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Introduction: Declines in honeybee abundance have been observed worldwide
during last decades. This is partly due to plant protection agents used in intensive
farming, landscaping and infrastructure maintenance. Another type of factors
negatively affecting honeybees is the spread of diseases caused by different
pathogens and pests. Lately, more focus has been paid to the interactions
between different overlapping stressors affecting honeybee health, the
combination of these often being more detrimental compared to individual
stressors. The most widely used stress-evaluating methods take into account
lethal- or motorial changes of the individuals or colonies. Comparatively little
honeybee research has examined changes in initial recovery potential and
physiological symptoms of toxification. The aim of this study was to examine
the combined effect of Nosema apis and N. ceranae (according to a newer
classification Vairimorpha apis and V. ceranae), the common causes of
nosemosis in the honeybee Apis mellifera L., with the insecticide dimethoate.

Methods: In this study, honeybeemortality andmetabolic rate were used to assess
the combined effects interactions of Nosema ssp. and dimethoate.

Results: Our results showed that exposure to the low concentration of either
dimethoate, either one or both species of Nosema ssp as single factors or in the
combination had no significant effect on honeybee metabolic rate. The mortality
increased with the twoNosema spp., as well as with infection byN. ceranae alone.
The effect of dimethoate was observed only in combination withN. apis infection,
which alone had no effect on individual honeybee mortality.

Conclusion: This study demonstrates that the overlapping exposure to a non-
lethal concentration of a pesticide and a pathogen can be hidden by stronger
stressor but become observable with milder stressors.
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Introduction

Over the past half century, a number of problems have emerged
due to agriculture and poor nature conservation practices, to which
little attention has been paid. Stressors like disease-causing
pathogens and parasites, the use of plant protection products,
climate change and their interactions are considered as factors
affecting pollinator populations (Hristov et al., 2020; Insolia
et al., 2022; Piot et al., 2022). Chemical pesticides used in
intensive agriculture often get the most attention in this regard.
The consistent and sometimes excessive use of these has exacerbated
the problem of pesticide residues accumulating in the environment
(Sharma et al., 2019), where they come into contact with non-target
organisms like pollinators (Shafeeque, Ahmad, and Kamal, n.d.;
Nicholls and Altieri, 2013). Traces of chemical pesticides used in
agriculture have been detected in various beekeeping products as
well as in bees themselves (Kasiotis et al., 2014; Kiljanek et al., 2017;
Böhme et al., 2018). The bee declines have been observed in
America, Europe, and many other parts of the world, especially
in areas where intensive farming practices are used (Dirzo et al.,
2014; Potts et al., 2010; Potts et al., 2016; van Engelsdorp and
Meixner, 2010; Osterman et al., 2021).

The majority of honeybee colony losses occur during the winter,
but it is difficult to pinpoint the specific cause of the mortality, and it
is likely the case that poor bee health often results not from single
stressors, but rather combinations of stressors to which bees are
exposed (Engelsdorp et al., 2009; Goulson et al., 2015; Insolia et al.,
2022; van). While the parasitic varroa mite Varroa destructor is
considered the most harmful pest to honeybees, partly because of
vectoring other viruses (EPILOBEE Consortium et al., 2016), there
are also other diseases which should not remain understudied. The
two microsporidian pathogens, Nosema apis and N. ceranae
(according Tokarev et al. (2020) Vairimorpha apis and V.
ceranae) cause nosemosis, a serious but mostly not deadly disease
(Botías et al., 2013). Nosema ceranae, originally a parasite of the
Asian honeybee which nowadays causes serious problems to
European honeybees all over the world and has largely replaced
the Nosema apis, an original parasite of European honeybee (Paxton
et al., 2007). Both pathogenic species infect the epithelical cells of the
honeybee midgut, causing energetic stress (Mayack and Naug 2009;
Zheng et al., 2014). Honeybee nosemosis is a disease that often has
no clear clinical symptoms and there is no specific treatment against
it (Galajda et al., 2021). Partly because of this, nosemosis is
considered to be among the factors seriously affecting the
overwintering success of honeybees (Fries, Ekbohm, and
Villumstad, 1984).

The interaction of the disease with other stress factors, such as
pesticide residues found in bee-collected pollen and nectar (Kasiotis
et al., 2014; Karise et al., 2017; Kiljanek et al., 2017; Böhme et al.,
2018; Raimets et al., 2020) may be detrimental to honeybees
(Goblirsch, 2018). Several pesticides can affect a bee’s ability to
cope with various diseases. For example, simultaneous exposure to
glyphosate and difenoconazole, in Nosema-infected honeybees, was
demonstrated to induce additional physiological stress (Almasri
et al., 2021). Furthermore, in an Australian field experiment,
combined exposure to thiamethoxam and N. apis substantially
increased mortality, as well as reduced immunocompetence, in
honeybees (Grassl et al., 2018). Overall, pathogen-pesticide

interactions, either overlapping or sequential, can reduce
honeybee survival and weaken colonies (Alaux et al., 2010;
Sánchez-Bayo et al., 2016; Grassl et al., 2018; Almasri et al.,
2021). Negative co-effects of Nosema ceranae infection and
pesticides are previously observed over different life stages of
worker honeybees (Glavinic et al., 2019; Tesovnik et al., 2020).

Fast and reliable methods for measuring non-invasive endpoints
in living bees are needed. Until now, most studies have focused on
the effects of one or multiple stress factors on cellular processes,
survival and humoral immune response (Hartfelder et al., 2013;
Havard, Laurent, and Chauzat, 2019; Trytek et al., 2022). Other
studies focus on behavioural changes, brood development, number
of mites or spores counted or estimated (Henry et al., 2017; Bird
et al., 2021). However, it is difficult to measure the severity of these
interactions on living bees. These methods are usually invasive and
the bee will be sacrificed during the experiment. One of the methods
allows measurements of living and intact insects might be
respirometry, which allows to observe changes in metabolic rate
in real-time and in living organisms (Muljar et al., 2012; Mänd and
Karise, 2015; Karise et al., 2016; Ploomi et al., 2018; Castro et al.,
2021). The traditional survival experiments may hide some
important toxicological aspects like the process of recovery from
toxicosis (El-Seedi et al., 2022) allowing also repeated measurement
of treated individuals.

Nosemosis does not cause rapid death of colonies (Martín-
Hernández et al., 2011) and is detectable throughout several seasons
(Naudi et al., 2021). However, in combination with other stressors,
the severity increases (Straub et al., 2020). The two Nosema species
differ in their virulence (Martín-Hernández et al., 2011; Naudi et al.,
2021), but both affect the bee gut by destroying the epithelial cells
(Adl et al., 2005). We hypothesise that this could cause a nutritional
deficiency that could be detectable with respirometry measurements.
For instance the effects of neurotoxic insecticides are usually easily
detectable with respirometry (Kestler, 1991; Muljar et al., 2012;
Vinha et al., 2021). We also expect that the combination of the low
dose of a neurotoxic insecticide and the pathogen might severely
affect the overall metabolic rate of honeybees.

FIGURE 1
Figure 1 Example of visualisation of M-PCR products. 110
indicates negative control, 111—negative result, 112—N. ceranae,
113—mix of both pathogens, 114—Nosema apis.
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Materials and methods

The geographical location and study design

The study was conducted in Estonia in the summer of 2018 in
Estonian University of Life Sciences in the insect physiology
laboratory of the Chair of Plant Health. The first step was to
establish 12 round isolated tents (with diameter of 3 m) covered
with insect-proof nets. Each tent accommodated one Italian honeybee
(Apis mellifera ligustica) colony. All the colonies were equal in
size—the nucleus colonies included five frames (three frames of
brood, two frames of honey), and the feeder for sugar solution.

We repeatedly sampled forager bees from the entrance of the
colonies 2 weeks before the experiment to ensure no Nosema
infection was present. The absence of the Nosema spp. was
proven by using Multiplex PCR method. The DNeasy Blood
and Tissue Kit (Qiagen, Hilden, Germany) was used to isolate
DNA, thereafter a Multiplex PCR (M-PCR) was used to identy
the species (described in (Naudi et al., 2021)). Following the
assay, electrophoretic separation was done to PCR products and
visualized in 2% agarose TAE gel (N. apis: band at 321 bp, N.
ceranae: band at 218–219 bp, Figure 1).

To obtain theN. apis andN. ceranae spores, honeybee colonies with
inherent clinical nosemosis symptoms were identified by local
beekeepers. From these colonies, infected worker bees were collected,
midguts with entire hind bodies were removed and crushed using a
hand homogenizer in a Bioreba universal separation bag (15 × 28.5 cm),
and the spore-bearing suspension was collected. The Nosema species
were identified by the same Multiplex PCR method. Once the species
were identified, centrifugation protocol (Fries et al., 2013a) was used to
purify the spores. As the sample purity with this protocol is about 85%,
the resulting suspension was cleaned with a 10-micron filter. A flow
cytometer (Accuri®C6 flow cytometer (Becton Dickinson, BD, Franklin
Lakes, NJ, USA) was used to determine the number of spores (described
in (Naudi et al., 2021)).

To infect the nosemosis-free colonies, we used three treatments
(N. apis, N. ceranae and their co-infection) with three replications
each. Each treatment consisted of five million spores mixed in 1 L of
syrup (mix of 40% fructose, 30% glucose, and 30% sucrose dissolved
in heated water). The food was provided weekly for 3 weeks,
meaning each honeybee colony received a total of 15 million spores.

According to the calculations, each bee acquired about
1200–1500 spores (colony with 5 frames full of bees—roughly
2000–2500 bees per frame). Two weeks after the final
inoculation, mortality and physiology experiments were conducted.

Pesticide treatment

As additional stressor, the insecticide dimethoate in its pure
form (Sigma-Aldrich, 99.6% pure active ingredient) was used.
Dimethoate was chosen for this experiment as a positive control.
Dimethoate has known to have a negative effect on honeybees with
known and established lethal and non-lethal doses (Schuehly,
Riessberger-Gallé, and Hernández López, 2021).

Dimethoate was mixed into sugar syrup (water and sugar 1:1).
20 μg of dimethoate (far below the LD50 to honeybees) was added
per 1 L of syrup. The pesticide concentration was chosen according

to the survey conducted in Poland where 20 µg of dimethoate per
1 kg of honey was found. (Bargańska, Ślebioda, and Namieśnik,
2013). Both in control and treatment groups, the bees were fed ad
libitum. The colonies were monitored daily and empty feeders were
replaced with full ones. We did not monitor the exact amount of feed
consumed by individual bees. However, based on standard
calculations about honeybee daily food intake (Rodney and
Purdy, 2020), we calculated the approximate amount of food
consumed and thus possible dimethoate intake. The bees received
20 µg of dimethoate per litre through feed syrup. Considering that
one worker bee consumes 22 mg of sugar syrup per day, maximum
of 0.0003 µg per day of dimethoate was consumed by one bee.

Mortality assessment

To assess the effects of dimethoate and nosemosis on
honeybee mortality, we created special micro-colonies in small
wooden cages (9 × 7 × 4 cm), with plastic mesh sides. 20 young
worker bees, taken from each nucleus colony described above,
were placed in each cage. The cages were kept in climate chamber
(controlled temperature, humidity and total darkness, Sanyo
MLR-351H, Osaka, Japan), where ambient temperature was
34.5 °C and the relative humidity was 60% to mimic the
normal conditions of a bee colony. Cages were equipped with
two 1.5 ml Eppendorf tubes (one containing feed syrup (1:
1 sugar-water) and the other containing distilled water), where
the bees had free access. We created two sets of cages per each
hive—one to test the effect of the pathogen, the other to test the
effect of adding chronical exposure to a non-lethal dose of
dimethoate. From each colony, we created three cages, while
we had three colonies in every treatment group, which makes
9 cages per treatment group. Treatments were distributed as
follows: control, control + dimethoate, N. apis, N. apis +
dimethoate, N. ceranae, N. ceranae + dimethoate, Nosema co-
infection, Nosema co-infection + dimethoate. The observation
lasted 25 days, during which dead bees were counted every 24 h.

Respiratory measurements

Separate cages with honeybees needed for respiratory
measurements were prepared additionally to those used in
mortality assessments. 20 bees were collected from each hive, and
acclimated for 12 h before the measurements started. Measurements
of the 10 individuals lasted about 10 h, thus all the honeybees from
all treatments had been exposed to the dimethoate 12–21 h, and this
scheme was followed for each treatment.

The bee respiration rate was determined, using flow-through
respirometer LI-7000 (LiCor, Lincoln, Nebraska, USA).
Measurements were performed at room temperature (22°C ±
1°C). Each bee spent 50 min in respirometer chamber. The air
circulating in the analyzer was taken from the laboratory
environment and was passed through magnesium perchlorate
Mg(ClO4)2 and sodium hydroxide NaOH to remove water vapor
and CO2. The volume of air passing through the system in each
minute was 600 ml. The measurement of the metabolic rate of a
single bee lasted 60 min, which included including a 5-min
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machine calibration time to achieve 0-level and 5 min for calming
down from handling stress of honeybees—both which were
excluded from the analysis. Thus the metabolic rate was
calculated based on 50 min measurement. During this time,
the machine reached its 0-level registration stage.

Statistical analysis

The statistical software Statistica (DellTM StatisticaTM, StatSoft) was
used to process and analyze the data of the experiment. The respiratory
data was normalized by log-transforming (using logarithmic values of)
the data. The effects of the variables ‘Nosema treatment’ and ‘dimethoate
treatment’ were analyzed using Main-effect ANOVA followed by Fisher
LSD post hoc test. For mortality data we used the General Linear Models
Repeated Measures Analyses of Variance using the ‘Time’ as within-
effects factor and ‘Nosema treatment’ and ‘dimethoate treatment’ as
categorical factors. To understand when the different factors started to
affect the honeybee longevity, we allowed the model to calculate
Univariate Results for each day.

Results

Effect on honeybees metabolism

By the end of the experiment samples were collected and
analysed. The results showed 4872–65940 spores per bee
throughout all treatments. In average, N. apis 9417 ± 4544,5, N.
ceranae 42966 ± 22974 and Nosema mix 7434 ± 2702 spores.

We did not detect statistically significant changes in metabolic
rate of honeybees neither by the Nosema treatment (Figure 2) (F (3,
72) = 0.85, p = 0.47) nor by adding dimethoate at sublethal level (F
(1, 72) = 0.80, p = 0.37) (Figure 2). The variations within the

treatments were relatively large, ranging from 61.8 µL CO2/L of air
to 3456.6 µL CO2/L. The lowest result was recorded in honeybees
infected with N. ceranae spores (the difference from the control was
nearly significant, Fisher LSD test: p = 0.057) and the highest result
in those bees infected with N. apis spores that also had received
dimethoate in the feed.

Mortality

Mortality rate inNosema infected bees increased significantly on
the day 4 of the experiment (F (3, 64) = 17.47, p < 0.001) (see
Univariate Results for each day in Supplementary Material
Supplementary Table S1). Additional stress caused by dimethoate
was generally not significant (F (1, 64) = 0.87, p = 0.35). However we
observed significant effect on bee mortality on day 21 in the N. apis
treatment group (Figure 3; Supplementary Table S1).

Mortality rate was lowest in the N. apis treatment group during
the full extent of the experiment, being even slightly slower than that
of the control groups (Figure 3). In the N. ceranae treatment groups,
the mortality rate was initially slow similar to the control andN. apis
groups, but increased rapidly after 2 weeks from the start of the
experiment. The combination of both Nosema spp. resulted in
higher mortality rate single pathogens and the difference was
obvious already after few days followed by constant increase in
mortality rate.

Discussion

Our results suggest that N. apis as a stressor does not
significantly affect the respiration rate on individual level in
honeybees. Still, the N. ceranae had a greater impact compared
to N. apis. Different studies also found the same difference between
the two pathogens (Higes et al., 2010; Goblirsch, 2018; Sinpoo et al.,

FIGURE 2
Meanmetabolic rate (MR) of honeybees (N = 10) during 50 min of
measurements after overlapping exposure toNosema apis,N. ceranae
or mix of both with or without a sublethal dose of dimethoate
(dim−/dim+).

FIGURE 3
Survival rate of honeybees (N = 9 cages, 20 honeybees in each)
per treatment group during 25 days of observation after overlapping
sposure to Nosema apis, N. ceranae or mix of both with or without a
sublethal dose of dimethoate chronically in the feed.
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2018). N. ceranae is described as more energy demanding on the
host, indicated by higher feed consumption (Martín-Hernández
et al., 2011).

Dimethoate has been demonstrated to be lethal to honeybees
when administered at concentrations of 0.2 µg per bee (Baskar,
Sudha, and Tamilselvan, 2016). Sublethal concentration of
dimethoate may increase the bumblebee’s food consumption
(Cornement et al., 2017), it is possible that similar increase took
place in our study. However, as the feed consumption was not
monitored, the consumed amount of feed is based on average
nutritional needs of 0.0003 µg per day.

Different stressors can result in different responses in
honeybees, including altered metabolism (Even, Devaud, and
Barron, 2012). In the present study, the absence of any significant
effect may have resulted from high variability within the data
accompanied with relatively low spore loads (Figure 2.). Such
variability can be due to the individual physiological
characteristics of bees, as each individual has a different
ability to withstand stress. In addition to the treatments,
further stress is induced by handling the bees when putting
them in the analyser and limiting their movement. To reduce
the impact of handling stress, it could be helpful to extend the
period of analysis, during which the individuals could get used to
new and more unpleasant conditions (Mänd et al., 2005). In the
case of acclimated bees, the variability in the dataset may
somewhat decrease (Even, Devaud, and Barron, 2012).
However, based on our experiences, honeybees do not tolerate
long detainment in the analyser.

Individual stress factors (N. apis, N. ceranae and dimethoate) had
no individual impact on honeybee mortality. The authors suggest that
this was because the bees used in the experiments were mainly adult
bees. The adult honeybees can be more resistant to stress induced by
pathogens (Roberts and Hughes, 2014). The selective breeding
throughout the years has also resulted in more tolerant bees that
are more capable tomaintain close to normal functionality even when
infected with Nosema spp (Kurze et al., 2016).

Spore counts have often been used to describe the severity of the
disease (Botías et al., 2013; Vidau et al., 2014; Kurze et al., 2016). It is
proven that 10–33 000 spores per bee is sufficient to induce infection
(Fries et al., 2013). In an experiment carried out in Sweden, where
mixture ofN. apis andN. ceranae spores were used. There the number
of spores used to infect honey bees ranged from 10 to 10,000 per bee.
Regardless of the mixed pathogen spore ratio used, the number of
spores equalized by day 12 of the experiment and infection occurred
in both cases (Forsgren and Fries, 2010). From the collected and
analyzed bees, after the experiment, we conclude that the amount of
spores used in this work were sufficient to induce infection, cause
stress and alter the metabolic rate. Natural resistance to nosemosis of
the bees used in our experiment is unknown. It is demonstrated that in
artificial laboratory conditions can result in a longer lifespan of bees
(Human et al., 2013). In this regard, the physical capacity to tolerate
stress in laboratory conditions can be greater than in the field
conditions.

The combined effect of multiple stressors, in the form of N.
apis and N. ceranae, resulted in a significantly higher stress
response, expressed by higher honeybee mortality. Control
groups, both with and without dimethoate, and also infection
with solely N. apis, resulted in 50% of the specimens still alive at

the end of the experiment (25 days). Approximately half of the
bees (53%) were alive on day 20. This is similar to the results of
Vidau (2011), where specimens were infected only with N.
ceranae, but the additionally exposure to fipronil and
thiacloprid caused the mortality of 82% and 71% respectively
(Vidau et al., 2011). In our study, N. ceranae and the overlapping
exposure to dimethoate, resulted both in the 60% mortality of
individuals on the day 20 of observation (Figure 2). But with N.
apis, our results clearly demonstrate the additive stress from the
dimethoate—already at Day15, the mortality increased rapidly
being similar to the mortality level honeybees of N. ceranae
treatment groups. Given that the 24 h LD50 of dimethoate for
honey bee workers is 0.126 µg/bee, dimethoate alone in the
concentrations chosen in our experiment, is unlikely to cause
significant mortality.

The maximum amount of dimethoate that one bee can take
per day in this experiment remained significantly lower, as
mentioned above. The negative interaction of different
pesticides and nosemosis has been proven in various
researches. The interaction is often manifested in the fact
that a sublethal dose of pesticide causes faster growth of
Nosema spores in the nosemosis honeybees (Alaux et al.,
2010; Vidau et al., 2011; Aufauvre et al., 2012; Pettis et al.,
2012). According to the present study, the combined effects of
stressors results in shorter lifespan of worker bees even at very
low doses, which hardly impact the test results at shorter time
scale as shown by our respirometry experiment. Therefore it is
important to pay attention to the honeybee colony health.
Beekeepers should be aware about combined effects of
stressors and try to avoid adding any synthetic pesticides as
parasite or disease treatment. Even if it would be hard to avoid
agricultural pesticides, avoiding synthetic veterinary medicines
in beehives, is something, every beekeeper can do to protect
their honeybees.
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