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Hypobaric hypoxia (HH) characteristics induce impaired cognitive function,
reduced concentration, and memory. In recent years, an increasing number of
people have migrated to high-altitude areas for work and study. Headache, sleep
disturbance, and cognitive impairment from HH, severely challenges the physical
and mental health and affects their quality of life and work efficiency. This review
summarizes the manifestations, mechanisms, and preventive and therapeutic
methods of HH environment affecting cognitive function and provides
theoretical references for exploring and treating high altitude-induced
cognitive impairment.
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1 Introduction

High altitude (HA), which terrestrial altitude above 2,500 m, is one of the most extreme
environments on Earth, about 4 hundred million people living there (Leon-Velarde et al.,
2005). With increased altitude, the atmospheric pressure decreases and this decrease leads to
a decline in the compression of the surrounding air (Palmer, 2010). In brief, as the altitude
rises, the density of the air decreases and the partial pressure of oxygen falls (Palmer, 2010).
Blood oxygen saturation (SpO2) reflects the extent of oxygen bound to hemoglobin in the
blood (De Bels et al., 2019). SpO2 is a satisfactory indicator of the hypoxic state of the
organism. Mean SpO2 decreases significantly at high altitudes due to a decrease in oxygen
partial pressure in the air (De Bels et al., 2019). Hypoxaemia is defined when SpO2 is below
95% (Kim et al., 2013). When SpO2 is at 90%–94% mild hypoxemia, 75%–89% moderate
hypoxemia, and SpO2 less than 75% is diagnosed as severe hypoxemia (Kim et al., 2013).
With decreased SpO2, the oxygen supply to tissues and organs is reduced, and symptoms
such as dyspnea, palpitations, chest tightness, dizziness, confusion, sensory abnormalities,
loss of strength, or aches and pains may occur (Henig and Pierson, 2000). The serum of
patients with inadequate oxygenation may exhibit low pH and high lactate levels as a
consequence of anaerobic metabolism (Henig and Pierson, 2000). Several factors, for
instance low pressure, hypoxic conditions, cold temperatures, dry air, and excessive solar
radiation, have a persistent impact on human health in HA. Exposure to hypobaric hypoxia
(HH) results in many symptoms, such as rapid breathing, faster heart rhythm, nauseous, and
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headache, which harm the living quality and work efficiency
seriously. The brain working is dependent on oxygen, so is very
sensitive to HH. Along with altitude rises, HH can trigger cognitive
dysfunction of memory, language, visual-space, execution,
calculation and understanding judgment (de Aquino Lemos
et al., 2012). In severe cases, if hypoxia is not improved
continuously, it may lead to HA brain edema. Even after
returning to the plain, the cognitive impairment caused by
plateau will continue for a long time (Nation et al., 2017).

If the time of HH exposure is longer, the brain damage will be
more serious. HH exposure not only affects cognitive physiological
and psychological functions, but also may change the structure of
the brain (Terraneo and Samaja, 2017). The hippocampus is
primarily in charge of memory and learning. The structural
integrity of the primary neurons and mitochondrial morphology
in the hippocampus would both be substantially compromised by
HH (Zhang Z. A. et al., 2022). The main mechanism of HH-induced
cognitive dysfunction includes oxidative stress (Li et al., 2017),
mitochondrial dysfunction (Li and Wang, 2022), metabolic
disorders of nerve cells (Zhang P. et al., 2020), and the increased
blood-brain barrier permeability (Zhang et al., 2009). According to
above pathogenesis, it is essential to develop prevention and
treatment strategies for cognitive dysfunction caused by HH.

Therefore, we aim to summarize the recent research of HH’s
effects and mechanism on cognitive function, and provide ideas for
the prevention and treatment of cognitive dysfunction caused
by HH.

2 Cognitive impairments at HAs

The lower atmospheric pressure at altitude causes a decrease in
the supply of oxygen in the body when individuals are exposed to
high-altitude situations. The brain is highly sensitive to hypoxia,
numerous brain functions are impaired (Virués-Ortega et al., 2004;
Di Paola et al., 2008).

2.1 Effects of acute high-altitude
environmental exposure on cognitive
performance

From gross inspection, the impairment severity is influenced by
the level of altitude gain and higher altitudes have more serious
consequences (Yan, 2014). Minimal impairments have been noted at
moderate altitudes of 2000–3,000 m, noticeable psychomotor
impairments have been seen at 3,000–4,000 m, above 5,000 m,
spatial memory was significantly impaired, and impairments in
encoding and short-term memory were particularly evident at
extremely HAs over 6,000 m (Virués-Ortega et al., 2004; Wilson
et al., 2009; Zhang et al., 2011; Bliemsrieder et al., 2022).
Furthermore, a study employing the Mood State Inventory, the
ClydeMood Scale, and theMultiple Affective Adjectives Checklist to
assess the emotional and cognitive performance of subjects
confirmed over 20 years ago that exposure to altitudes above
3,000 m adversely affects individuals’ emotional and cognitive
performance. This effect increases with altitude, and test results
at 4,700 m showed a significant increase in the severity of this

adverse effect compared to 4,200 m (Shukitt-Hale et al., 1998).
Cognitive impairment performance is undeniably noticeable
within the first one to 2 weeks after individuals have raised to
HAs. When exposed to HA for a short time, the human body
experiences symptoms such as memory loss, reduced behavior, and
poor thinking. Hornbein et al. (1989) reported a slight decrease in
language and visual long-term memory along with an increase in
errors on the aphasia screening test in mountaineers exposed to
altitudes ranging from 5,488 to 8,848 m (Hornbein et al., 1989). One
study conducted on an altitude of 3,450 m showed that with only
30 min of acute exposure to hypoxia, impairs individuals’ reaction
time, but not complex cognitive performance. And that acute brief
exposure to the altitude at which the primary tourist site (about
3,500 m) is located causes substantial executive and memory
problems in children (Rimoldi et al., 2016). A systematic meta-
regression investigation on the immediate impact of hypoxia on
cognition was carried out by McMorris et al. and they found that
blood oxygen partial pressure is a critical predictor of cognitive
capacity (independent of whether the exposure was to low-pressure
or normobaric hypoxic conditions) and that studies testing both
executive abilities such as transfer of working memory set,
monitoring, suppression and planning, and non-executive
abilities including short-term memory, perceptiveness, and
attention, were adversely affected by hypoxia (McMorris et al.,
2017). Another systematic review with meta-analysis confirmed
the impact of hypoxia on cognition (independent of whether the
exposure was to low-pressure or normobaric hypoxic conditions),
and researchers observed a selective effect: information processing
seemed to be improved (especially in women), but executive ability
and memory seemed to be impaired (Jung et al., 2020). Changes in
the speed, length, and profile of exposure at altitude, method of
ascent, study population, cognitive measures used, and time spent
conducting tests at altitude can explain inconsistencies and impede
conclusions about the effects of altitude on cognition (Li et al., 2000;
Davranche et al., 2016; Loprinzi et al., 2019b; De Bels et al., 2019).

2.2 Effects of long-term high-altitude
exposure on cognitive performance

Long-term exposure to high-altitude hypoxia impairs cognitive
function manifested in a decrease in inhibitory control, attention
and memory (Li and Wang, 2022). Cognitive impairments have
been noted in long-term high-altitude populations, and the severity
of the hypobaric hypoxic effect may rely on the period of living at
HAs. A study simulating environments ranging from sea level to
8,848 m altitude observed that individuals chronically exposed to
HAs continue to exhibit a severe deficit of color recognition
capability (Bouquet et al., 2000). Event-related potentials (ERPs)
have been reported to be affected by hypoxia, which in turn causes
cognitive impairment. By exploring the effects of chronic HH on
ERPs at two different altitudes, 3,200 and 4,300 m, the study found
that HH causes a slowing of signal processing at 4,300 m and longer
ERPs wave latency at higher altitudes (Singh et al., 2004). As the
duration of exposure prolongs, there is an initial occurrence of high-
altitude hypoxic acclimatization, and the cognitive function of the
individual recovers slightly, but it is still hard to fully reach the level
of subjects in the plain (Zhu and Fan, 2017). Moreover, the color
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reaction time and short-term visual memory of individuals showed a
gradual decline with the extension of the duration of stay in the HA
(Zhu and Fan, 2017). The duration of the high-altitude hypoxia
adaptation period increases with altitude. The higher the altitudes,
the more severe impact of hypoxia on physiological effects, and the
more pronounced the decline in human attention and work capacity
(Thakur et al., 2011; Li and Wang, 2022). In general, cognitive
function declines first, then rises moderately, and finally decreases
with the duration of altitude exposure increases, remaining in a state
of impairment (An et al., 2017). People exposed to a high-altitude
environment for a longer time have more apparent damage to the
reaction time, depth perception, operating-dexterity, and attention
(Bao et al., 2014). Notably, long-term exposure to an altitude of
3,450 m caused severe executive and memory deficits in children
who lived permanently at HAs and were expected to impair their
learning capacities (Rimoldi et al., 2016).

Functional magnetic resonance imaging (fMRI), and diffusion
tensor imaging (DTI), voxel-mirrored homotopic connectivity
(VMHC) and event related potentials (ERP) were employed to
further reveal the brain function basis for cognitive function
changes (Zhang et al., 2013a; Chen et al., 2016). The prolonged
hypoxic exposure causes anatomical changes throughout the brain,
with gray matter throughout the brain atrophying (Zhang et al.,
2013a). Long-term hypoxia impairs attention perform, executive
function, memory, and other cognitive functions in lowlanders at
HAs by affecting ERP components in the parietal occipital lobe,
prefrontal lobe, anterior cingulate cortex, temporal lobe, and other
brain regions (Zhang et al., 2013a; Wang et al., 2014; Zhang D. et al.,
2018; Ma H. L. et al., 2020). Therefore, as the time of high-altitude
environmental exposure increased, the attention, information
processing rate, spatial cognitive ability, and executive function of
the subjects all showed different degrees of impairment. The longer
the exposure time, the more serious the damage of cognitive
function.

3 Integrative physiology of human
cognitive responses to high-altitude

The environment at HAs may directly affects individuals’
cognitive functions such as short-term memory, judgment, and
attention span, which may pose a threat to an individual’s
physical and mental health (de Aquino Lemos et al., 2012; Wang
et al., 2013). Previous research has found that in the large mining
industry in the Chilean mountains or at the Atacama Large
Millimeter/Submillimeter Array (ALMA) scientific observatory
(5,050 m), HH impairs the cognitive performance of high-altitude
workers and may lead to higher error rates (Hornbein et al., 1989;
Davranche et al., 2016). On this basis, Matiram et al. investigated the
effects of acute, habitual, and repeated exposure to very HAs on
individual cognitive function. They used SpO2 and AMS scores to
explain cognitive variations during high-altitude exposure and
acclimation, emphasizing the importance of the acclimation
period for recovery of cognitive function under high-altitude
exposure. It was also noted that the improvement in cognitive
function during the habituation period of initial exposure did not
carry over to the period of repeated exposure (Pun et al., 2018). The
first meta-analysis of high-altitude mountaineers was conducted to

evaluate the effects of high-altitude mountaineering on the cognitive
function of mountaineers in four perspectives: motor speed,
memory function, executive function, and language function (Li
et al., 2023). This study found that high-altitude mountaineering had
significant adverse effects on motor speed and verbal working
memories, but no significant adverse effects on executive
function and verbal function in mountaineers. It may be
attributed to the short-term exposure to high-altitude
mountaineering being insufficient, and further research is needed
for prolonged high-altitude mountaineering and exploration of
executive and verbal functions. As the hippocampus and other
areas within the limbic system of the brain are very sensitive to
hypoxia, the exponentially decreasing of partial oxygen pressure will
lead to brain symptoms such as headache, vomiting, nausea,
impaired coordination, and neurocognitive dysfunction in
humans (Hornbein, 2001; Bärtsch and Swenson, 2013). Brain
structural and vascular system changes are thought to underlie
cognitive deficits such as decreased attention, executive
dysfunction, reduced information processing, and memory
dysfunction induced by altitude hypoxemia (Hornbein, 2001). In
addition, early studies have found that HH can affect
neuropsychological performance and can impair an individual’s
mental and physical health and general wellbeing (Gerard et al.,
2000). A study of the effects of HA in ALMA (5,050 m) on different
cognitive domains in year-round shift workers, by assessing
processing speed, attention, and executive ability, found that
regular rotation of work cycles could be adapted to high-altitude
hypoxic environments to some extent. And preferably through
oxygen enrichment to improve blood oxygen levels to optimize
the cognitive performance of ALMA workers and reduce altitude-
related health risks (Pun et al., 2019). Further, Fernando et al.
assessed pulse oximetry, arterial systolic and diastolic blood
pressure, and neuropsychological tests in workers exposed to the
ALMA radio telescope at 5,050 m altitude, and discovered that
simulating 28% ambient oxygen enrichment using a removable
oxygen module system significantly improved cardiorespiratory
responses and psychoneurological function (Moraga et al., 2018).
For high-altitude staff, the labor risks associated with high-altitude
hypoxia can be reduced by improving blood oxygen concentrations
through shift work, acclimatization, and the use of mobile modular
oxygen systems.

High-altitude exposure induces adverse effects on cognitive
performance and mood, potentially due to poor sleep quality (de
Aquino Lemos et al., 2012; Morrison et al., 2017). High-altitude
travelers experience frequent arousals and low slow-wave sleep
duration, which can impair attention, memory, time to exhibit
complex responses, and perceptual-motor function, resulting in
increased irritability and depression (Dewald et al., 2010;
Rosenzweig et al., 2015). HH triggers erythrocytosis, and research
has found that soldiers with erythrocytosis stationed on the Tibetan
plateau have poorer sleep quality than healthy soldiers, which
negatively affects cognitive function. And impaired sleep quality
can predict decreased cognitive function, typically in linguistic and
short-term memory (Kong et al., 2011). Adaptive servo-ventilation
(ASV) can improve sleep quality by stabilizing breathing and
preventing central apnea without supplemental oxygen compared
to supplemental oxygen sleep therapy. A study of high-altitude
travelers found that using either supplemental oxygen or ASV
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during sleep reduced fatigue and improved certain aspects of
cognitive function, including executive control, sustained
attention, and risk inhibition (Heinrich et al., 2019). As well,
high-altitude HH can affect sleep quality and reduce a person’s
alertness. Acute exposure to HH decreases the psychomotor
vigilance response rate (PVT-RS). A clinical trial conducted at
the ALMA Observatory in Chile at 5,050 m found that exposure
to HH for more than 6 days restored PVT-RS in humans. However,
total sleep time did not improve during acute and subacute exposure
(Pun et al., 2018).

Diseases associated with altitude include acute high-altitude
illness and potentially fatal high-altitude cerebral edema and
high-altitude pulmonary edema and so on also has effects on
cognition. Acute high-altitude illness manifests with headache,
vomiting, and sleep disturbance, and can be alleviated to some
extent by the practice of clothing and supplemental oxygen
(Goldfarb-Rumyantzev and Alper, 2014). A study of climbers on
Mount Monterosa (4,554 m), which correlated cognitive
performance with other measures of brain status by
standardizing acute plateau sickness scores and measuring serum
concentrations of the central neuro-specific protein S100B, found
that cognitive decline was associated with acute plateau sickness
(Bjursten et al., 2010). High-altitude cerebral edema and high-
altitude pulmonary edema manifest as fatal symptoms of brain
dysfunction, including persistent headache, ataxia, and confusion,
often accompanied by hypoxemia, respiratory distress, and impaired
motor ability (Goldfarb-Rumyantzev and Alper, 2014). Hypoxemia
can lead to brain damage, neurological and cognitive dysfunction,
and even death. Research has attributed altitude pulmonary edema
to hypoxia-induced pulmonary vasoconstriction causing increased
pulmonary artery pressure and noncardiogenic pulmonary edema
(Maggiorini, 2010).While other studies show that compared healthy
individuals and patients with high-altitude pulmonary hypertension
found that brain tissue oxygenation in patients with high-altitude
pulmonary hypertension at 3,250 m above sea level was similar to
that of healthy individuals at 760 m altitude (Furian et al., 2015).
This requires of course further verification at very HAs.

4 Mechanism of high-altitude hypoxia
environment affecting cognitive
function

Changes in physiological mechanisms are what caused by HH to
have an impact on cognitive performance. The occurrence of cognitive
impairment under high-altitude exposure may be closely related to
oxidative stress response, neurotransmitters, neuronal cell injury,
involvement of hypoxia inducible factor, and inflammatory response.
We summarize the relationship between HA exposure and cognitive
function at four levels: neural mechanisms, stress mechanisms, cellular
mechanisms, and molecular mechanisms.

4.1 Neural mechanism

Oxygen supplies the brain with energy and is associated with the
rapid development of inter-neuronal connectivity and synaptic activity
(Seymour et al., 2016). Reduced SpO2 is associated with the brainstem

and the cerebral cortex. The brainstem is the area controlling basic
physiological functions such as respiration and heart rate (Mehta et al.,
2016), and the cerebral cortex is primarily responsible for sensory,
cognition, and motility (Bayraktar et al., 2020). It has been discovered
that the insular cortex on the cerebral cortex, which is the sensory
center of the viscera, is expected to be affected by SpO2 variations
(Zhang and Zhang, 2022). Inhalational hypoxia stimulates an increase
in cerebral blood flow (CBF) to maintain oxygen delivery to the brain
(Harris et al., 2013). The response of CBF to hypoxia is dynamic,
evolving with the duration and degree of hypoxic exposure (Wilson
et al., 2011). Zhang et al. and Kottke et al. found that brain structures
may be affected by variations in CBF induced by alterations in the state
of oxygenation, by acquiring brain images of highland explorers
(Zhang et al., 2012; Kottke et al., 2015). The study by Naftali et al.
revealed that cerebral white matter hyper-signaling associated with
cerebral ischemia and hypoxia was associated with cerebrovascular risk
factors and mild cognitive dysfunction (Raz et al., 2007). People
exposed to HA have been observed to suffer from cerebral
vasodilatation, increased CBF, and accompanying intracranial fluid
transfer from extracellular to intracellular, with fatal consequences that
culminate in the development of HACE or even coma (Hackett and
Roach, 2004; Wu et al., 2006). Malignant changes in brain structures
manifest cognitive dysfunctions such as confusion, delirium, altered
consciousness, and behavioral abnormalities (Turner et al., 2021).
Therefore, exposure to HH can lead to structural changes in the
brain and neurological deficits, with pathological changes largely
dependent on the duration of hypoxia and altitude (Wang et al.,
2022). The hippocampus, which is involved in long-term and visual-
spatial memory, is the most sensitive cerebral region for hypoxia
(Eichenbaum, 2000). When rats were exposed to HH, neuronal
fixation, neuronal degeneration, and apoptosis were noted in both
CA1 and CA3 regions of hippocampal pyramidal neurons, which may
be the major cause of impaired neural circuit stability and memory
impairment in hippocampus (Maiti et al., 2007). The striatum and
neocortex are also fragile constructions that play a crucial role in
sensory, concentration, and long-term memory (Eichenbaum, 2000;
Goldfarb et al., 2016). MR imaging revealed that the thickness of the
bilateral cerebral regions, the right front cingulate girdle, the bilateral
prefrontal cortices, the left anterior ventral cortex, and the right
linguistic cortex were significantly increased with high-altitude HH
exposure. The thickness of the corresponding regions of the brain
mentioned above decreased significantly with prolonged altitude
exposure (Zhang et al., 2010; Zhang et al., 2013a). The findings
above suggest that when exposed to hypoxia, the brain appears to
have localized cerebral vascular hyperplasia and increased cortical
thickness in local brain regions to compensate for insufficient blood
oxygen concentration. With extended exposure, the entire brain grey
matter shows a tendency to atrophy and exhibits non-specific damage
characteristics (Zhang et al., 2010). Previous diffusion tensor imaging
(DTI) of the entire brain white matter analysis confirmed these results.
The fractional anisotropy (FA) of brain tissue was reduced in
individuals entering the plateau in the bilateral superior and
inferior longitudinal tracts, corpus callosum, corona radiata,
posterior cingulate gyrus and corticospinal tract fractions,
corresponding to an increase in FA with prolonged exposure to
HA (Zhang et al., 2010; Zhang et al., 2012). In addition, it was
found that reduced grey matter volume in the parahippocampal
and middle frontal gyrus was positively correlated with changes in
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lung volume, and changes in postcentral gyrus cortex thickness were
associatedwith reaction time andmemory in the high-altitude exposed
population (Zhang et al., 2012). Curiously, it has been proposed that
changes in total brain white matter and brain parenchyma volume
significantly correlate with SpO2 when the organism is in static
hypoxia, however, there is no correlation between brain volume
changes and SpO2 when it is in motion hypoxia (Rupp et al.,
2014). In general, prolonged exposure to high-altitude HH induces
conformational changes in the brain, which may be the anatomical
basis for cognitive impairment.

4.2 Stress mechanism

When the body is under attack, it produces stress, a variety of
physiological and psychological reactions, to maintain equilibrium
(Li and Wang, 2022). Oxidative stress occurs as a response to an
imbalance in the overproduced free radicals in the body and the
antioxidant defenses of the cells themselves (Erukainure et al., 2018).
Hypoxia-induced oxidative stress is one of the major contributors to
cerebral damage and cognitive impairment. Exposure to HH leads to
high-altitude hypoxic stress, through physiological compensatory
mechanisms such as raised ventilation frequency, enhanced heart
pulse rate, vasodilation, increased blood cells, and improved Blood
flow to the brain to maintain homeostasis in the body (Quillinan
et al., 2016). Under these situations, the production of reactive
oxygen species (ROS) and reactive nitrogen species (RNS) increases
(Kalyanaraman, 2013). Rats exposed to HH have been observed to
develop oxidative stress associated with memory impairment. The
accumulation of large amounts of ROS and RNS in the body directly
impairs the basement membrane of the blood-brain barrier (BBB),
leading to vasogenic edema, and causing disruptions in the oxidative
and antioxidant systems in the brain, resulting in brain damage and
cognitive impairment. In addition, free radicals can also inhibit
synaptic transmission, cell proliferation, and neuronal
differentiation through the activation of protein phosphatase 2A
(PP2A), all of which are essential factors contributing to cognitive
deficits (Chen et al., 2014; Bowser et al., 2018).

Studies found that the accumulation of free radicals can also
induce neuroinflammation by activating microglia and astrocytes,
causing glial cells to produce excessive amounts of pro-
inflammatory and inflammatory cytokines such as interleukin-1β
(IL-1β), IL-6, IL-1α, tumor necrosis factor-α (TNF-α), interferon-
gamma (IFN-γ), as well as glutamate (Jellema et al., 2013).
Production of TNF-α may impair the BBB, promote BBB
transport proteins dysregulation, disrupt the extracellular matrix
and neurovascular, and then lead to leukocyte migration and glial
cell activation. Cerebral disturbances may eventually affect synaptic
plasticity and contribute to cognitive impairment (Rosenberg, 2017).
Mice exposed to HH exhibit hippocampal-mediated memory
deficits accompanied by exceptional magnetic resonance (MR)
imaging of the brain, which is consistent with neurovascular
alterations, systemic inflammation, and white matter remodeling
(Shi et al., 2012). This study indicates that the vascular remodeling
and inflammation induced by high-altitude exposure serve for the
induction of cognitive deficits (Shi et al., 2012). In addition, the
occurrence of high-altitude stress also reduces cellular
mitochondrial biosynthesis through the downregulation of

peroxisome proliferator-activated receptor-γ coactivator-1α
(PG1α) expression, which leads to rapid morphological damage
to cellular mitochondria, cell swelling, and necrosis (Zheng et al.,
2019). The chronic imbalance in antioxidant systems induced by
long-term residence at HAs induces systemic nitrosative
inflammatory stress and accelerates the development of cognitive
dysfunction in patients with chronic altitude sickness (Bailey et al.,
2019). The oxidative stress from high-altitude exposure may also
raise the risk of depression, bipolar disorder, and committing suicide
in individuals (Hwang et al., 2019).

4.3 Cellular mechanism

The most common symptoms of altitude sickness, including
dizziness, headache, shortness of breath, and fatigue, are experienced
when first entering HAs (Ding et al., 2018). These are connected to
the characteristic HH environment of the plateau. During acute
hypoxia, the body undergoes a compensatory response, initiating
systemic cardiopulmonary reflexes, leading to vasodilation and
hyperventilation (Sharp and Bernaudin, 2004). Prolonged
hypoxia induces an increase in oxygen-transporting red blood
cells, an increment in blood viscosity, and a clinical diagnosis of
high-altitude polycythemia (HAPC), whose negative effects on
individual cognitive function have been observed (Li and Wang,
2022). On the one hand, HAPC induces cumulative alternations in
cerebral and local delicate organization structure and function, and
impaired cognition occurs. Morphometric findings reveal that
patients with HAPC have increased grey matter volumes in the
right lingual gyrus, post-banding gyrus, bilateral parietal gyrus of the
hippocampus, and left inferior temporal gyrus compared to normal,
and decreased volumes in the left anterior cingulate gyrus compared
to normal, representing potential risks for impaired visual and
cognitive function (Li and Wang, 2022). On the other hand, the
sensation of brain pain and shortness of breath brought on by HAPC
can affect the quality of sleep of individuals, leading to a
deterioration in attention, mental flexibility, and memory
(Pelamatti et al., 2003; Li and Wang, 2022).

Additionally, at the subcellular level, mitochondria play a crucial
role in the overall functional changes induced by hypoxia (McKenna
et al., 2020). With high-altitude HH exposure, glucose metabolism
in the brain converts to anaerobic glycolysis, production of cellular
ATP is drastically reduced and pyruvate production in the brain
increases, promoting lactate accumulation and potentially causing
neurological damage (Erecińska and Silver, 1994). In this situation,
an increase in mitochondrial bulk density and cristae abundance,
with cristae fragmentation and distinctive beehive-like structures to
resist oxidative stress (Perkins et al., 2012). At the same time, brain
adenosine concentrations increase rapidly following hypoxia,
activating adenosine A1A receptors to lead to the inhibition of
hippocampal salience transmission (Kawamura et al., 2019).

4.4 Molecular mechanism

During the phase of hypoxia-induced compensatory response of
the organism, the hypoxia-inducible factor (HIF) erythropoietin
(EPO) pathway is activated to obtain more oxygen, promoting the
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secretion of large amounts of EPO by the liver and kidneys, an
increase in hemoglobin concentration and erythrocyte pressure-
volume, and consequently an increase in red blood cells (Li and
Wang, 2022). HIF-1α is a heterodimeric protein that produces
transcription factors and consists of β subunit (HIF-β) and the
alpha subunit (HIF-α) (Kaelin and Ratcliffe, 2008). During hypoxia,
the HIF-α subunit accumulates and undergoes nuclear
translocation, inducing the inactivation of proline-4-hydroxylase
(PHD) and promoting activation of NF-κB (Pan et al., 2021). NF-κB
is pivotally important in the inflammatory response and causes
neuronal damage and reactive gliosis, leading to impaired learning
and memory deficits (Angelo et al., 2014; Bowser et al., 2018).
Besides, HIF-α can be activated by free radicals through the MAPK/
P13K/Akt signaling pathway (Movafagh et al., 2015). Studies have
shown that HIF-1α could induce brain injuries by promoting the
activation of neuronal autophagy and triggering HAPC, leading to
cumulative structural and functional changes in the brain (Niu et al.,
2018). Furthermore, HIF-1α can induce neuronal apoptosis by
upregulating apoptotic factors such as caspase-3, Bax, Bcl-2, and
activation of the HIF-1α/heme oxygenase-1 signaling pathway,
leading to hippocampal and cortical atrophy and ventricular
enlargement (Chen et al., 2013).

Recent findings suggest that induction of cold-inducible RNA-
binding protein (Cirbp) overexpression in the hippocampal region
attenuates HH exposure-induced hippocampal dendritic spine
injury and cognitive impairment in mice (Zhou et al., 2021). In
addition, overexpression of vascular endothelial growth factor
(VEGF) and activation of the Wnt/βcatenin pathway, c-Fos, and
NGFI-A pathways may trigger vascular neovascularization in
response to chronically hypoxic conditions (Rybnikova et al.,
2009; Tsai et al., 2013; Sun et al., 2020).

5 Prevention

At present, the preventive measures for altitude cognitive
dysfunction mainly include plateau acclimatization and
nutritional supplement. Plateau acclimatization is a process in
which the human body produces physiological changes to adapt
to the plateau hypoxia environment after entering the plateau from
the plain for a period of time. Before entering the plateau, we can
improve the physical fitness, enhance the tolerance to hypoxia, or
use adaptive service ventilation system to reduce the cognitive
damage of HH. The methods of promoting acclimatization
mainly include controlling the ascent rate, hypoxic
preconditioning, adaptive exercise, Vitamin and dietary
supplement and others.

5.1 Controlling the ascent rate

One of the most effective way for preventing altitude cognitive
dysfunction is plateau acclimatization through controlling the
ascent rate (Johnson and Luks, 2016). For this, some institutions
put forward suggestions. The Himalayan Rescue Association
recommends that controlling the ascending to no more than
300 m/day and with a rest day for each additional 600–900 m
could effectively adapt to plateau. The Wilderness Medical

Society suggested that the ascent limit was controlled no more
than 500 m/day and with a rest day for every 3–4 days could
effectively alleviate the discomfort caused by elevation rise
(Zafren, 2014). Guo et al. showed that when exposed to a high-
altitude at 4,400 m, 4-day short-term high-altitude pre-exposure at
3,700 m has a better effect in improving human neurobehavioral
parameters by comparing to 3-month long-term exposure, such as
mood states, cognitive performance and acute mountain sickness
(Guo et al., 2016). Nisha et al. also found that the group of aviation
personnel who had chronic intermittent exposure to hypobaric
hypoxic environment, did not have any significant decrease in
cognitive function, namely, attention, decision-making and
problem solving compared to controls during a working memory
task (Nisha et al., 2020).

5.2 Hypoxic preconditioning

Hypoxic preconditioning is a method for the body to improve
hypoxia tolerance through its self-protection mechanism. Generally,
intermittent hypoxia in the low pressure chamber is used to make
the body obtain tolerance to secondary hypoxia injury through one
or more hypoxia stimuli, so as to improve exercise tolerance and
central fatigue under severe hypoxia conditions (Wang et al., 2016).
Beidleman et al. verified that 3 weeks of intermittent altitude
exposures (the simulated altitude of 4300 m plateau was 4 h a
day, 5 days a week) provide an effective alternative to chronic
altitude residence, which could increase the resting ventilation
and reduce the incidence or severity of acute mountain sickness
(Beidleman et al., 2004). Katayama et al. indicated that in the
hypoxic tent with 12.3% oxygen content, 1 h or 3 h a day for
7 consecutive days can significantly enhance the hypoxic
ventilatory response of the subjects (Katayama et al., 2009). In
addition, exposure to intermittent hypoxia was beneficial for
hypoxic preconditioning. Intermittent hypoxia could prevent cell
damage and benefit for therapy. Intermittent HH exerted
neuroprotection against acute severe hypoxia induced oxidative
injury through preventing oxidative stress and inhibiting the
apoptotic cascade, which was associated with NF-κB
downregulation and erythropoietin upregulation (Coimbra-Costa
et al., 2021). However, another study reported that when rats were
exposed to a simulated high-altitude exposure, hyperbaric oxygen
preconditioning could prevent the occurrence of cerebral and
pulmonary edema (Lin et al., 2012). In addition, a cohort study
in young migrants in Tibet indicated that single session of
hyperbaric oxygen intervention significantly improved the
orienting function of attention, and there was a strong
association between alerting function and conflict function after
the end of intervention, suggesting the change of the overall
performance of attention function (Bu et al., 2021).

5.3 Adaptive exercise

Adaptive exercise refers to long distance running, weight bearing
stretching and other training before entering the plateau to improve
the adaptability under hypoxic environment. It has been confirmed
by many studies that adaptive exercise can improve cognitive
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performance and prevent cognitive dysfunction (Komiyama et al.,
2017; Loprinzi et al., 2019a). According to a recent review, various
characteristics exercises may regulate the relationship between
exercise and cognitive performance under hypoxia (Jung et al.,
2020). Exercise was shown to improve neural activity, so it could
improve the cerebral vasculature and cognitive functions (Ohline
and Abraham, 2019). Koester et al. also suggested that exposure to
exercise is profit for recovering the cognitive function impaired by
HA. In addition, the VEGF signaling is important on maintaining
neurons, neovascularization and neurogenesis at HA (Koester-
Hegmann et al., 2018).

As we all know, Reinhold Messner is a famous climber and
mountaineer who climbed to the summit of the world’s top
mountain, Mount Chomolungma, without oxygen in 1978. There
are several possible reasons for his ability to complete an anoxic
ascent in a relatively short period. Firstly, Reinhold Messner
possesses outstanding physical and physiological qualities. Long-
term altitude training and mountaineering experiences have allowed
him to gradually adapt to high-altitude environments, and his body
can more effectively utilize limited oxygen resources and quickly
adapt to reduced oxygen. Most studies have found that training at
moderate altitudes (2000–3,000 m) improves adaptability and
endurance at high altitudes and improves athletes’ performance
(Flaherty et al., 2016; Khodaee et al., 2016). Highland hypoxia
exposure is a key environmental stressor that initiates critical
physiological adaptations in athletes. HIF is a critical factor for
these physiological adaptations, functioning as a transcription factor
and a major regulator of oxygen homeostasis (Caro, 2001; Semenza,
2004). Under normoxic conditions, HIF1 is rapidly degraded by the
ubiquitin-proteasome pathway and is undetectable (Wilber et al.,
2007). Its degradation significantly slows down during hypoxic
exposure, resulting in increased half-life and transcriptional
activation of target genes encoding erythropoietin (EPO) and
other molecules (Mazzeo, 2008). In a nutshell, plateau hypoxia
training improves tissue oxygenation and limits hypoxic injury.
Secondly, as an experienced mountaineer, Reinhold Messner has
mastered the techniques and tactics of high-altitude
mountaineering. He understands how to rationalize climbing
routes and select appropriate time and weather conditions to
minimize the time consumption of the climbing process. Thirdly,
Reinhold Messner has a strong inner motivation and determination
to challenge the extreme and overcome the ego. This psychological
quality enables him to push forward steadfastly under grueling
conditions, undaunted by difficulties and risks.

5.4 Vitamin and dietary supplement

The potential role of B-vitamins in maintaining cognitive function
was well known (Morris, 2012). Yu et al. reported that supplementation
of vitamin B6/B12/folate and choline could observably improve the
memory deficits which induced by hypoxia, and the supplementation of
B-vitamins and choline could also decrease the concentration of
homocysteine in serum and tau hyperphosphorylation at multiple
AD-related sites by upregulation of Ser9-phosphorylated GSK-3β
(Yu et al., 2016). These findings provide new ideas for combine of
B-vitamins and choline to protect cognitive function against hypoxia
(Yu et al., 2016).

Sugar-sweetened beverages (SSB), a class of very popular non-
alcoholic beverages throughout the world, are characterized by high
added sugar content, especially fructose-containing sugar (Hu et al.,
2019). Zhang et al. suggested that SSB consumption was associated
with poorer executive function in Chinese Tibetan adolescents. SSB
consumption should be controlled for healthy brain development of
Chinese Tibetan adolescents (Zhang F. et al., 2022).

Ketogenic diet (KD), a high-fat with low-carbohydrate diet, has
been reported as an effective means on cognition and behavior in
various neurological disorder (Hallbook et al., 2012). In animal
experiment, Hallbook et al. demonstrated that KD treatment could
not only enhance the spatial learning and memory, but also improve
the spatial memory impairment induced by HH (Zhao et al., 2017).

5.5 Others

In addition, mood also has an impact on cognitive function after
HH exposure. Karinen et al. investigated the cognitive function
changes of 9 climbers who climbed Mount Everest and found that
the climbers with good subjective enthusiasm and strong
psychological quality show a more stable emotional state and a
better level of physical vitality (Karinen and Tuomisto, 2017).
Another interesting study shows that advance meditation in the
HAs was helpful for improving biochemical and neuro-cognitive
(Bhanushali et al., 2020). Patrician et al. indicates that a simple
noninvasive and portable dead space mask resulted in reductions
(49%) in apnea-hypopnea index, and reduced headache severity and
aspects of cognitive decline at hypobaric hypoxia (Patrician et al.,
2019).

6 Therapy

If the cognitive dysfunction caused by HH cannot be alleviated
by prevention, it could be solved by some intervention measures.
The treatment strategies mainly include Physiotherapy and medical
treatment.

6.1 Physiotherapy

Electrical stimulation of cerebellar fastigial nucleus is a useful
technique for promoting neurological functional recovery and
reducing infarct volume against cerebral ischemia (Liu et al.,
2012; Mandel et al., 2012). A recent study pointed out that
fastigial nucleus stimulation (FNS) improved cognitive function
by reducing the prolonged latencies of event related potentials
and decreasing the average velocity of brain arteries at 4,000 m
altitude. FNS may be a potential and effective method for the
treatment of cognitive dysfunction at HAs (Hu et al., 2017).
Transcranial direct current stimulation (TDCS) is a neural
regulation technology and can upregulate or downregulate the
excitability of specific brain regions, significantly improve
cognitive ability (Brunoni and Vanderhasselt, 2014; Coffman
et al., 2014), which is generally used to treat nervous system
diseases, such as severe depression, Parkinson’s disease, chronic
pain, etc. (Nelson et al., 2014; Douglas et al., 2015). In recent years,
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some reports showed that TDCS can increase local cerebral oxygen
saturation, improve fatigue, enhance energy, and improve some
plateau brain cognitive ability and plateau mental work ability to a
certain extent (Dalong et al., 2022).

Enhancing the oxygen carrying of the body can improve the
cognitive dysfunction caused by HA. Another study on remote
ischemic preconditioning (RIPC) indicates that after 1 week of
Remote ischemic conditioning (RIC) treatment, the attention
early warning function of subjects exposed to HA was
significantly improved (Li et al., 2020). Wu et al. also found that
the RIPC treatment improved spatial memory and sleep quality in
subjects exposed to acute hypoxic exposure and this may lead to
improved performance at HAs (Wu et al., 2023). The mechanism of
RIPC protects cognitive function is unknown, but it was still a
promising treatment strategy for cognitive dysfunction by HH. Wu
et al. found that the heat shocks protein-70 mediated hyperbaric
oxygen therapy could ameliorate spatial memory dysfunction and
passive avoidance learning of the rat after high-altitude exposure
(Wu et al., 2018). Heinrich et al. demonstrates that ASV could
improve the sleep quality of subjects at night, reduce the sense of
fatigue, alleviate cognitive dysfunction, improve willpower and
sustained attention (Heinrich et al., 2019).

Oxygen enrichment is increasingly recognized as an effective
approach to reduce the equivalent altitude, which can raise the
oxygen concentration to mimic higher oxygen partial pressure of a
lower altitude. West JB proposed that every 1% increase in oxygen
concentration in the oxygen-enriched chamber equates to a
reduction in elevation of approximately 300 m (West, 1999).
Routinely used clinical concentrations of oxygen therapy are 50%
or 30%, whereas Dong Yan et al. reported a superior rescue of
patients with hemorrhagic shock at HAs employing high-
concentration oxygen therapy of 80% (Yan et al., 2004).
Additionally, in contrast to previous high-flow oxygen therapy,
Pattinson et al. successfully treated a patient with HACE utilizing
low-flow oxygen inhalation (Pattinson et al., 2005). Cai et al. reveals
that oxygen enrichment can ameliorate high-altitude hypoxia-
induced cognitive impairments associated with improved
hippocampal morphology and molecular expression, and
highlights that oxygen enrichment may become a promising
alternative treatment against neurodegeneration for humans
ascending to the plateau (Cai et al., 2021).

6.2 Medication

At present, drug therapy is also widely studied. The search for
safe and effective treatment drugs has become one of the hot spots in
the current plateau medical community. According to different
action mechanisms, drugs are divided into acetylcholinesterase
inhibitors, neurotrophic, hormone, antioxidant, traditional
Chinese medicine and others.

6.2.1 Acetylcholinesterase inhibitors (AChEIs)
Cholinergic system plays a great role in learning and memory

research (Brinza et al., 2022). Several studies have shown that
physostigmine (Muthuraju et al., 2009), galantamine (Muthuraju
et al., 2009) and huperzine24 can restore the level of acetylcholine by
blocking the activity of acetylcholinesterase, thus improving the

cognitive impairment induced by HH. Furthermore, the AChEIs
also reduce the AChE level in cortical and hippocampal neurons,
which may prevent neurodegeneration (Muthuraju et al., 2009).

Another animal experiment in mice indicate that after the zinc
chelator supplementation, the downregulation of AChE activity,
choline acetyltransferase andmuscarinic receptor 1 and 4 due to HH
increased to different degrees. The study indicates that the zinc
chelator supplementation might play important role in the neuronal
damage and the alteration in cholinergic function associated with
HH-induced memory impairment, and zinc chelation may be a
promising treatment for HH-induced cognitive dysfunction
(Udayabanu et al., 2012).

Shouzhangshen is a commonly used Tibetan drug in HAs in
Western China. Several studies have revealed that shouzhangshen
can enhance acetylcholinesterase expression, which may indicate a
protective effect on cholinergic neurons (Zhang et al., 2006). Zhang
et al. found that shouzhangshen extract had protective effect on
nerve injury caused by acute high-altitude hypoxia in mice by
reducing the expression levels of HIF-1α, VEGF, and MDA and
by increasing SOD and GSH activity (Zhang et al., 2021).

6.2.2 Antioxidants
The salidroside is a well-known medicinal plant with

antioxidant potential (Zhang et al., 2013b). Zhang et al. indicated
that salidroside could improve the memory acquisition and retrieval
effectively of rat during HH, meanwhile, salidroside could also and
increase mitochondrial biogenesis in rat brain (Barhwal et al., 2015).
The possible mechanism was salidroside upregulation of
phosphorylated cAMP response element binding protein through
increased sirtuin one activity (Barhwal et al., 2015). This finding is
consistent with that of Yang et al. who showed that salidroside could
ameliorate the cognitive function of rats with HH by reducing the
oxidative stress reaction in the hippocampus to alleviate the damage
in the hippocampus (Yang et al., 2011).

Quercetin, which is widely exists in many plants, has been
reported to prevent neuronal injury-induced ischemia (Zhang Z.
A. et al., 2022). Liu et al. indicate that quercetin could promote a
mitochondrial and neuron function adaptation through PGC-
1alpha pathway, so as to improve the HH-induced memory
injury (Liu et al., 2015). In addition, studies shows that quercetin
reverses cognitive dysfunction by enhancing the antioxidant status
during exposure to hypobaric hypoxia and improving the free
radical scavenging enzyme system, reducing the ROS level in the
hippocampus and subsequent lipid peroxidation (Prasad et al.,
2013).

Epigallocatechin-3-gallate (EGCG) comes from green tea and
has the following neuroprotective characteristics, such as metal
chelation, suppression of oxidative stress and inflammation, and
promotion of nerve regeneration (Cai et al., 2014). Chen et al.
reports that EGCG could reduce cognitive dysfunction, iron
deposition, oxidative stress and apoptosis, which were induced by
HH. Meanwhile, EGCG could also promote neuronal regeneration
against chronic high-altitude hypoxia-induced neural injury (Chen
et al., 2022).

5,6,7,8-Tetrahydroxyflavone (THF), a flavone with four
consecutive hydroxyl groups in ring A, exhibited effective
antioxidant activity in vitro and in vivo. THF treatment could
improve HH-induced cognitive dysfunction through suppressed
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oxidative stress. The mechanism is that THF could inhibit the levels
of hydrogen peroxide and malondialdehyde, and increase the
producing of glutathione and superoxide dismutase in brain
tissue (Jing et al., 2022).

Verbascoside is a water-soluble natural phenylethanoid
glycoside and presents widely in plants. It has been reported with
multiple activities, such as antioxidant, neuroprotective activity,
anti-inflammatory, anti-bacterial and immunomodulatory effect
(Zhou et al., 2016). Li et al. indicated that treatment with
verbascoside could reduce the working memory error and
reference memory error significantly, it could also decrease the
total errors and total time. These effects may be performed
through relieving the neuron damage in CA1 region of the
hippocampus and decreasing the activity of oxidative stress
associated enzyme in plasma, brain and hippocampus. The
mechanism research indicated that the improvement of HA-
induced memory impairment mediated by verbascoside was
associated with the regulation of oxidative stress and mTOR
signaling pathway (Li et al., 2019).

Crocin is the main bioactive ingredients of Crocus sativus L.,
which has been reported to have avail on learning and memory
(Khalili and Hamzeh, 2010). Zhang et al. found that crocin showed a
cognitive protective effect by regulating SIRT1/PGC-1alpha
pathways in rat’s hippocampus under hypoxia environment
(Zhang X. Y. et al., 2018). Further study identified that the
mechanism of crocin mediated cognitive protective was through
accelerating mitochondrial biosynthesis, improving oxidative stress
injury, and inhibiting neuronal apoptosis (Zhang X. et al., 2020).

Astragalus is one of the largest flowering plant genera of legumes,
and its main components are Astragalus arepolysaccharides, flavonoids,
Astragalosides (Wang et al., 2019). The extract of astragalus
membranaceus can obviously ameliorate cognitive function in rats
under hypoxia environment. The potential mechanism is involved in
regulating oxidative stress, decreasing the accumulation of free radicals,
and activating mTOR signaling pathway (Du et al., 2022).

Exposure to hypoxic conditions may induce the mitochondria-
mediated apoptosis in hippocampal neurons, and consequently
leading to cognitive dysfunction. Protecting mitochondrial
function is a new method to treat cognitive dysfunction caused
by hypobaric hypoxia. Hota et al. exposed SD rats to a hypobaric
oxygen chamber with a simulated height of 7620m, and gave acetyl
L-carnitine for 2 weeks, which could effectively protect hippocampal
neurons from mitochondrial dysfunction, excitotoxicity and
neurodegeneration (Hota et al., 2012). Further research showed
that acetyl L-carnitine calcium buffering into nonfunctional
mitochondria could improve excitotoxicity and bioenergetics
status in hippocampal neurons (Hota et al., 2012).

6.2.3 Neurotrophic
Calcium ion antagonists, such as nimodipine and iradipine, can

selectively block Ca2+ channels on nerve cells and vascular
endothelial cells. They not only promote learning and memory
ability, but also alleviate nerve cell damage and improve memory
dysfunction caused by hypoxia (Shao et al., 2020; Uema et al., 2021).
In addition, iradipine can reduce the release of oxygen free radicals
and cytochrome C caused by hypoxia, and antagonize the memory
impairment caused by hippocampal CA1 neuron damage induced
by HH(Barhwal et al., 2009).

Memantine is a non-competitive antagonist of glutamic acid
NMDA receptors, widely used in the treatment of Alzheimer’s
disease. The excitotoxicity mediated by glutamate through its
receptor signals is considered to be one of the mechanisms of
neuronal damage and cognitive dysfunction after exposure to
HH. Current research has shown that chronic hypoxia can
produce excitotoxicity, leading to nerve damage and cognitive
dysfunction. Memantine treatment can suppress this toxicity by
inhibiting excitotoxicity (Ji et al., 2021).

Propolis, a resinous substance produced by honey bees as a
defense against intruders, has anti-oxidative and anti-inflammatory
effects (Banskota et al., 2001). Zhu et al. demonstrate that propolis
improves the cognitive function of elderly people living at HA by
ameliorating microglial-mediated neuroinflammation and
maintaining synaptic plasticity. Propolis could be used as
alternative treatments for the cognitive decline in mild cognitive
impairment and for reducing the risk of Alzheimer’s disease (Zhu
et al., 2018).

Dl-3n-butylphthalide (NBP) extracted from celery has extensive
neuroprotective effects. Min et al. suggest that NBP can improve the
learning and memory ability of rats with chronic intermittent
hypobaric hypoxia, because NBP increases the expression of
brain-derived neurotrophic factor and promotes the
phosphorylation of cAMP responsive element-binding, which is
consistent with the results of Morris water maze (Min et al., 2014).

Echinacea glycoside (ECH) is a phenylethanol isolated from the
stems of Cistanche deserticola, which has been reported to prevent
ischemia traditionally caused by neuronal damage (Lu et al., 2018;
Chen et al., 2019). Zheng et al. found that ECH can prevent HH-
induced memory impairment through antioxidant activity in the
hippocampus (Zheng et al., 2019). In vivo, ECH increases the
expression of nuclear factor E2 p45 related factor 2, heme
oxygenase-1and γ-glutamyl cysteine synthase, indicating that the
Keap1-Nrf2-ARE signaling pathway may be involved in neuronal
adaptation (Zheng et al., 2019).

Puerarin is the main bioactive component extracted from Pueraria
lobata, which is known as Pueraria lobata in traditional Chinese
medicine. Puerarin is a phytoestrogen that has various
pharmacological effects, such as preventing and treating nervous
system diseases. A recent study demonstrates that i. n. puerarin
thermosensitive in situ hydrogels (TISGs) led to excellent brain
targeting effect. Puerarin TISGs is an effective neuroprotective agent
used to prevent brain damage caused by acute HH (Ma J. et al., 2020).

6.2.4 Hormones
It has previously been reported that higher plasma cortisol levels

can have profound effects on brain and advanced cognitive function
after exposure to stress like ischemia (Faraji et al., 2009). Baitharu
et al. indicated that the administration of corticosterone synthesis
inhibitor to rats in the chronic hypobaric hypoxia environment
could significantly improve the memory impairment induced by HA
(Baitharu et al., 2012). The mechanism of action is related to
increasing the ATP level in the hippocampus, regulating
apoptosis markers, and reducing the expression of calcium channels.

Melatonin (MEL) is an endogenous neurohormone that has a
variety of biological functions, including strong antioxidant effects
(Carloni et al., 2008; Alonso-Alconada et al., 2013). Alonso et al.
reported that melatonin is a neuroprotective antioxidant in both
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normoxic and hypobaric hypoxia, which can prevent and counteract
the harmful effects of oxidative stress (reactive astrocyte
proliferation, memory impairment, neuronal death and cognitive
impairment) (Vornicescu et al., 2013). Melatonin supplementation
may be a useful neuroprotective agent for the treatment of HH
induced cognitive impairment.

Guanfacine belongs to the central nervous system α
2 Receptor agonists can improve prefrontal lobe disorder,
neurodegenerative changes, and altitude induced spatial
memory disorder. The regulation of guanfacine on adrenergic
mechanism may play a role by improving prefrontal lobe defect
and neurodegenerative changes during hypobaric hypoxia
(Kauser et al., 2014).

Previous studies on the mechanism of HH induced cognitive
dysfunction have mainly used small mammalian models such as
mice and rats. Zhang et al. found that cynomolgus monkeys
were fed progesterone (PROG) and steroid neuroprotective
(TRIOL) can significantly alleviate cognitive dysfunction and
salvage transcriptome changes induced by HH (Zhang P. et al.,
2020). Functional studies of affected genes have shown that
these two neuroprotective agents protect the brain through
different targeted pathways, PROG enhances erythropoiesis,
and TRIOL inhibits glutamate induced excitotoxicity (Zhang
P. et al., 2020).

6.2.5 Traditional Chinese medicine
Traditional Chinese medicine and Tibetan medicine are

considered effective solutions for the prevention and treatment of
cognitive dysfunction, and have been used for thousands of years in
Asia. Currently, various evidences have shown that supplementing
herbal medicines can regulate neurogenesis and protect
hippocampal functions, such as memory (Iriti et al., 2010; Ye
et al., 2016). Ganoderma lucidum has extensive therapeutic
effects and neuroprotective effects on various diseases (Zhong
et al., 2015; Huang et al., 2017). Sharma et al. found that in the
Morris water maze test, Ganoderma lucidum can prevent
hippocampal damage and spatial memory disorders caused by
vascular brain edema in rats exposed to HH (Sharma and
Tulsawani, 2020).

Cordycepin is the first nucleoside antibiotic isolated from fungi.
It has biological activities such as lung and kidney protection, anti-
tumor, neuroprotective, anti-inflammatory, antioxidant and
immune regulation. Liu et al. indicate that cordycepin ameliorate
HH-induced neuro inflammation, blood-brain barrier disruption,
and cognitive dysfunction by inhibiting the TLR-4/NF-κB/MMP-
9 pathway (Liu et al., 2022).

Monkey bread leaf extract, a known memory enhancer, can
provide neuroprotection and improve memory impairment in HH
(Stough et al., 2001). Hota et al. have demonstrated that bacoside can
enhance the learning ability of rats, enhance memory recovery, and
prevent dendritic atrophy after HH (Hota et al., 2009). In addition,
bacoside also reduces plasma corticosterone levels, oxidative stress,
and neuronal degeneration. Bacoside supplementation also
increased the activity of cytochrome c oxidase, while ATP levels
also increased. Therefore, administration of bacoxazole may be a
useful therapeutic strategy in improving HH induced cognitive
dysfunction and other related neurological diseases.

6.2.6 Others
Acetazolamide is commonly used to treat acute mountain

sickness. Some studies have confirmed that acetazolamide has a
good effect in improving the oxygen tolerance and working ability of
the body, but there are few studies on the impact of acetazolamide on
cognitive ability in the hypoxic environment (White, 1984; Basnyat
et al., 2008). However, a randomized controlled trial showed that
after 3 days of HH exposure, compared with the placebo,
acetazolamide not only has no protective effect on
neuropsychological performance, but also causes more
neuropsychological impairments (Wang et al., 2013). Therefore,
it should be administered with caution.

7 Future direction for the
neurocognitive function research at HH

To prevent and treat cognitive impairment caused by HH,
comprehensive research is crucial. Firstly, we need to broaden the
scope of research on cognitive function and conduct larger
studies to examine the impact of altitude on all aspects of
cognitive function. Secondly, we should intensify research
efforts to uncover the mechanisms of brain lesions induced by
high-altitude environments, identify the targets and mechanisms
via which the brain adapts to HH exposure, and explore methods
of adapting to and alleviating the effects of high-altitude
environments. Thirdly, we should consider various factors
such as length of stay at HA, exercise status, and mountain
environment, and expand our research population to better
understand the effects of altitude on individual mood changes.
Fourthly, since most research on this topic is confined to animal
models, conducting randomized controlled trials with a larger
sample size is necessary to facilitate the clinical use of findings.
Apart from that, we need to conduct more field research on HAs,
since there are significant differences between simulated and
actual high-altitude environments that can affect cognitive
function in different ways. Finally, traditional Chinese
medicine and Tibetan medicine, which have fewer side effects
and are highly effective in preventing and treating cognitive
impairment induced by HA, are great candidates for further
research.

8 Conclusion

Long-term exposure to HH environment leads to cognitive
dysfunction, which is manifested in features such as attention,
learning, memory, and the processing ability. In this paper, the
underlying molecular mechanism by which long-term HH
exposure affects cognitive dysfunction is discussed. We also
reviewed the progress in prevention and treatment of
cognitive impairment caused by HH, and found that natural
substances, such as traditional Chinese medicine and Tibetan
medicine have good effects. However, these studies are limited to
the animal experiment level. Future research needs to focus on
human controlled trials and clinical trials to confirm their
effectiveness.
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