building a population
of models (Table 1). Some other data served to validate and evaluate
the resulting population of calibrated electro-mechanical models
(see Results section).

The TP + M model contains 26 nonlinear ordinary differential
equations, an additional set of algebraic equations, and a set
of input parameters and initial conditions (see Supplementary
Materials in (Bazhutina et al., 2021)). The steady-state periodic
solution of the system at a stimulation frequency of 1 Hz under
isometric conditions at a fixed cell length of 0.93Lmax (where Lmax
corresponds to a sarcomere length of 2.23 µm) was employed as a
reference model output for comparison with simulations at varying
parameters.

Here, we used the TP + M model to create a physiologically
plausible population of cellular models by varying the parameters of
the TP + M model and obtaining steady-state periodic solutions
at 1 Hz stimulation for each set of parameters. A scheme of
model selection for a non-implausible population of virtual
cardiomyocytes is demonstrated in Supplementary Figure S1 in
Supplementary Materials. The first step involves construction of an
initial model population calibrated against available experimental
data on AP features and Ca2+ transient characteristics using
the History matching approach (see a subsection below). Then
each model from the initial model population is additionally
validated in benchmark mechanical simulations to reject models
that fail to pass mechanical tests and demonstrate abnormalities
in the electrical and/or mechanical activity under different
mechanical conditions. The final model population passed the
mechanical intervention tests is then validated against the
effects of pharmacological substances with experimentally proven
properties.

2.2 Experimental biomarkers

Experimental studies on the electro-mechanical coupling in
the human myocardium are limited due to technical and ethics
constraints. Differences in experimental protocols (temperature,
stimulation frequency, Ca2+-dependent and voltage-dependent
dyes, mechanical conditions, washing solution, recording
equipment, etc.) make the results of different groups hard to
compare. Concerning experimental data on the biomarkers used
for model calibration, we chose to select data recorded at the
stimulation frequency of 1 Hz and temperature of 37°C where
available.

Table 1 contains the statistics of the distributions (where
available) and the limiting value ranges for AP biomarkers and Ca2+

transient characteristics derived from experimental data. These data
were used for model calibration during selection.

The use of different Ca2+ buffering dyes in the experiments, did
not allow us to estimate precisely the duration of the Ca2+ transient,
so we utilized themaximum andminimum values found in different
experiments as cutoff values for permissive models. This may be
a rather weak assumption, enlarging the set of non-implausible
parameters.

Furthermore, we used experimental biomarkers for contraction
only to recalibrate the models, as qualitative experimental data
available on force generation in human cardiomyocytes are
extremely sporadic (Table 1) (see a subsection below).

2.3 History matching approach

An approach called History matching (HM) was developed
to solve parameter identification problems and has been
used in models of galaxy formation (Vernon et al., 2010),
disease epidemiology (Andrianakis et al., 2015), plant physiology
(Vernon et al., 2018) and calibration of cardiac cell (Coveney and
Clayton, 2018) and anatomical models (Rodero et al., 2023).

In History matching (Supplementary Figure S1), in addition to
computationalmodels (called simulators) simulating cardiomyocyte
activity for a number of various parameter sets (multi-dimensional
vectors or points) from the input parameter space, the approach
suggests the use of high-speed regression models (emulators) based,
for example, on Gaussian processes (Rasmusen and Williams,
2006). Each emulator predicts a single biomarker value (e.g., action
potential duration (APD)), and is trained on the dataset of simulated
features derived from the simulator outputs computed at training
points from the input space. Such emulators are able to predict the
simulated biomarkers for any parameter vector selected from the
input parameter space. Emulators take much less time to compute
model outputs (typically they are more than 106 times faster than
simulators), which makes it possible to quickly estimate the space
of input parameters and create a so-called value surface for a
specific biomarker. The emulators’ predictions are compared with
the biomarker values obtained in the experiments. If the emulator
predictions on certain parameter vectors do notmeet the calibration
criteria, the implausible points are removed from the parameter
space.
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An input parameter space to develop a population of models
was formed of the following 11 input parameters, which values
ranged from 0% to 200% of the reference value given in the TP + M
model: the conductances of themain transmembrane ionic currents,
namely, fast Na+ current (gNa), rapid and slow time-dependent
K+ current (gKr and gKs), inward rectifier K+ current (gK1), L-
type Ca2+ current (gCaL); maximum Na+-K+ ATPase (NKX) current
(PNaK) and maximum Na+-Ca2+ exchanger (NCX) current (KNaCa).
In addition, we tested several key parameters of Ca2+ handling
in cells: the maximal velocity of the sarcoplasmic reticulum (SR)
ATPase (Vmaxup), the maximal velocity of SR Ca2+ release (ks), and
two rate constants in the Markov state ryanodine receptor model
(kim, kom).

2.3.1 Output biomarkers
To select physiologically acceptable models, we used biomarkers

that characterize the time course of generation of AP and Ca2+

transient observed in experimental studies during the contractile
cycle of a human cardiac myocyte (Table 1). The following
characteristics of the AP and Ca2+ transients derived from
simulators or predicted by emulators we used to calibrate themodels
against experimental data (Table 1): resting potential (RMP); AP
duration at 20%, 50%, 90% of repolarization (APD20, APD50,
APD90); AP triangulation (Tri9040), defined as the difference between
APD90 and APD40; Ca2+ transient time to peak (CTmin); Ca2+

transient duration at 50% and 80% of decay (CTD50, CTD80).
History matching works iteratively as a series of waves

(Supplementary Figure S1) including the following algorithm
steps.

2.3.2 Parameter sampling
In the first wave, the input parameters were selected by Latin

Hypercube Sampling, which provides good coverage of the entire
input space. We sampled 300 sets of input parameters (points)
from the 11-dimensional parameter space, where each parameter
was sampled from an interval from 0% to 200% of the reference
value given in the TP + M model. For subsequent waves, the
input parameters were sampled from “Not-ruled-out-yet” (NROY)
region of the input space, restricted by the distribution of accepted
parameters after filtering emulator outputs.

2.3.3 Simulator calculation
For each input parameter vector, the simulator was computed

during 200 cycles at 1 Hz pacing rate to achieve steady-state
contractions. The models which demonstrate abnormalities in the
time course of AP generation (early or late afterdepolarization,
alterations in APD, spontaneous AP, etc.), and/or disturbances
in the Ca2+ transient during the last 2 cycles were
rejected.

2.3.4 Emulator training
A set of acceptedmodel parameters and corresponding values of

each simulated biomarker (e.g., APD,Ca2+ transient amplitude, etc.)
derived from simulator outputs formed the dataset used to train an
emulator based on Gaussian process regression with a radial basis
function kernel. Emulator training was performed using simulator
data from up to four preceding waves.

2.3.5 Emulator calculation
The next step of the algorithm is to augment the simulated

feature dataset by computing the trained emulators for a large
number of points from the current NROY parameter space. For the
first wave, the emulators were computed for 106 parameter vectors
sampled from the input parameter space. For each subsequent wave,
the emulators were run for all parameter vectors accepted on the
previous wave.

2.3.6 Model calibration
In this algorithm step, the simulator and emulator results

(output features) were filtered (calibrated) based on experimental
observations, taking into account the variance (uncertainty) of the
simulated data and the experimental variability of the biomarker.
For each AP biomarker (Table 1), an implausibility measure was
calculated as follows (Vernon et al., 2018):

I2n =
(E[ fn (x)] − zn)

2

Var[ fn (x)] +Var(en)
, (1)

where I2n is the squared implausibility measure in the input space
at point x for n-th output feature; fn(x) is the feature value,
and E [fn(x)] is the feature mean; zn is the mean value of an
experimental biomarker; Var[fn(x)] and Var(en) are the simulation
and observation dispersions, respectively.

For each parameter point x, a threshold was applied to
determine whether the set of themodel’s input parameters remained
in the space of acceptable parameters for the current wave, as
follows: if max |In(x)| > Ithreshold, then x is considered implausible.
We considered Ithreshold = 3 according to Pukelsheim’s 3-sigma rule
(Pukelsheim, 1994).

ForCa2+ transient biomarkers, implausibility measures were not
calculated for lack of data on biomarker mean and variability, so we
used the minimum and maximum values of the biomarker as cutoff
borders for the range of accepted values (Table 1).

Due to data filtering, the NROY space for the calibrated models
was iteratively reduced in each wave.

2.3.7 Augmentation of sampled parameter set
If less than 105 points remained in the reduced parameter space

as a result of model calibration, additional points were selected
around each accepted point. For new point sampling, use was made
of a multidimensional normal distribution centered at a given point
with a covariance matrix I× 0.05, where I is the identity matrix.

In each subsequent wave, 300 new input parameter vectors for
simulator calculation were sampled from the NROY space obtained
in the preceding wave. Then, the algorithm is repeated from the
simulator calculation step before convergence (approaching the
asymptote and a reduction of the number of emulator points less
than 0.1% starting from wave 47) (Supplementary Figure S1).

After 60 waves of the HM algorithm, the biomarkers of the
final population of models were concentrated in the regions of
experimentally observed biomarkers, displaying distributions close
to the experimental ones (see Results section), which makes the
modeling process very efficient. A more detailed description and
justification of the method can be found elsewhere (Rasmusen
and Williams, 2006; Andrianakis et al., 2015; Coveney and Clayton,
2018; Vernon et al., 2018).
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2.3.8 Initial population of calibrated models
Finally, we calculated 1,000 simulators with parameter vectors

sampled from the restricted input space obtained in the last 60th
wave. Then we calibrated this population by rejecting models with
biomarkers falling outside the min-max range derived from the
experimental data (Table 1) or exhibiting abnormalities in the AP
or Ca2+ transient waveform.

The History matching method was implemented in Python3,
while the regression models based on Gaussian processes were
implemented using GPflow2 library. The ordinary differential
equations of the simulators were solved with the help of CVODE
from Sundials suite (Hindmarsh et al., 2005).

2.4 Mechanical tests

To evaluate further the obtained population of models,
calibrated using characteristics of cellular electrophysiology and
Ca2+ transient, we compared simulated characteristics of the
mechanical activity in the models with available experimental
data (Table 1). The models which did not meet the re-calibration
criteria were rejected. Then, we investigated the electro-mechanical
activity in the virtual cardiomyocytes after changing the mechanical
conditions of contraction.

For each model in the population, we performed two types of
tests: 1) change in the initial length of the virtual cardiomyocyte
(i.e., the change in the mechanical preload that stretches the cell) in
the isometric twitches, when the length of the cardiomyocyte is kept
constant; and 2) change in the mechanical afterload applied to the
contracting cardiomyocyte in isotonic twitches under constant load.
The models with abnormalities in the excitation and/or contraction
under themechanical interventions were revealed and rejected from
the population.

The effect of initial length on the isometric force development
was studied in experiments where three different preloads were
applied to simulate experimental data from (Vahl et al., 1997;
Holubarsch et al., 1998). Specifically, the initial length of the virtual
muscle was step-wise reduced from 0.93Lmax, which is the initial
length used for the TP + M model, to 0.80Lmax. For each model
in the population, we utilized the peak force during steady-state
isometric twitches (after 200 cycles at a stimulation frequency of
1 Hz) to plot the ‘length—force’ (L-F) relationship. The values of
the peak isometric forces obtained at different initial lengths were
normalized to the values of the isometric force obtained at a length
of 0.93Lmax, which was different for each model of the population.

When simulating the activity of each model in the population
during isotonic afterloaded contractions, we evaluated the first
twitch under the imposed external load (afterload) after the
baseline isometric contraction with a preload of 0.93Lmax. The
value of the afterload was expressed in fractions of the peak
isometric force (Fmax) developed by a given model. Three afterloads
were applied: 0.25, 0.5, and 0.75 of Fmax. The results obtained
for each model in the population for afterloaded contractions
provided input data for plotting the maximum velocity of cell
shortening against the afterload as a ‘force - velocity’ (F-V)
relationship.

2.5 Drug testing

To test further our final population of accepted electro-
mechanical models of the human cardiomyocyte, we simulated
the effects of two drugs to assess their effect on the cell electrical
and contractile activity in the models. These were Dofetilide
(class III antiarrhythmic) and Verapamil (class IV antiarrhythmic)
drugs with well quantified and documented action on ionic
currents and thoroughly evaluated effect on AP and pro-arrhythmic
risk. The two drugs are oppositely categorized with respect to
the risk of Torsade de Pointes (TdP) arrhythmias. Dofetilide
prolongs QT interval and is associated with high TdP risk
(Jaiswal and Goldbarg, 2014; Ibrahim et al., 2021). Verapamil is
an L-type Ca2+ channel blocker and is considered safe with
no TdP risk according to CredibleMeds; however, Verapamil
poisoning can cause symptoms such as hypotension, AV block
and bradycardia (Hofer et al., 1993; Barrow et al., 1994; Atemnkeng
 et al., 2021).

The effects of these drugs on ionic currents were simulated
using the simple pore-block model (Brennan et al., 2009), based
on in vivo patch-clamp measurements of IC50 values and Hill’s
coefficients from (Passini et al., 2017) for Dofetilide, and from
(Kramer et al., 2013) for Verapamil. Their effects on the model
outputs were tested at concentrations from 0.1 to 100× EFTPCmax
(maximal effective free therapeutic concentration) and compared
with baseline. The experimental IC50, Hill coefficients, and drug
concentrations for the pore-block model are reported in Table 2.
Additionally, the effects of both drugs on a block of ion channels are
shown in Supplementary Figure S2 and Supplementary Figure S3
in Supplementary Materials.

3 Results

3.1 Initial population of electro-mechanical
models

A population of electro-mechanical models of human
cardiomyocytes was created based on the reference TP + M
model (Bazhutina et al., 2021) assuming randomly varying 11
input parameters over a wide range, using a scaling factor of the
reference value ranged from 0 to 2 for each parameter. The initial
electrically calibrated population of cardiomyocyte models was
generated using the History matching (HM) method. Figure 1A
shows the number of sampled points (parameter vectors or
parameter sets) in the space of varying model parameters in
each iterative wave after calculating the emulators and filtering
them by AP and Ca2+ transient biomarkers (Table 1, Calibration
step). Since less than 105 points remained in the permissive
parameter space as a result of emulator output calibration after the
7th wave, additional points were sampled. Over the subsequent
iterations, the number of points remaining in the permissive
parametric space for calibrated emulators during each HM
wave approached an asymptotic limit of ∼ 150,000 sets after a
50-wave run.

The percentage of points rejected via the calibration of emulator
outputs rapidly decreased down to < 1% of the tested emulators,so
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TABLE 2 IC50 and Hill coefficient (h), EFTPCmax values for Dofetilide (Passini et al., 2017) andVerapamil (Kramer et al., 2013) and clinical proarrhythmic risk as
reported by CredibleMeds.

Compounds IC50(h), µM EFTPCmax, µM TdP risk category

INa ICaL IKr IKs

Dofetilide 31.9 (0.54) 201 (1) 0.013 (1.56) 135 (1) 0.00 1

Verapamil 32.5 (1.33) 0.2 (0.80) 0.25 (0.89) 0.09 0

FIGURE 1
Convergence of the HM algorithm. (A) The number of permissive parameter sets from the current parametric space after calibration of emulators at
each wave of the HM algorithm. (B) The ratio of permissive emulators in the current wave with respect to the previous one. (C) The acceptance rate is
the proportion of calculated models (simulators) that meet the calibration criteria (Table 1) in each wave. The X-axis is the wave number. In the seventh
wave, additional points are generated (see the description of the HM procedure in the “Methods” section).

that about 100% of emulators met the calibration criteria at
the last iterations (Figure 1B). However, not every parameter
set predicting acceptable outputs from the emulator (regression
model) also produced acceptable outputs from the simulator (ODE
model) calculated for a given parameter set. The acceptance rate,
that is, the fraction of simulator models meeting the calibration
criteria (Table 1), increased with each HM iteration from 20%
up to about 80% at the last 60th HM wave (Figure 1C). This
acceptance rate outperforms the indicators obtained by alternative
methods (for example, an acceptance rate of 40% in (Passini
 et al., 2017)).

After the last 60th wave of the HM algorithm, we again
sampled 1,000 points from the reduced parametric space
predicted as permissive from the emulator model, calculated
simulator models for each sampled parameter set, and once again
performed the calibration of the simulator outputs. The models
generating biomarker values for AP and Ca2+ transients outside
the experimental data range (Table 1) and/or demonstrating
repolarization abnormalities were automatically rejected from

the population of models. Examples of such rejected models are
shown in Supplementary Figure S4. The excitation abnormalities
we observed in the rejected models included various types of
disturbances, such as early afterdepolarizations (EADs), delayed
afterdepolarizations (DADs), premature APs and extrasystoles and
failed contractions.

Finally, an initial population of electrically calibrated models
consisting of 769 models was obtained.

3.2 Re-calibration of the population of
models using mechanical tests

Since the initial population of models was calibrated using
only AP and Ca2+ transient characteristics and no “mechanical”
biomarkers of the force and contraction generated by the
electro-mechanical models were evaluated during parameter
sampling in the HM algorithm, the population was then further
re-calibrated.
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Figure 2 shows several steps in the re-calibration of the initial
population of models using mechanical biomarkers and tests
with different mechanical conditions during cell contractile cycles
(Table 1, Re-calibration stage). The colored lines in the figure show
AP, Ca2+ transient and force waveforms in the models rejected at
each mechanical calibration step. Gray lines show the output signals
from acceptable models which passed the mechanical tests during
re-calibration.

3.2.1 Mechanical biomarkers
At the first step of mechanical calibration of the models, 17

models that did not meet the calibration criteria for the force based
on the experimental cellularmechanics data (Table 1, Re-calibration
stage) were rejected from the initial population of 769 models
(Figure 2A). Although the waveforms of the AP, Ca2+ transients
and force fell within the entire cloud of simulated signals in the
population, the rejected models had FTTP values (the time to reach
the peak isometric force) that were too large.

3.2.2 Preload tests
In the calculation of models for HM waves and the calibration

of the initial population, we utilized a reference initial length of
0.93Lmax with a corresponding initial sarcomere length of 2.1 μm. In
the next step of mechanical calibration, each of the 752 models with
acceptablemechanical biomarkers at the reference initial length, was
evaluated at three reduced preloads (initial lengths) for cell isometric
twitches, which provided shorter initial cell lengths of 0.90, 0.85, and
0.80Lmax in descending order.

A total of 73 out of the 752 population models were rejected
from the population due to depolarization and/or repolarization
abnormalities for at least one of the tested initial lengths (Figure 2B).
Examples of accepted and rejected models at this mechanical
calibration step are shown in Figure 3. In consistency with the
experimental data, the accepted models demonstrate an essential
reduction in the peak force and duration of the contractile cycle
at reduced afterloads and corresponding initial lengths. Decreased
mechanical preloads and related changes in the mechanical activity
of contracting cells result in an increase in the AP and Ca2+

transient in the models. It should be noted that, like to the
accepted models, the models rejected at the preload testing step
showed normal behaviour at the reference preload and initial
length (Figures 2B, 3). However, the reduction in preload caused
repolarization abnormalities in the rejected models (Figure 3),
induced by spontaneous Ca2+ release from the SR, resulting in
abnormal double-peak contractions.

3.2.3 L-F curves
Next, we evaluated the ‘length - force’ (L-F) dependence between

the initial cell length and the peak isometric force at this length in
the models that passed the preload tests (Figure 4). Experimental
data on the L-F relationship in human are limited (Table 1), and
we could only find two studies with such data (Vahl et al., 1997;
Holubarsch et al., 1998) (shown in Figure 4). Two more works
reported data on the L-F relationship in human, though only when
cardiomyocytes are stretched (Brandenburger et al., 2012; Milani-
Nejad et al., 2015). To validate models using the isometric L-F
relationship, the following qualitative feature should be fulfilled: the
peak force must increase with length. Among the 679 models, we

found only 2 that did not demonstrate a monotonous increase in
force with increasing length and rejected them from the population
(Figure 4, red lines). An example of the output signals in one of
the rejected models as compared to an accepted model is shown in
Supplementary Materials (Supplementary Figure S5).

3.2.4 Afterload tests
The next step in the mechanical calibration of the models that

passed all previous mechanical tests was performed with isotonic
contractions at various afterloads from the physiological range of
0.25–0.75 of the peak isometric force Fmax recorded during heavy-
loaded contractions. Three models out of 677 models were found to
exhibit repolarization abnormalities during isotonic contractions at
low afterloads (Figure 5B). The ‘force-velocity’ (F-V) dependencies
of these models also showed atypical trends compared to the overall
population (Figure 5C). The models were also rejected from the
calibrated population.

While the accepted models showed the characteristic features
of afterloaded contractions observed in experiments (Sonnenblick,
1962), i.e., an increase in amplitude and velocity of shortening
with a decrease in applied afterload (Figure 5A), in the rejected
models afterload reduction led to spontaneous Ca2+ release from
the SR followed byEADs anddouble-peaked prolonged contractions
(Figure 5B).

After all mechanical tests, a final population of 674 electro-
mechanical models of the human cardiomyocyte out of total 769
in the initial population was calibrated and validated in a series
of electrophysiological and mechanical tests. The models in the
final population of accepted models produced of AP, Ca2+ transient
and force/shortening output signals of normal waveform shape and
duration. The physiologically relevant biomarkers (amplitude, time
to peak, time to a certain percentage of relaxation, etc.) (Figure 6)
occured in the range of values representing the natural variability
of the characteristics in agreement with reported experimental
data in human ventricular cardiomyocytes. Importantly, in each
model of the population, the assorted output characteristics are
consistent with each other, and their combination is consistent
with the experimental data. Moreover, each model reproduces a
qualitatively adequate response to a change in the mechanical
conditions of cell contraction, such as a change in the initial
sarcomere length and a change in the afterload imposed on the cell.
Note that the reference TP + M model also passed all of our electro-
mechanical tests andwas included in the final population of accepted
models.

3.3 Input parameters in accepted and
rejected models

3.3.1 Distribution of input parameters in the
population of accepted models

Figure 6A shows distributions of scaling factors for variable
input parameters in the final population of electro-mechanically
calibrated models. It is seen that 6 out of the 11 parameters are
distributed around the reference values (mean scaling factor is near
1), while the remaining 5 parameters have average scaling factors
that differ significantly from 1 (Table 3).
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FIGURE 2
Model re-calibration using mechanical tests. Action potentials (upper panels), Ca2+ transients (middle panels) and active force generated by models
(bottom panels) from the initial population re-calibrated step-by-step using mechanical tests: the calibration using the force biomarkers (A); the
calibration during preload tests when models were rejected due to excitation abnormalities that occurred at reduced initial cell lengths (B); the
calibration when models were rejected due to abnormalities in the ‘length - force’ and ‘force - velocity’ dependencies (C). The colored lines in panels
A–C indicate the rejected models in the respective calibration step. The gray lines indicate models meeting calibration criteria at a current
re-calibration step. The blue lines show the final population of accepted models (D). The black line indicates the reference TP + M model. The dashed
line on the right panel represents one of the accepted models. Force is normalized to the peak isometric force (FTpeak) of the reference TP + M model.

The varying parameters in the accepted models have normal
distributions with high variability (σ of about 0.5 for the parameter
scaling factor) within the diapason of population sampling. Overall,
the 25% percentile for the parameter scaling factor is higher than
0.5, and the 75% percentile is lower than 1.6 for every varying
parameter in the population (Figure 6; Table 3). Surprisingly, the
maximum permissive value of the scaling factor is close to the
upper bound of 2.0 for each parameter tested. At the same time, the
minimum permissive value is not near zero for several parameters.
Particularly, the minimum values are higher than 0.6 for gCaL and
PNaK , near 0.3 for kom, and near 0.2 for the maximum velocity Vmax
of SERCA pump and KNaCa of the NCX current, suggesting more
stringent restrictions for these essential ionic parameters affecting
markedly the characteristics of AP and Ca2+ transient in normal
cells.

3.3.2 Correlation between input parameters in
accepted models

We analysed the correlations between the input parameters in
the accepted models to understand whether they are related to
each other and whether they need to be sampled according to
the dependencies revealed in a population of models for normal
cardiomyocytes. Supplementary Figure S6 shows a scatter diagram

of the varying input parameters in pairs (lower triangular part).
The corresponding values of Pearson’s correlation coefficient and p-
values between the parameters in the population of acceptedmodels
are given in the upper triangular part.

Most of the model input parameters do not correlate with
each other, except for the pair of maximum NKX current (PNaK)
and maximum conductivity of the L-type Ca2+ current (gCaL),
which display a strong positive correlation (r = 0.73, p < 0.001)
(Figure 7). In the physiological range, these currents must be
balanced to provide physiologically acceptable intracellular Ca2+

and Na+ concentrations. The current via NKX is largely determined
by the gradient of Na+ concentration, and it itself defines the Na+

level inside the cell. A deficiency in NKX current may cause an
elevation in the intracellular Na+ level, which in turn activates the
NCX. The latter is characterized by the level of intracellular Ca2+

concentration, which largely depends on the Ca2+ current through
L-type Ca2+ channels (ICaL). Thus, a small PNaK can lead to an
increase of Na+ inside the cell, and an enhanced Ca2+ current via
the reverse mode of NCX together with a high ICaL (with a large
gCaL) cannot be balanced by the forward NCX, which leads to an
increase in the Ca2+ level in the cell. As a result, we get either too
high and prolonged a Ca2+ transient the characteristics of which do
not fall within the acceptable range of biomarkers, or Ca2+ overload
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FIGURE 3
Preload tests. Examples of an accepted (A) and rejected (B) model under re-calibration of the models using variation in the initial length during
isometric contractions. The rejected model produces excitation abnormalities at reduced preloads. The figure shows action potential (AP, upper
panels), Ca2+ transients ([Ca2+]i, middle panels) and active force (Force, bottom panels) generated by the virtual cardiomyocyte during steady-state
isometric twitches at different initial lengths.

leading to spontaneous Ca2+ releases from the SR and abnormalities
in repolarization. Thereafter, models with imbalanced high gCaL and
low PNaK , or vice versa, do not fall into the physiologically acceptable
population.

3.3.3 Input parameters: accepted vs. rejected
models

We compared the subsets of varying input parameters selected
from the non-implausible parameter space in the cohorts of
models that were finally accepted and rejected, either according
to the calibration criteria for the AP and Ca2+ transient in the
last step of the HM algorithm or during recalibration using the
mechanical tests (see parameter distributions in the groups shown
in Supplementary Figure S7A). Here, we used the Wasserstein
distance (WD) to assess the difference between the input parameter
distributions in the accepted and rejected models for each varying
parameter (Supplementary Figure S7B).The largestWDwas found
for the distributions of the maximum rate of Ca2+ uptake into the
SR (Vmaxup), which was several times higher than the WD for other
parameters, suggesting the contribution of this parameter value to

the inconsistency of simulated biomarkers with calibration criteria
and/or occurrence of disturbances in the electro-mechanical activity
observed in the rejected models.

In Supplementary Figure S6we demonstrate the superposition
of pairwise scatter diagrams for the input parameters in the groups
of finally accepted models (blue colour) and the models rejected
during the mechanical tests (red colour). The scatter plots also
reveal intersection of the parameter areas in the accepted and
rejected models, and the uni-parametric (shown on the diagonal
in Supplementary Figure S6) almost overlap with each other in
the accepted and rejected models, not allowing for the mechanistic
distinction between the groups. The range for each parameter in the
final population is contiguous. However, this does not mean that
any random combination of parameter values from the parameter
space built on these contiguous intervals will yield an accepted
model. Some combinations of parameter values from acceptable
intervals may yield models that do not meet the criteria for
electrophysiological biomarkers or mechanical tests, particularly
because some parameters are physiologically closely related (and
correlated) and their values cannot be set arbitrarily. In Section 4.2,
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FIGURE 4
‘Length – force’ (L-F) relationship test. The L-F curves were obtained during re-calibration by preload tests of the population that consisted of models
that had no excitation abnormalities. The L-F diagram shows the dependence between the initial cell length and the isometric peak force developed.
The curves derived from experimental data on human cardiac preparations are shown by the blue line (Vahl et al., 1997) and the green line
(Holubarsch et al., 1998). The L-F dependence for the reference TP + M model is shown by the solid black line. The models rejected after the preload
tests are shown in red lines. The X-axis indicates the initial length of the virtual cell, normalized to Lmax (the length at which the cell develops maximum
isometric force). The Y-axis represents the isometric peak force at the corresponding length, normalized to the value of the isometric peak force at an
initial length of 0.93Lmax, which is different for each model of the population.

we have discussed why the parameters for the rejected models
(shown on the scatterplot in Supplementary Figure S6) lie within
the projection area of the accepted points.

Analysis of the marginal distributions for each input
parameter in the accepted and rejected models also showed no
significant difference between the mean parameter values in
the accepted and rejected models with the only exception of
Vmaxup (Supplementary Figure S7A). The histograms of Vmaxup

distribution in the accepted models and models rejected during
mechanical tests are shown in (Figure 8). The mean Vmaxup in the
accepted models is close to the Vmaxup in the reference TP + M
model (scaling factor is near 1: 1.01 ± 0.34), while in the rejected
models mean scaling factor for Vmaxup is about 1.4 times larger
(1.36 ± 0.42). Moreover, we found an increasing ratio of the rejected
models with increasing the Vmaxup scaling factor over the reference
value (Supplementary Figure S8). Note, in the models rejected via
electrophysiology calibration criteria after the last HM wave, mean
scaling factor forVmaxup is higher than that formechanically rejected
models (1.46 ± 0.39), and the WD between the distributions of
Vmaxup in accepted and rejected models is also higher for the models
rejected via electrophysiology tests (0.46 vs. 0.36, respectively, see
Supplementary Figure S7).

As we were not able to find deterministic conditions to
distinguish model parameters between accepted and rejected
models, we applied machine learning to predict the likelihood
of model rejection in the non-implausible parameter space we
found using the HM approach. First, we used a logistic regression
to range contribution of input parameters to the score of model
rejection. Supplementary Figure S9 shows the relative importance
of the input parameters for models classification into rejected (class
1) or accepted (class 0) classes. Not surprisingly, we found that
Vmaxup has the greatest contribution to the classification score among
other parameters increasing the score with the higher parameter
value.

Following the above analysis we developed uni-parametric
logistic regression classifiers to classify the accepted and rejected
models using the Vmaxup as the only input parameter. A logistic
regression classifier was able to predict a model rejection via
electrophysiology tests with a high accuracy of 0.73 (ROC AUC of
0.79, sensitivity of 0.79 and specificity of 0.71). Similar performance
was demonstrated by a classifier predicting a model rejection under
the mechanical tests with an accuracy of 0.71 (ROC AUC of 0.77,
sensitivity of 0.77 and specificity of 0.70). In the latter case, the
analysis revealed a threshold of Vmaxup with a scaling factor of
1.2 that statistically separated the accepted and rejected models.
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FIGURE 5
Afterload tests. Panels (A, B) show examples of an accepted (A) and a rejected (B) model during afterload tests. The panels show action potentials (AP),
Ca2+ transients ([Ca2+]i), force and length (normalized to initial length) during isotonic contractions at different afterloads (0.25, 0.5 and 0.75 of Fmax,
where Fmax is the isometric peak active force). (C) ‘Force - velocity’ (F–V) relationships in the models calibrated during the afterload tests. The black line
shows the F-V relationship for the reference TP + M model. The F-V curve for the accepted model in panel A is indicated by the black dashed line. The
F-V curves for all models rejected in the afterload tests are shown by red lines, with the dashed line corresponding to the model shown in panel (B).
The X-axis indicates the afterload, normalized to the respective Fmax. The Y-axis indicates the velocity of shortening of cardiomyocytes during
afterloaded isotonic twitches.

The odds ratio of having an accepted model when the scaling
factor was less than 1.2 versus when the scaling factor was greater
than 1.2 was 8.1 (95% confidence interval [4.9, 13.5]), showing
the high power of this prediction. The probability of finding a
normal model in the case of a scaling factor of Vmaxup lower
than 1.2 was 95% high. In the case of a scaling factor higher
than the threshold, the probability to sample a normal model is
reduced to 70% but still suggesting a high acceptance rate for
models with parameters from the non-implausible parameter space
we found.

It should be noted, that in contrast to themodels rejected during
the initial AP and Ca2+ transient calibration, the models rejected
during the mechanical tests have realistic AP, Ca2+ transient and
force waveforms under the baseline mechanical conditions similar
to the accepted models (Figure 2). This shows the importance of the
mechanical tests and variation in the contraction conditions when
using electro-mechanical model populations.

3.4 Distribution of output biomarkers in the
population of accepted models

Figure 6B demonstrates the distribution of output biomarkers
derived from simulated AP, Ca2+ transient, and isometric force
signals in the final population of accepted models. According to the
calibration criteria, all output biomarkers in the accepted models
fall within the acceptable range consistent with the experimental

data (Figure 6B; Table 4, compare with the experimental data from
Table 1). In the HM procedure, only AP biomarkers were calibrated
according to their parameters of variability in the experimental data
(mean, standard deviation), so the average values of APD20, APD90,
and RMP are close to the average values obtained in the experiments
(Figure 6B).Themean ofAPD50 is larger andTri9040 is smaller in the
model population than in the experimental data, while remaining
between minimum and maximum values.

Model calibration using Ca2+ transient biomarkers was limited
by minimum and maximum values for lack of a sufficient pool
of experimental data to obtain a representative distribution of
Ca2+ transient characteristics in human cardiomyocytes. However,
Ca2+ transient in our accepted models yielded mean values for
diastolic and systolic concentrations of 0.05 ± 0.016 μM and 1.05 ±
0.15 μM (see CTmin, CTmax in Table 4), which are consistent with
experimental data in human ventricular preparations. The mean
values for the temporal characteristics of Ca2+ transients in the
accepted models also agree with the experimental data (see time
to peak CaTTP and duration CTDXX at the XX% decay level).
Note that CTmin, CTmax and CaTTP have asymmetric distributions
with the most frequent values closer to the lower border of the
distribution.

Figure 6B also shows the distribution isometric force
biomarkers (FTTP is the time to reach peak isometric force,
FTTr is time to force decay to 90%, FTD is the duration of the
isometric twitch, FTd and FTpeak are diastolic and peak systolic
force values), which were not calibrated in the HM procedure.
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FIGURE 6
Distribution of input parameters and output biomarkers in the electro-mechanically calibrated models. (A) Scaling factors of input parameters in
accepted models from the final population, shown as boxplot diagrams. The middle marker of the boxes shows the median, the box boundaries are the
25th and 75th percentiles, and the whiskers extend to the most extreme data points. (B) Boxplots (upper) and histograms (lower) of the distribution of
biomarker values of action potential, Ca2+ transient and isometric force in the population of accepted electro-mechanical models. The dotted vertical
lines indicate the minimum and maximum values of the biomarkers derived from experimental data (Table 1), and the dashed vertical lines indicate the
experimental mean values of the AP biomarkers (Table 1). The Y-axis indicates the number of models, and the X-axis the biomarker value. RMP is the
resting membrane potential; APDxx is the duration of AP at the XX% level of repolarization; Tri9040 - triangularity of AP, defined as the difference
between APD90 and APD40; CTmin, CTmax are diastolic and systolic values of the concentration of free Ca2+ in the cytosol; CaTTP is the time to reach
the peak of the Ca2+ transient; CTDxx is the duration of the Ca2+ transient at the XX% decay level; FTTP is the time to reach isometric peak force; FTTr
is the time of 90% of isometric force decay; FTD is the isometric twitch duration; FTd and FTpeak are diastolic and maximum systolic force levels. Both
FTd and FTpeak are normalized to the FTpeak of the reference TP + M model.

They were first used after the convergence of the HM algorithm
for re-calibrating the initial population of models calibrated using
electrophysiology and Ca2+ transient data. It should be noted that
only a few models (17 out of 769) from the initial population were
rejected at this stage of mechanical calibration. This indicates that
the majority of models with acceptable AP and Ca2+ transient
characteristics produce contractions that are in agreement with
the experimental data, thus demonstrating the validity of our
approach. Every force characteristic in the final accepted population
is also within the range of minimum and maximum values available
from experimental data (Figure 6; Table 4). However, data on the

mechanical characteristics are very limited while those available
were registered in experimental observations on a small number
of preparations (n = 11 (Brixius et al., 2001), n = 8 (Vahl et al.,
1998); n = 9 (Pieske et al., 1996)). Thus, the uncertainty in the force
calibration data is higher compared to the data for the AP and
Ca2+ transient. Therefore, we also evaluated model contraction
characteristics based on data from experimental animals. For
example, our models gave a ratio of active to passive force consistent
with that observed experimentally in human and is specific
to normal myocardium (Vahl et al., 1997; Rossman et al., 2004;
Chung et al., 2019).
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TABLE 3 Summary of statistics on the distribution of scaling factors for
model parameters in the population of electro-mechanically calibrated
models.

gNa gCaL gK1 gKs gKr Vmaxup KNaCa PNaK ks kim kom

mean 0.87 1.42 1.05 1.25 0.97 1.01 1.10 1.3 1.03 0.99 1.28

std 0.46 0.29 0.48 0.43 0.49 0.34 0.45 0.23 0.52 0.49 0.35

min 0.01 0.66 0.02 0.06 0.02 0.22 0.19 0.64 0.01 0.01 0.36

25% 0.50 1.22 0.66 0.95 0.56 0.76 0.73 1.15 0.6 0.59 1.03

50% 0.85 1.43 1.05 1.31 0.93 1.02 1.09 1.31 1.06 1.01 1.29

75% 1.24 1.64 1.44 1.58 1.37 1.24 1.45 1.46 1.47 1.38 1.53

max 1.93 2.00 1.99 2.00 1.99 1.99 2.00 1.85 1.99 1.99 2.00

FIGURE 7
Correlation between scaling factors for parameters PNaK and gCaL in
the final population of accepted models. Dots indicate values in
individual models, histograms show the marginal distribution of the
corresponding parameters, and the blue line shows a linear regression
line with the equation PNaK = 0.59 ⋅gCaL + 0.46. Pearson’s correlation
coefficient r = 0.733, p < 0.001.

3.4.1 Correlations between output biomarkers in
the accepted models

Supplementary Figure S10 shows pairwise scatter diagrams of
the output biomarker values in the population of accepted models.
In addition to the rather obvious correlations of temporal AP
biomarkers with each other, there is a high correlation of force
biomarkers with temporal Ca2+ biomarkers. For example, isometric
force duration (FTD) correlates withCa2+ transient duration (CTD50
and CTD80) with r = 0.75 (p < 0.01) and r = 0.65 (p < 0.01),
respectively.

Moreover, the peak isometric force biomarker FTPeak correlates
with most of the amplitude and temporal biomarkers of Ca2+ and

FIGURE 8
Difference in the distributions of the scaling factor for the maximum
rate of the SR SERCA pump (Vmaxup) between the accepted models
(blue) and the models rejected from the electrophysiologically
calibrated population using mechanical testing (red). Boxplots (top)
and histograms (bottom) show the Vmaxup scaling factor distribution in
the population of accepted (blue) and rejected (red) models. Each
histogram was normalized so that the column area be equal to 1. The
vertical dotted line marks the threshold for Vmaxup, above which
anomalies in the cell models are predicted in mechanical tests (see
Results for details).

force, thus yielding, for instance, r = 0.79 with Ca2+ transient
amplitude (CTmax) and r = 0.62 with CTD50.

These results show tight coordination between characteristics
of Ca2+ transient and force generation in accepted models,
producing simultaneously acceptable characteristics of the processes
of excitation-contraction coupling, which confirms again the
validity of the models.

3.5 Validation of the population of models

3.5.1 Validity of the reference electro-mechanical
TP + M model

Our population of human cardiomyocyte models was created
based on the reference TP + M model (Bazhutina et al., 2021). The
final population consisted of accepted models that were step-by-
step calibrated using the electro-mechanical tests as discussed above.
The reference model met all these calibration criteria. Reference
value (scaling factor of 1) for each of 11 input parameters varying
in the population falls into the permissive parameter space and a
majority of the referent parameters lies between the 25% and 75%
percentiles of the parameter distribution in the final population.
Only for two parameters, the conductivity of the inward L-typeCa2+

current gCaL and the maximum density PNaK of the NKX current,
the reference values are lower than the 25% percentile (but higher
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TABLE 4 Summary of statistics for the distribution of output biomarkers of AP, calcium transient and force generated by the acceptedmodels in the final
population.

APD20(ms) APD50(ms) APD90(ms) Tri9040(ms) RMP(mV)

mean std 164.84 270.68 330.21 78.84 −85.56

30.93 30.14 40.93 29.02 1.48

CTmin(μM) CTmax(μM) CaTTP(ms) CTD50(ms) CTD80(ms)

mean std 0.05 1.04 75.35 155.34 257.2

0.016 0.15 18.86 41.11 39.63

FTTP(ms) FTTr(ms) FTD(ms) FTd(A.u.) FTpeak(A.u.)

mean std 298.15 261.08 466.09 2.36 49.35

34.95 33 58.12 0.14 11.26

than themean-2σmargin) for the population distribution, with their
means being higher (by 40% for gCaL and by 30% for PNaK) than
the reference values. These observations confirm that our reference
model is representative of the population of calibrated models and
can be used in various applications which do not require using the
population approach.

3.5.2 Response to modulations of ionic currents
Models from the final population of accepted models, including

the reference TP + M model, were evaluated using additional
experimental data on human myocardium response to various
interventions which were not used for model calibration. We
evaluated the sensitivity of the models to variations in several
ionic currents, the qualitative effects of which on AP characteristics
have been experimentally assessed in human. The conductances of
the following nine ionic currents were modulated using a scaling
factor of 0.5 (two times reduction) or 2.0 (two times evaluation) as
compared to baseline: fast Na+ current (INa), L-type Ca2+ current
(ICaL), transient outward K+ current (Ito), rapid and slow delayed
outward rectifier K+ currents (IKr , IKs), inward rectifier K+ current
(IK1), Na+ −Ca2+ exchanger (INaCa), Na+ −K+ pump (INaK), and
SERCA pump (Iup). We assessed the uniparameteric sensitivity of
the following AP biomarkers: rest membrane potential (RMP), peak
voltage (Vpeak), maximum upstroke velocity (dV/dtmax) and APD
at 90% repolarization (APD90), in the same way as in (Riebel et al.,
2021). Relative sensitivity to parameter variation was calculated as
described in (Romero et al., 2009).

Supplementary Figure S11 shows the relative sensitivities of the
AP biomarkers to variations in the parameters of the ionic currents
in the reference TP + M model and in a representative model from
the final accepted population with mean values of the parameters
in the population (hereinafter referred to as a “mid-range” model).
A twofold decrease in gNa causes a considerable decrease in
dV/dtmax (−27% and −17% in the TP + M and mid-range models)
and Vpeak (−20% and −4%, respectively). The model response is
qualitatively consistent with the observed negative effects of sodium
blockers on the membrane depolarization (Bhattacharyya and
Vassalle, 1982; Legrand et al., 1983; Gottlieb et al., 1990). The Vpeak
decreases also with decreasing gNaK and gCaL and with increasing gto
or KNaCa.

The AP biomarkers were also essentially sensitive to variation in
gNa, gCaL, gKr , gKs, gK1 and PNaK (Supplementary Figure S11A, B).
Specifically, an essential APD90 shortening was observed with
increasing the K+ currents: -18%, −11%, −13% in the TP +
M model, and −20%, −11%, −9% in the mid-range model
for a two-fold increase in gKr , gKs and gK1, respectively. In
consistency with experimental data in human cardiomyocytes,
the simulations show that a decrease in gCaL results in a
APD90 shortening (Dangman et al., 1982; Li et al., 1999), whereas
a decrease in gKr , gKs and gK1 results in APD90 prolongation
(Bosch et al., 1998; Hondeghem et al., 2001; Jost et al., 2005; Guo
 et al., 2008).

Thus, we showed that our calibrated models are able to
qualitatively predict changes in AP as a result of modulating the
activity of ionic currents.

3.5.3 Drug-induced effects
To validate our final population of electro-mechanically

calibrated models of human cardiomyocytes, we simulated the
effects of two drugs: Dofetilide and Verapamil.

Figure 9A shows examples of the drug action on the AP
waveform and isometric force in a representative mid-range model
from the final accepted population. The drugs produced an opposite
effect on AP duration. AP prolongs in simulations of Dofetilide
action on the ionic currents, while AP reduces under Verapamil.
At concentrations higher than EFTPCmax, Dofetilide causes
repolarization abnormalities in a number of models from our
population. Figure 9B illustrates an example of EADs occurring
under Dofetilide in such models from the final population. These
results are qualitatively consistent with experimental data on human
ventricular trabeculae (Page et al., 2016), ventricular myocytes
(Guo et al., 2011), stem cell-derived cardiomyocytes (Gibson et al.,
2014; Lu et al., 2015; Zeng et al., 2016). At the same time, Dofetilide
does not affect the isometric force of the virtual cell, in line
with no data reported on the effect of Dofetilide on myocardium
contractility. On the contrary, as its concentration is increased,
Verapamil causes a crucial reduction in force production, which
also agrees with experimental data for humans (Nguyen et al.,
2017). Figure 9C summarises the effects of increasing the
concentration of the drugs on AP duration and amplitude of cell
shortening in isotonic contractions under an afterload equal to
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FIGURE 9
Drug effects in the population of accepted models. (A) Action potential and isometric force of a model sample from the final population under different
concentrations of Verapamil and Dofetilide. The model that has no anomalies under drug exposure has been selected. The concentrations are coded
in shades of blue, from dark blue, corresponding to baseline (zero concentration), to light blue, corresponding to 100 times the maximum effective free
therapeutic concentration (EFTPCmax). The arrows indicate the direction of the changes in action potential duration with increasing drug
concentration. Force is normalized to the peak isometric force (FTpeak) of the reference TP + M model. (B) Action potential, Ca2+ transient and
isometric force of a model sample under different concentrations of Dofetilide. The model showing repolarization abnormalities was selected.
Concentrations are coded in shades of red, from dark red, corresponding to baseline (zero concentration), to light red, corresponding to
100xEFTPCmax. At high concentrations, the model shows repolarization abnormalities in the form of additional peaks in the repolarization phase of AP
and additional Ca2+ peaks. (C) Boxplot diagrams showing the effects of Dofetilide and Verapamil on action potential duration (APD90) and isotonic cell
shortening in the final population as a function of concentration. The solid horizontal line in each box indicates the median, and the boxes indicate the
first and third quartiles for the parameter values. The whiskers indicate either 1.5 times of the interquartile range or the furthest data points.
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FIGURE 10
Abnormal events under Dofetilide and Verapamil. Heatmap shows a number of models with repolarization abnormalities (top line) and failed
contraction (bottom line) in the final population of 674 models during contractions at different initial cell lengths from 0.93 to 0.80Lmax with increasing
drug concentration. The vertical axis plots the concentration of the compound (from 1 to 100xEFTPCmax), and the horizontal axis plots the initial cell
length.

half the maximum isometric force in the population of accepted
models.

To assess the risk of adverse events in our population of
calibrated electro-mechanical models under drug exposure, we
estimated the frequency of the following events in the models. We
recorded the occurrence of electrical disturbances as repolarization
abnormalities and mechanical disturbances as failed contractions
with an amplitude of isotonic shortening of less than 1%.
Figure 10 shows a heatmap of the frequency of adverse events
in our population of models with increasing drug concentration.
Dofetilide demonstrated an increasing number of models with
repolarization anomalies in the population both with increasing

the concentration of the compound and with decreasing the initial
sarcomere length (up to 101 models with repolarization anomalies
at 100xEFTPCmax and initial length equal to 0.80Lmax, which
is 15% of the model population). This result is consistent with
experimental data characterizing Dofetilide as a drug with a high
risk of arrhythmia. At the same time, Dofetilide shows no inotropic
effect, and even high concentrations of Dofetilide do not affect the
amplitude of model contractions in the population compared to the
baseline.

For Verapamil, opposite effects are observed. Verapamil does
not show an impressive electrophysiological effect: the number
of models with repolarization abnormalities does not change
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significantly with concentration and initial sarcomere length. The
model, therefore, predicts the drug as having a low risk of
arrhythmia. At the same time, starting from a concentration
of 3 times EFTPCmax and higher, Verapamil crucially reduces
contraction ability in the vast majority of models from our
population at any preload. This predicts the drug to be potentially
dangerous in terms of contraction failure.

4 Discussion

4.1 Mechanical tests for calibration and
verification of electro-mechanical cell
models

In this study, we have built a new population of cell models of the
electro-mechanical activity in human ventricular cardiomyocytes.
First, the population we developed was calibrated and evaluated
using experimental data on the biomarkers of cell electrophysiology
and several tests for the effects of ionic current modulation on
the AP shape and duration. Then, to the best of our knowledge,
this is the first population that was also calibrated and evaluated
using a combination of biomarkers of mechanical activity in human
ventricular cells and several tests for the effects of mechanical
interventions on cellular activity.

In the first step of the algorithm that we developed to build
a population of calibrated models, we applied a HM approach
to calibrating the models againts experimental data on the AP
and Ca2+ transient characteristics in isolated human ventricular
cardiomyocytes (Table 1). The HM approach allows one to account
explicitly for uncertainty and variability in observations and to
define feasible regions of the model parameters that produce results
within the experimental variability (Coveney and Clayton, 2018). In
contrast to the studies by B. Rodriguez’s group, we took amore subtle
approach of not rejecting models from the sampled population
itself, but rather of restricting the space of input parameters using
Gaussian process regression models and the HM method. This
approach allowed us to remove the parameter ranges that gave rise
to models with implausible (according to experimental biomarker
values) behaviour. The result was a significant reduction in the
initial input parameter space, ensuring an acceptance rate of 0.8 for
models sampled from the reduced non-implausible parameter space.
In other words, on average, 8 out of 10 models with parameters
randomly sampled from the non-implausible spacewill show correct
behaviour. This rate is much higher than the rate of 0.4 shown in
Passini et al. (2017).

Previous modeling studies focused on the identification of
the local input parameter distribution to reproduce variability
in a particular experimental output set (Coveney and Clayton,
2018). In contrast, we have tested a wide range of parameter
values to reproduce the wide variability in cardiac cellular
electrophysiology and Ca2+ handling as recorded in different
experimental studies on isolated cardiomyocytes with comparable
experimental conditions, while taking into account the uncertainty
in these data. The approach we developed can be considered as
an extension of the population of models approach (Britton et al.,
2013; Muszkiewicz et al., 2016; Passini et al., 2017) where
by the distributions of certain parameters were derived by

calibration against AP recordings using acceptance/rejection
criteria.

A different approach was suggested by Pathmanathan et al.
(Pathmanathan et al., 2020) to develop populations of models based
on the input parameter uncertainty assessed in experimental
studies. In this work, the authors used a simplified model of the
electrophysiology of the canine heart cell. The authors estimated the
variability of a majority of input parameters based on experimental
data on their distributions and used the Monte Carlo method to
generate vectors in the input parameter space and then calculate
electrophysiological models and estimate biomarkers.

In contrast to this work, we used an electro-mechanical
mathematical model of the human cardiac cell for which there
were no data on the uncertainty of the chosen input parameters.
Therefore, we took advantage of available experimental data on
several output biomarkers: the mean and uncertainty (variance)
of the distributions of AP characteristics, min-max values of Ca2+

transient characteristics and active force signals. Based on the
experimental distributions for the model output biomarkers, we
solved a kind of inverse problem, i.e., to find a multi-dimensional
distribution of the input parameters that provides a distribution of
output biomarkers within the experimental range. Similar to the
Pathmanathan and Gray approach, each new model sampled from
the non-implausible parameter space has to be tested in benchmark
experiments for normality/abnormality in terms of biomarker
values and the time course of AP, Ca2+ transient and force/length
twitch during contractions under different initial conditions.

The initial set of electrically calibrated models consisted of
approximately 80% (769 out of 1,000) randomly selected models
from a non-implausible parametric space defined by the HM
algorithm in the last iterative step. The remaining 20% of models
were rejected because they did not meet the calibration criteria
for AP and Ca2+ transients and/or had repolarization anomalies
(RA, Supplementary Figure S4). Note that these 20% parameter
sets were selected from the parametric space predicted as non-
implausible by the Bayesian regression model (emulator) trained
to predict the outputs of the original ODE model (simulator). The
high number of rejected simulator models (compare the numbers of
rejected emulators and rejected simulators in Figures 1B,C)) points
to another facet of the uncertainty in the models. In paticular, it
does not allow a regression model to predict the outputs of an ODE
cell model with ≈100% high accuracy. This fact requires further
analysis in order to improve the methods for generating populations
of models.

Then, the initial population of electrically calibrated models
was further re-calibrated using biomarkers of mechanical activity
in human ventricular cardiomyocytes and various mechanical tests
(Table 1; Figure 2). Such mechanical calibration of models was
performed for the first time. We found more than 10% of electrically
calibrated models (79 out of 769) that did not meet mechanical
calibration criteria (Figure 2). The majority of the models (56 out of
79) rejected in this step showed repolarization anomalies during the
excitation-contraction cycle at a reduced initial cell length compared
to the reference length utilized to calculate cell activity for electrical
calibration (Figure 3). The initial cell length (pre-stretch) in the
intact heart depends on the mechanical preload imposed on the
cells, which may vary between and within ventricles depending on
the diastolic pressure in the ventricular chambers (Sengupta et al.,
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2006; Ashikaga et al., 2007). Such cardiomyocyte length variation in
the physiological diapason should not induce ventricular excitation
abnormalities in the normal heart, thus we rejected the models
showing abnormal sensitivity to the preload.

A further test for the mechanical calibration of the models
was also associated with the response to variation in initial cell
length characterized by the ‘length - force’ (L-F) dependence. The
isometric L-F relationship for an isolated cardiac preparation is
commonly considered as an equivalent of the Frank–Starling law
of the heart characterizing the ability of the intact heart to produce
higher stroke volumes with increasing diastolic preload (Sequeira
and van der Velden, 2015). In agreement with experimental
data (Vahl et al., 1997; Holubarsch et al., 1998) (Table 1), the
L-F dependence was assumed to be monotonous and rising with
increasing the length, and not to fall down to near zero even at low
(but permissible) initial cell lengths in the physiological diapason.
Only two models that passed the preceding calibration steps did
not meet the criteria for the L-F curve and were rejected (Figure 4).
Such qualitative robustness of the L-F dependence in a wide range
of model parameters indicates that our electro-mechanical cell
model adequately reproduces this fundamental property of the
myocardium.

Another fundamental characteristic of myocardial mechanics is
the ‘force - velocity’ (F-V) dependence, which shows an increase in
the shortening velocity of the contracting muscle with decreasing
mechanical load (afterload). Three more models were additionally
rejected as revealing repolarization anomalies during afterloaded
contractions. Moreover, these three models displayed a non-
monotonic F-V relationship, in contrast to that conventionally
registered in the myocardium of all mammals (Figure 5). It should
be noted that the three models did not show repolarization
anomalies in isometric twitches at any initial lengths we tested.
At the same time, faster and deeper sarcomere shortening during
afterloaded contractions at low afterloads caused greaterCa2+ release
from TnC that was able to induce EADs in the models.

Finally, the 674 electrically and mechanically calibrated models,
that passed all the tests we used for model calibration yielded action
potential, Ca2+ transient, and active tension that morphology and
physiologically essential features (including time to peak, amplitude,
recovery constant, and duration) are in agreement with experiments
for human ventricular preparations. Similar to the human electro-
mechanical cell model developed recently by Margara and co-
authors (Margara et al., 2021), our calibrated models correctly
predict the responses of human myocardial samples to modulations
in the activity of several essential ionic currents affecting the AP
characteristics.

It should be noted that variations in the mechanical conditions
of cell excitation and contraction affect the AP characteristics and
can induce not only contraction but also excitation abnormalities
due to mechano-electric feedback mechanisms, which are taken
into account in our electro-mechanical cell model. In our recent
article (Balakina-Vikulova et al., 2020), we carefully analyzed the
effects of mechano-electric coupling in human ventricular cells
when evaluating the TP + M model. In the current study, the
rejectedmodel samples, that failed to pass the functionalmechanical
tests, predict that, under certain conditions, intra- and inter-
cellular mechano-electric couplings can increase the vulnerability of
arrhythmia in the intact myocardium during cardiac cycles.

4.2 Non-implausible parametric space and
prediction of excitation abnormalities in
sampled models

The non-implausible parameter space was essentially reduced as
compared with the initial hypercube used to sample parameters for
HM approach (Figure 6). Specifically, the low border for permissive
values was distant from zero for conductivity of essential currents
(gCaL, PNaK , Vmaxup, and KNaCa) strongly affecting characteristics of
AP and Ca2+ transient in normal cells.

No correlation was observed between the model parameters
except the two parameters (gCaL and PNaK) of the ionic currents
defining Ca2+ levels in the cell. In our previous simulation studies
(Sulman et al., 2008; Katsnelson et al., 2011; Solovyova et al., 2016;
Kursanov et al., 2023), we showed that an imbalance between
the two currents particularly due to INaK inhibition may cause
Ca2+ overload followed by excitation disturbances (EADs, DADs,
prematureAPs and extrasystoles) in cardiomyocytes andmyocardial
tissue. Furthermore, our models predicted, and subsequent
wet experiments with ouabain confirmed, that the mechanical
conditions of myocardial contraction (preload and afterload,
and the mechanical interactions between cardiomyocytes and/or
between cardiomyocytes and fibroblasts) may contribute to the
pro-arrhythmic effect of INaK inhibition (Sulman et al., 2008;
Katsnelson et al., 2011; Solovyova et al., 2016; Kursanov et al., 2023).
The new data we revealed in the current study from the population
of models suggest that the arrhythmogenic threshold for INaK
inhibition strongly depends on the activity of ICaL as well.

However, the varying parameters in the accepted models
have distributions with rather high variability within the range
of population sampling. Moreover, the analysis of parameter
distribution for each of the 11 varying input parameters
in the finally accepted models and models rejected during
consequent electrophysiology calibration and mechanical
tests showed no significant difference between the groups
(Supplementary Figures S6, S7) except the onlymaximum velocity
Vmaxup of SERCA pump extruding cytosolic Ca2+ into the SR
during contractile cycles in the cells. The mean value of Vmaxup was
significantly higher in the rejected models compared with accepted
models (Figure 8). At the same time the intervals of Vmaxup value
partially overlap in the accepted and rejected models, not allowing
to rigidly separate the permissive and non-permissive values.

It is easy to demonstrate that intersection of projections of
a multi-dimensional parameter space onto the low-dimensional
subspaces no necessarily reflects the fact of inseparability between
two multi-dimensional sets. There could be an explicit or implicit
nonlinear transformation of the parameter spacewhich separates the
sets. In the case of the 11-dimensional space we analysed, we have
not been able to find such a transformation that distinguishes the
parameter sets of the accepted and rejected models.

Moreover, we think we should not assume a pure
(deterministic/mechanistic) separability between the parameter
subspaces for accepted and rejected models in the non-implausible
parameter space we identified. Taking into account a high
nonlinearity of themodel solution on the parameter values, we could
assume the possibility of non-physiological or unstable solutions in
the deterministic ODE system at any given parameter vector, and
consider a problem of predicting the model rejection.
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We applied machine learning algorithms to assess the
contribution of the 11 model parameters (input features) to
the logistic regression score (see Supplementary Figure S9 in
the Supplementary Materials). This analysis revealed the Vmaxup
parameter having the most essential contribution to the prediction
of the score of model rejection. We also showed an increasing
frequency of the rejected models with the Vmaxup scaling factor
(Supplementary Figure S8). This led us to develop a one-
parametric logistic regression that showed the predictive power
of the parameter in classifying models into the accepted and
rejected sub-populations with high accuracy. The analysis revealed
a threshold of Vmaxup with a scaling factor of 1.2 that statistically
separated the models.

Based the analysis, we have to stress that there is a non-zero
chance to sample a model from the non-implausible parametric
space that exhibits excitation abnormalities. This follows from the
inherent uncertainty in the input and output parameters underlying
the nature of biological subjects and the population construction
algorithm we used. However, we have to point out that we analyzed
the parameters of models from the non-implausible parametric
space that was initially calibrated against the AP and Ca2+ transient
biomarkers. And this space was essentially reduced as compared
with the wide space we used for the first model sampling ensuring
a high acceptance rate of normal models. Despite the probabilistic
nature of our predictions on the distribution of non-implausible
parameters, our population of models that were initially calibrated
according to the AP and Ca2+ transient biomarkers showed a great
fraction of models that passed all mechanical tests (674 out of 769,
or 88%) we performed suggesting its normality. Moreover, in the
range of Vmaxup with a scaling factor from 0.3 to 1.2 the fraction of
stable models was more than 95% (Supplementary Figure S8), and
the fraction is about 70% if Vmaxup is higher than 1.2. These results
show the applicability of our approach for improving the model
selection process with statistically expected predictions. At the same
time, our analysis suggests that anymodel from the non-implausible
parameter space we found should be further tested for normality
before being used in silico studies of the effects of interventions.

4.3 Drug testing

In drug development, cardiac safety testing has been focused
on life-threatening pro-arrhythmic events, especially Torsade de
Pointes (TdP), a rare ventricular tachyarrhythmia that can lead
to sudden death (Gintant et al., 2016). The recently launched
Comprehensive In Vitro Proarrhythmia Assay (CiPA) initiative
is aimed at developing a new paradigm integrating a set of
predominantly nonclinical assays andmethods for assessing the risk
of TdP (Colatsky et al., 2016). Also, great efforts have been made to
develop anduse in silico electrophysiological and electro-mechanical
cardiomyocyte models (Chang et al., 2017; Passini et al., 2017; 2019;
Li et al., 2019c; Tomek et al., 2019; Margara et al., 2021).

Drug effects are typically incorporated in cell models using
IC50 and Hill coefficient data (Passini et al., 2017), by means of
simple pore-blockmodels of drug action.The effects of ionic current
modulation on the AP wave and force generation relative to control
have been compared to experimental data available on human
cardiomyocytes and myocardial objects and different metrics of

excitation abnormalities in drug exposure simulations have been
suggested for predicting the pro-arrhythmia risk of drugs and
comparing it with pre-clinical and clinical data. As generally agreed
in the CiPA community, in silico mechanistic models have a great
potential for drug testing (Colatsky et al., 2016; Li et al., 2019a).

To validate our population of accepted electro-mechanical
models of human cardiomyocytes, we also used two multichannel
action reference compounds from the list of 28 so-called “calibration
drugs” suggested for lab-specific calibration and validation of
CiPA models for pro-arrhythmic risk prediction (Colatsky et al.,
2016; Li et al., 2019a). We selected Dofetilide and Verapamil as
representative compounds classified into the three “High”, and
“No or Very low” TdP risk groups according to available data
and expert clinical opinion (Li et al., 2019a). We validated our
in silico population of virtual cardiomyocytes using in vitro ion
channel data for the drugs incorporated into each accepted
model of our calibrated population. The model responses were
compared with experimental and clinical data for the drug effects
on electrophysiology and contractility in human subjects (see
the reference list in (Margara et al., 2021)). In consistency with
the clinically categorized pro-arrhythmic profiles of the drugs,
their specific effects on the ionic currents differently affected
the cellular electrical and contractile activity in the models. In
accordance with experimental data (Gibson et al., 2014; Page et al.,
2016; Britton et al., 2017), Dofetilide prolonged the AP duration in
the models at low and moderate concentrations (Figure 9). With
increasing the concentrations further, the drug, which is known to
be clearly associated with TdP risk, caused an increased incidence of
repolarization abnormalities in the models (Figure 9; Figure 10). In
addition, the probability of adverse events under Dofetilide-induced
modulation of the ionic currents was shown to be significantly
dependent on the mechanical conditions of excitation, increasing
with decreasingmechanical preload on the virtual cells. For example,
under a Dofetilide concentration of 10xEFTPCmax, the frequency
of repolarization abnormalities was more than three times higher
at an initial length of 0.80Lmax versus 0.93Lmax (Figure 10). In
contrast, Verapamil, classified as a safe drug with no risk of TdP,
had little effect on AP duration and showed a low frequency
of repolarization abnormalities in the models even at a drug
concentration as high as 100xEFTPCmax. Moreover, the incidence
of adverse events was virtually independent of the Verapamil
concentrations we tested and of themechanical conditions we varied
(Figure 9).

Contrary to the effects on the electrical activity in virtual
cardiomyocytes, Dofetilide had almost no effect on the mechanical
activity at any concentrations. No failed contraction (assumed as
less than 1% shortening in the afterloaded isotonic twitch) was
observed at any Dofetilide concentration for any initial cell length
we tested. In contrast, Verapamil was shown to induce an abrupt
negative inotropic effect at concentrations above 3xEFTPCmax,
with the majority of models ceasing to contract despite a near-
normal excitation profile. In this case, the frequency of mechanical
abnormalities showed no specific dependence on the initial cell
length, demonstrating an “all or nothing” effect independent of the
external mechanical condition.

The drug testing results confirm that our population of
calibrated electro-mechanical models is potentially appropriate for
drug testing according to the general principles declared in the
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White Paper of the CiPA community for creating, validating and
establishing the acceptability of in silico models for pro-arrhythmic
risk prediction (Li et al., 2019a; b). The next steps of population
validation will require in lab testing of the whole set of the selected
28 “calibrating” and “validating” compounds, and development of
in lab metrics for assessing the risk of excitation abnormalities and
contractile dysfunction consistent with available experimental and
clinical data and predictive of the category of TdP risk and other
adverse events as agreed in the community.

5 Strengths and limitations

The key accomplishment of our paper is that we have clearly
demonstrated that themechanical conditions during cardiomyocyte
excitation-contraction cycles are essential factors affecting the
myocardial performance in silico cardiac models. Changes in the
external and internal mechanical conditions for the myocardial
activity, such as preload (stretching at diastolic pressure) and
afterload (aortic resistance and systolic pressure), the mechanical
environment of each cardiomyocyte in the tissue and their activation
sequence, occur to a greater or lesser extent in every cardiac cycle
of our daily lives. This determines the dynamic processes of cellular
excitation and contraction, which are closely coupled with each
other by feedforward and feedback links. We have showed that
at certain combinations of cellular properties of ionic currents
and Ca2+ handling, a change in the mechanical conditions may
cause excitation abnormalities, which are not revealed by other
mechanical tests. We discovered that a number of models carefully
calibrated using various electrophysiology tests and demonstrating
normal AP and Ca2+ transient signals with acceptable biomarkers
may reveal anomalies in the mechanical tests. Thus, our results
highlight the importance of mechanical testing for the generation,
calibration, verification, and further usage of in silico models for
different tasks of basic science and applications. The key message
of our study is that cellular mechanics need to be taken into
account even if one consider only abnormalities in electrical activity
in response to an intervention involving predominantly ionic
mechanisms!

However, there is another cellular mechanism of transfer
mechanical of impacts on AP generation in cardiomyocytes that
has not been in the focus of our simulations. The activity of
stretch-activated and mechanosensitive channels could explain
some phenomena related to acute or chronic changes in the
mechanical environment of cardiomyocyte contraction (Quinn
and Kohl, 2021). Previously, we discussed the use of stretch-
activated channels in simulations by the TP + M model (Balakina-
Vikulova et al., 2020). We argued that, according to experimental
data, stretch-activated channels have a role to play more likely
in slow responses to mechanical changes than in our tests
dealing with immediate responses in cardiomyocyte excitation to
changes in the mechanical loading during one pre- and afterloaded
contractions. The uncertainty and diversity of experimental data
for the parameters responsible for the reversal potentials and
conductance of stretch-activated channels complicate the correct
insertion of these channels in the TP + M model. However, we
plan to make further efforts to correctly implement the stretch-
activated channels in the reference TP + M model, and then in the

respective population so that they could be applied to the analysis
of disturbances in the electromechanical activity of cardiomyocytes
during slow force responses and prediction of effective scenarios
aimed at correcting such disturbances.

Our population of models was generated assuming variability
in parameters that define the activity of several transmembrane
ionic currents and Ca2+ release from and uptake into the SR. These
parameters affect significantly the AP and Ca2+ transient shape
and physiologically important characteristics in the cells. Model
calibration revealed several relationships between the parameters,
that coordinate ionic levels and dynamics in normal cells predicted
from unexpected disturbances. We found great variability in the
selected parameters defining the variability in the cellular output
biomarkers in the experimentally permissive range. We showed
that the parameters of intracellular Ca2+ handling, especially the
maximum velocity of the SERCA Ca2+ pump performing Ca2+

uptake from the cytosol into the SR, affect the excitation profile, and
its increase over a threshold permissive level may cause excitation
anomalies.

In this study, we did not vary the intrinsic parameters of the
mechanical activity (such as the velocity of cross-bridge cycling,
cooperativity of Ca2+ activation of myofilaments and so on)
between the models. However, these parameters are known to
vary between cells and cycle-to-cycle depending on the conditions
(Cordeiro et al., 2004; Stelzer et al., 2008; Cazorla and Lacampagne,
2011). Particularly, in our recent study using an electro-mechanical
model of cardiomyocyte and neural networks (Parikh et al., 2022),
we predicted that these model parameters are strongly affected by
the drug Omecamtiv Mecarbil underlying its inotropic action on
myocardium objects.

Furthermore, we did not classify our population of cell
models into groups reflecting the regional heterogeneity in the
properties of cardiomyocytes in different regions and layers of
the ventricular myocardial wall. There are available experimental
data on the cellular transmural (endo-, mid-, and epicardial)
heterogeneity across the wall and longitudinal (from apex to
base) heterogeneity with distinctive cardiomyocyte properties
(Janse et al., 2012; Boukens et al., 2015; Solovyova et al., 2016).
This issue was addressed in several simulation studies by us
(Markhasin et al., 2012; Solovyova et al., 2014; Khokhlova et al.,
2017; 2018) and other authors (Seemann et al., 2003; Bondarenko
and Rasmusson, 2010; Maoz et al., 2014), including models of
human cardiomyocytes starting from the original TNNP and ORd
models of cell electrophysiology (O’Hara et al., 2011; Christophe,
2013; Vandersickel et al., 2016; Kojima et al., 2020) to their recent
updates (Tomek et al., 2019; Margara et al., 2021). In recent articles
from our group (Khokhlova et al., 2020), the distinctions in
the intrinsic parameters of contractile activity were shown to
be essential for reproducing the distinctions we revealed in
isolated cardiomyocyte experiments in response to changes in
the mechanical conditions of contraction. We are going to
address the cellular heterogeneity using our population of models
to reveal the mechanisms underlying the different responses
of cardiomyocytes from different ventricular regions to various
electrical and mechanical interventions in norm and pathology.

Experimental and theoretical studies have shown that the
interaction of heterogeneous cardiac muscle preparations can
significantly alter the characteristics of contraction and AP in
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interacting samples (Solovyova et al., 2016; Vikulova et al., 2016).
The presence of an excitation delay between different regions
of the ventricular wall causes some cardiomyocytes to activate
earlier and stretch the cardiomyocytes that are not yet activated,
changing the mechanical environment for their contraction. Due
to the mechanisms of mechano-electric feedback and electrotonic
interaction between adjacent cardiomyocytes, the generation of
AP is also altered compared to a single, uncoupled cardiomyocyte
(Quinn and Kohl, 2021). Heterogeneous cells that are mechanically
and electrically coupled in the normal or pathological myocardium
could react differently to electrical or mechanical impacts compared
to single cells. In particular, cells in the whole heart, which are under
considerable electronic load from electrically-coupled neighbouring
cells, should have a lower potential for abnormal focal excitation
under variations in pre- and afterload. Our preliminary results
obtained by using the continuous model of 1D heterogeneous
cardiac muscle confirm this. We have shown that extra APs and
delayed afterdepolarization occurring in a single cell becomeweaker
(Vikulova et al., 2015) or disappear (not published) in a strand
of electro-mechanically interacting cardiomyocytes. By way of
summarising, it would be a great challenge to study the behaviour
of electromechanical models of 1D, 2D and 3D samples of cardiac
tissue consisting of communicating models obtained during the
construction of populations, including the cellular transmural or
pathological heterogeneity of cells.

6 Conclusion

We calibrated a large number of our in lab electro-mechanical
models of human cardiomyocytes selected randomly from a
parametric space using a great variety of experimental data available
on the electrophysiology, Ca2+ transient and contractile activity of
isolated cells and myocardial preparations from human ventricular
myocardium. For the first time, the models were calibrated using
mechanical tests with different mechanical preloads and afterloads.
One of the main results of our study is that the mechanical tests are
necessary not only for the evaluation of themechanical activity in the
cells but for both Ca2+ handling and electrical activity. For the first
time, we revealed that cell electro-mechanical models, which were
thoroughly calibrated and evaluated to simulate electrical activity
and Ca2+ transient in normal cardiomyocytes may demonstrate
abnormal behaviour under mechanical tests.

Finally, we built a population of accepted models, which were
calibrated in electrophysiological and mechanical tests and yielded
normal waveforms of AP, Ca2+ transient, force and length change
during contractile cycles at different pre- and afterloads, with
amplitude and time-dependent characteristics being representative
of the variability in experimental observations in normal cells. The
accepted models are robust to variation in mechanical conditions
within the permissive range of parameter variations in terms of
low pro-arrhythmia risk. At the same time, we revealed model
parameters, particularly Vmaxup, which, when taken outside of the
permissive range strongly increase the probability for excitation
abnormalities in the models, especially under a change in the
mechanical conditions.

The population of models was verified using “calibrating”
drugs with a pre-described action on the ionic currents and

previously categorized into the groups of either High or Low risk
of TdP. Our models adequately reproduced the effects of Dofetilide
and Verapamil on the cell AP waveform and contraction. The
models predicted a high risk of excitation abnormalities under
Dofetilide and a low risk of Verapamil. In contrast, Verapamil
showed an essential negative effect on contractility and contraction
disappearance at high concentrations of the drug.Our results predict
that sensitivity to drugsmay also bemechano-dependent, increasing
vulnerability to arrhythmia induction under specific mechanical
conditions.

In conclusion, we have created a population of electro-
mechanical models of normal human cardiomyocytes that can be
used for various basic science studies and applications. We have
demonstrated that mechanical tests are essential at each stage of in
silico model generation, calibration, verification, and further use.
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