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Despite the physiological significance of effective CO2 diffusion across biological
membranes, the underlying mechanism behind this process is not yet resolved.
Particularly debatable is the existence of CO2-permeable aquaporins. The
lipophilic characteristic of CO2 should, according to Overton’s rule, result in a
rapid flux across lipid bilayers. However, experimental evidence of limited
membrane permeability poses a challenge to this idea of free diffusion. In this
review, we summarized recent progress with regard to CO2 diffusion, and
discussed the physiological effects of altered aquaporin expression, the
molecular mechanisms of CO2 transport via aquaporins, and the function of
sterols and other membrane proteins in CO2 permeability. In addition, we
highlight the existing limits in measuring CO2 permeability and end up with
perspectives on resolving such argument either by determining the atomic
resolution structure of CO2 permeable aquaporins or by developing new
methods for measuring permeability.
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Introduction

More than 30 years ago, aquaporin was found to be a highly specialized water channel
protein in erythrocytes (Preston et al., 1992; Agre, 2004). The discovery of aquaporins
changed our perspective on the highly controlled permeability of biological membranes,
which had previously been explained by the paradigm of free diffusion of water transport
across membranes (Edidin, 2003). Aquaporins are a class of structurally conserved proteins
that have been shown to function as channels for a wide range of neutral chemicals since
their discovery. These molecules include glycerol (Jensen et al., 2001; Nollert et al., 2001),
urea (Ishibashi et al., 1994; Ma et al., 1997), hydrogen peroxide (Almasalmeh et al., 2014),
ammonia (Jahn et al., 2004; Kirscht et al., 2016), and even the gas molecule-carbon dioxide
(Uehlein et al., 2003). Such a wide range of substrate selectivity suggests that biological
membrane permeability is tightly controlled and is not just based on passive diffusion across
the lipid bilayer. More than a century ago, Meyer and Overton proposed that the membrane
permeability of a given solute is closely associated with its lipid solubility [also known as
Overton’s rule (Missner and Pohl, 2009)]. For many molecules, experimental evidence
confirmed this rule (Missner et al., 2008a), but some did not follow the prediction. The
appearance of these molecules begs the question of whether or not Overton’s rule alone can
account for the passage of molecules through biological membranes. Among those molecules
that deviated from the prediction by Overton’s rule, CO2 was intensively investigated due to
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its role as a physiological component for essential process,
i.e., respiration and photosynthesis. Despite the predicted high
permeability of CO2, accumulated evidences from biologists
found that certain cell membranes are remarkably resistant to
CO2, which could not be explained solely by Overton’s rule due
to its high lipophilic property. To address this challenge, Pohl’s team
has introduced the effect of unstirred layers (USLs) and buffer,
which account for a significant portion of the diffusion barrier of the
lipid bilayer (Missner and Pohl, 2009). While research directed by
Kaldenhoff and Boron independently demonstrated the existence of
aquaporin-mediated CO2 transport in regulating the CO2 diffusion
across biological membranes (Nakhoul et al., 1998; Uehlein et al.,
2003). Since then, discussion has been continued with regard to the
potential biological significance of CO2 channels in regulating CO2

transport across biological membranes. As more relevant results
continue to uncover the complexities of CO2 movement across
biological membranes, several questions have emerged: Why do
some biological membranes have such low intrinsic CO2

permeability? How do biological systems deal with the conflict
between the need for fast gas exchange and the low intrinsic
permeability of the CO2 membrane? Is there a CO2 channel
protein that exists in addition to free diffusion?

Baring the above open questions, we focused in this review on
recent updates since our last systematic review article in 2014
(Kaldenhoff et al., 2014). We began with discussing the classical
theory of CO2 solubility-diffusion of CO2 transport across lipid
bilayers and the physiological influence of altered aquaporin
expression. We then delved into the molecular details of
aquaporin-mediated CO2 transport, as well as the role of sterols
and nonrelevant membrane proteins on the overall CO2

permeability of biological membranes. Finally, we summarized
the current limitations of the different methods used to measure
CO2 permeability and offered a perspective on the current
understanding of CO2 diffusion across biological membranes.

Meyer overton’s rule and the CO2 solubility-
diffusion model

As the basic principle for mass transportation through diffusive
means, Adolf Fick described that the diffusive flux (J) was related to
the diffusion coefficient (D) and gradient of the substrate (in case of
two phases, rewritten as the concentration difference between the
two phases ∇φ) concentration:

J � −D∇φ (1)
Later, Meyer and Overton established the rule of

spontaneous permeation of solutes and solvents across
membranes, stating that the flux of the substance across a
membrane, J, was linearly dependent on the permeability of
the membrane, Pm, with a concentration difference Δcs at two
surfaces of the membrane, when the partition coefficient of the
substance, Kp, was given.

Eq. 1 can be rewritten as following:

J � −Pm · Δcs (2)
Where Pm � Kp ·Dm ∕ d,Dm is the diffusion coefficient, d is the

thickness of the membrane.

As indicated by the rule, the permeability of a given molecule is
related to the partition coefficientKp. Therefore, gas molecules, such
as CO2 would have a membrane permeability as fast as permeating a
water layer, with a Kp ≥1. However, experimental data has shown
contradictory results with extremely low gas permeability from
certain biological membranes. As proposed by Pohl’s group, the
existence of an unstirred layer, which dominates the resistance of
CO2 diffusion, and the variation in the thickness of this layer could
explain for this discrepancy (Missner et al., 2008b). In 2011, a joint
correspondence letter was published that summarized the main
agreement and disagreement on channel protein-mediated CO2

diffusion by the research groups Boron, Gros and Pohl (Boron
et al., 2011). In summary, they agreed that channel-mediated CO2

transport would require a high resistance of the non-channel part of
the membrane to CO2 diffusion and relatively low resistance to CO2

from USLs. In 2015, further cross-talk was initiated to collect new
comments or views on CO2 transport mediated by channel proteins
under physiological conditions by Cooper, Occhipinti, and Boron
(Cooper et al., 2015). In this proposal, a new “access-solubility-
diffusion-egress” model was proposed, where resistance of non-
channel proteins, different headgroup of lipids, the role of
cholesterol, as well as USLs, all accounted for the apparent CO2

permeability of biological membranes. While the disagreement still
remains, Pohl pointed out the concern of data generated by both
stopped flow and mass spectrometry, due to the fast process of CO2

diffusion in the range of milliseconds. Furthermore, it could be the
limited availability of carbonic anhydrases (CAs), which led to
extremely low CO2 permeability to the apical membranes.
Finally, new points were raised: 1) How to explain the role of
sterols and high percentage of membrane proteins, on the
diffusion of diffusion of CO2 of biological membranes? 2)
Mutation work that influences the function of certain aquaporin,
resulting in the change of PM,CO2, could not be correctly mapped to
the change in thickness of USLs. 3) The altered activity CA activity of
certain cells was not correlated with CO2 permeability. 4) The
existence of USLs still challenged the proponents of CO2 channels.

Physiological roles for aquaporin-mediated
CO2 membrane diffusion

CO2 and O2 are gas molecules that play crucial roles in
respiration by providing energy through oxidative
phosphorylation reactions. Both gases need to be exchanged
efficiently between the cellular organelles and the atmosphere,
guided by their osmotic gradients. Unlike animals, plant cells or
other photosynthesis microorganisms take up CO2 as a
substrate for photosynthesis, and the concentration gradient
is less significant compared to animals (Uehlein et al., 2017).
Therefore, a higher efficient diffusion of CO2 from the
atmosphere to the chloroplast stroma, where photosynthesis
occurred, would be more beneficial for photosynthesis-active
organisms (Kaldenhoff et al., 2014).

For quite a long time, the resistance of the mesophyll to CO2 was
overlooked for green-leaf plants. Instead, the regulation of stroma
and CO2 interconversion to bicarbonate and protons catalyzed by
carbonic anhydrases (CA) was considered to be the limiting factor in
CO2 availability (Kaldenhoff, 2012). However, even with complete
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deletion of CA activity in the chloroplast stroma, photosynthesis
decreased by only about 7% (Price et al., 1994; Kaldenhoff, 2012).
Furthermore, the mesophyll CO2 conductance varied rapidly in
response to temperature, light, or water stress, instead of having a
relatively constant value. This contradicted the pure physical model
of mesophyll CO2 diffusion. Together, these shreds of evidence
pointed to the existence of other major factors that regulated CO2

diffusion, such as aquaporin-mediated transportation.

The physiological influence of altered expression of potential
permeable CO2 aquaporins was recently systematically evaluated
and reviewed by Evans‘ group (Groszmann et al., 2017). To
understand the role of certain putative permeable aquaporins
with CO2, transgenic plants were generated and the impact on
parameters relevant to photosynthesis was determined. In general,
the change of mesophyII conductance was correlated with the tuned
expression level of corresponding aquaporins. However, the

TABLE 1 Summary of CO2 permeable aquaporins.

Names Origins Validation methods References

NtAQP1 Nicotiana tabacum X. laevis oocytesa, Yeastb, Black lipid membrane/
copolymersc

Uehlein et al. (2003), Otto et al. (2010), Uehlein et al. (2012a), Kai and
Kaldenhoff (2014)

AtPIP1;2 Arabidopsis thaliana Leafd, Yeast, In vivoe Heckwolf et al. (2011), Uehlein et al. (2012b)

HaPIP1;1 Helianthemum
almeriense

Yeast Navarro-Rodenas et al. (2013)

ZmPIP1;5 Zea mays Yeast Heinen et al. (2014)

ZmPIP1;6 Zea mays Yeast Heinen et al. (2014)

OsPIP1;2 Oryza sativa L. In vivo Xu et al. (2019)

OsPIP1;3 Oryza sativa L. In vivo Chen et al. (2021)

SlPIP1;2 Solanum lycopersicum In vivo Zhang et al. (2021)

NtPIP2;1 Nicotiana tabacum Black lipid membrane Uehlein et al. (2003), Uehlein et al. (2012a), Kai and Kaldenhoff (2014)

HvPIP2;1 Hordeum vulgare L. X. laevis Oocytes Mori et al. (2014)

HvPIP2;2

HvPIP2;3

HvPIP2;5

AtPIP2;1 Arabidopsis thaliana X. laevis oocytes Wang et al. (2016)

AtPIP2;5 Arabidopsis thaliana Yeast Israel et al. (2021)

SiPIP2;7 Setaria italica Yeast, In vivo Ermakova et al. (2021)

PtAQP2 Phaeodactylum
tricornutum

Mass spectrometryf Matsui et al. (2018)

AQP1 Homo sapiens X. laevis oocytes, Proteoliposomeg Nakhoul et al. (1998), Prasad et al. (1998), Musa-Aziz et al. (2009), Geyer
et al. (2013)

AQP5 Homo sapiens X. laevis oocytes Wang and Boron (2019)

AQP5 Rattus norvegicus X. laevis oocytes Musa-Aziz et al. (2009), Geyer et al. (2013)

AQP6

AQP9

AQP0 Bos taurus X. laevis oocytes Geyer et al. (2013)

AQP1a1 Danio rerio In situh Talbot et al. (2015)

SsAqpZ Synechococcus sp. Yeast Ding et al. (2013)

aX.laevis oocytes: CO2 permeability was determined by a pH electrode that recorded the change in pH value when AQP was expressed in X. laevis oocytes (Geyer et al., 2013).
bYeast: CO2 permeability was determined by a stopped flow spectrophotometer when AQP was expressed in the yeast protoplast (Otto et al., 2010).
cBlack lipid membrane/copolymers: The permeability of CO2 permeability was determined by scanning the pH electrode when AQPwas incorporated into a triblock copolymer or phospholipid

bilayer (Uehlein et al., 2012a; Kai and Kaldenhoff, 2014).
dLeaf: The same setup as the black lipid membrane except that a leaf patch instead of an artificial bilayer was measured (Uehlein et al., 2012b).
ein vivo: the CO2 permeability was determined by the altered mesophyII conductance or photosynthesis related parameters via aquaporin overexpression or knockout mutant lines.
fMass spectrometry: The CO2 permeability was determined by following the O18 exchange monitored by mass spectrometry.
gProteoliposome: CO2 permeability was determined using a stopped flow spectrophotometer using aquaporin reconstituted liposomes.
hin situ: aquaporin knockdown mutant zebrafish larvae were monitored by CO2 excretion using a custom-built total CO2 analyzer.
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mesophyII drawdown should be negatively correlated with the
mesophyII conductance and the CO2 assimilation rate, where
causal links between AQP and mesophyII conductance can be
established. To provide the general ranges of photosynthetic-
related parameters under varied mesophyII conductance, they
performed simulations by changing the mesophyII conductance,
when either stomatal conductance or Ci was set to be constant. They
gave an estimated range of mesophyII drawdown, CO2 assimilation
rates, transpiration rate, and transpiration efficiency based on
consistent literature data (Groszmann et al., 2017). Furthermore,
mesophyII conductance is a combined feature that could be
influenced by many factors other than membrane permeability,
such as the chloroplast surface area, adjacent to the intercellular air
space per unit of leaf area and cell wall thickness (Evans, 2021). Since
2014, more direct or indirect evidence accumulated, supporting the
aquaporin-facilitated CO2 transportation, i.e., AtPIP2;5, SlPIP1;2
(from tomato), OsPIP1;2 and OsPIP1;3 (from rice), HvPIP2;1, 2;2, 2;
3, 2;5 (from Barley), ZmPIP1;5, 1;6 (from Maize), as well as SiPIP2;
7 from C4 plant-foxtail millet (see Table 1).

Recent studies have shown that the influence of altered
expression of potential CO2 permeable aquaporins on the
mesophyII conductance and photosynthesis rate should be
calibrated by growth and environmental conditions, as well as
the oligomeric/phosphorylation status of the corresponding
aquaporins. Although there are accumulated evidences for
aquaporin-mediated CO2 transportation, there have also been
studies that have shown that simple manipulation of these
aquaporins did not lead to changes in mesophyII conductance or
photosynthetic efficiency. In one study, the knockout of three
aquaporin genes-AtPIP1;2, AtPIP1;3, AtPIP2;6 from Arabidopsis
thaliana did not result in changes in mesophyII conductance nor
photosynthetic efficiency. The authors discussed possible reasons for
these results: i) functional redundancy within aquaporin families; ii)
the possible change in hydraulic conductance together with the
higher light intensities (200 μmol m−2 s−1) altered the photosynthetic
capacity, which would be sufficient to remove the effect on both gm
and gs; iii) altered the hydraulic conductance of mutant lines through
functional stimulation by colocalization of PIP1s and PIP2s on the
plasma membrane (Kromdijk et al., 2020). However, the hydraulic
conductance of mutant lines was not measured in the above study,
which left this question to be further investigated. In another case,
the ectopic expression of either AtPIP1;2 or AtPIP1;4 in tobacco did
not further increase mesophyII conductance nor the rate of
assimilation of CO2. Similarly, the authors pointed out the
influence of plant growth and environmental conditions on the
ability of certain CO2 permeable aquaporins to alter mesophyII
conductance, particularly, when a high basal gm was observed in
control wild-type control plants (Clarke et al., 2022). This effect was
also observed from rice PIPs (Huang et al., 2021) and tomato SiPIP1;
2 knockout mutants (Kelly et al., 2014), where gm was affected only
when grown in a CO2 enriched environment. Other studies have
pointed out that the oligomeric or phosphorylation state of
overexpressed CO2 permeable aquaporins can directly impact
their function (Otto et al., 2010; Maurel et al., 2015; Groszmann
et al., 2017). Additionally, aquaporins can act as signaling molecules,
responding to different environmental stimuli and regulating
stomatal dynamics in response to changes in ambient CO2

concentration (Ding and Chaumont, 2020) or ABA-mediated

biotic stress (Fang et al., 2019). Finally, one important aspect to
consider is the relative humidity within the substomatal cavity,
which was assumed to be saturated when calculating the
intercellular CO2 concentration determined by the gas exchange
experiment (Cernusak et al., 2018). As recently investigated by
Farquhar’s group, the relative humidity within the substomatal
cavity could drop down to around 80%, with the saturation edge
retreating to the mesophyII cell walls. Surprisingly, the mesophyII
conductance to CO2 remained less affected when alter the Δw (the
difference between saturated humidity and the humidity in the air) if
compared to uncorrected data, which might be controlled by the
aquaporins within the mesophyII cell membranes (Wong et al.,
2022). Although there are several aquaporins reported to function as
both water and CO2 channels, the detailed mechanism of such
potential dual functions still needs to be investigated, which could be
investigated with newmethods such as in situmeasurement of water
potentials within leaves using the fluorescent powder-hydrogel
nanoreporters (Jain et al., 2021), as well as cell specific
overexpress experiment to avoid functional redundancy from
endogenous aquaporins using plant leave single cell RNA
sequence data base (Kim et al., 2021).

To conclude, the impact of changes in CO2 permeable
aquaporins on mesophyll conductance and photosynthesis rate
should be considered, with respect to growth and environmental
conditions, in particular the relative humidity within the
substomatal cavity, as well as the oligomeric and phosphorylation
status of the corresponding aquaporins.

Molecular mechanism of aquaporin-
mediated CO2 diffusion

Since the discovery of the CO2 channel protein: aquaporin-1
from humans and NtAQP1 from tobacco, many aquaporins from
different organisms were reported to mediate CO2 transport,
covering many members from mammals, plants, microalgae, and
fish (see Table 1). The family of aquaporins has a relatively
conserved structure, with six membrane-spanning helices, two
reentrant short helices with NPA motifs, and flexible N-/
C-termini heading towards the cytosol. The six bundle-like
membrane-spanning alpha helices were tightly arranged in a
circle, constituting the solute conduction pore/channel. Although
aquaporins function as the water channel in monomers, they often
form a quaternary tetramer assembly in native membranes and even
large orthogonal arrays in the case of AQP4 (Ho et al., 2009). Until
now, the physiological relevance of such a tetrameric assembly is not
completely clear; however, a few cases showed that the central pore
formed by the aquaporin tetramer was likely to be the CO2 channel.
Early work based on X. laevis oocytes with low intrinsic CO2

permeabilities provided experimental evidence that AQP1 acts as
a permeable CO2 channel (Nakhoul et al., 1998). Later, a molecular
simulation based on the high-resolution structure of AQP1 gave the
atomic level of details that the central pore of the AQP1 tetramer
could mediate fast CO2 diffusion in low intrinsic CO2-permeable
membranes (Hub and de Groot, 2006). This hypothesis was further
demonstrated by the yeast protoplast system to determine the
altered permeability of CO2 when the assembly of the artificial
tetramer with a fixed ratio of NtPIP1;2 and NtPIP2;1, connected by a
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FIGURE 1
Sequence alignment of CO2 permeable aquaporins from plants. Alignment was performed by the online tool Claustral Omega (https://www.ebi.ac.
uk/Tools/msa/clustalo/) using default settings (Madeira et al., 2022). Blue shades indicated the percentage of identity. Helical regions were highlighted
and denoted H1-H6. The central pore lining region were highlighted in red, including H2, H5 and LoopD. The key residues for CO2 permeability were
highlighted with red rectangles.

Frontiers in Physiology frontiersin.org05

Chen et al. 10.3389/fphys.2023.1205290

https://www.ebi.ac.uk/Tools/msa/clustalo/
https://www.ebi.ac.uk/Tools/msa/clustalo/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1205290


short linker (Otto et al., 2010). The results demonstrated that the
homo-tetrameric assembly of CO2 permeable NtPIP1;2 was
necessary for CO2 channel activity. However, such a relationship
between the oligomeric state and CO2 permeability was not further
investigated in other model plants, except for tobacco.

In 2021, Tyerman et al. gave a systematic review on
multifunctional aquaporins, describing the dynamic regulation of
the central pore with the high-resolution crystal structures of
AQP1 and SoPIP2;1 (Tyerman et al., 2021). Furthermore, the
MOLEonline MOLEonline channel radii analysis (Berka et al.,
2012) showed a diameter of 3.6 Å at the Leu200 constriction
residue, modelled by the closed water channel conformation of
SoPIP2;1 (PDB: 1Z98) (Tornroth-Horsefield et al., 2006). According
to the analysis, the constriction side would allow the CO2 to pass
when considering a kinetic diameter of 3.3 Å for CO2. Additionally,
Tyerman et al. (2021) proposed that both post-translational
modification and protein-protein interactions could contribute to
dynamic regulation of central pore permeability via local
conformational changes, allowing a wide range of molecules,
including K+, Na+, as well as CO2 passing through the central
pore. In early studies, aquaporins from the PIP1 family were
found to be permeable to CO2. While, later on, members from
the PIP2 family were also reported to function as CO2 channels.
Despite the relative conservation of transmembrane helices in all
PIP aquaporins, it was difficult to identify the crucial residues
creating the selective filter of the central pore, which was not
surprising given the very variable pore environment generated by
tetrameric assembly. As seen in Figure1, the major part of the central
pore lining area is composed of transmembrane helices 2 and 5 and
loop D, which were dynamically influenced by other neighboring
motifs as well. However, due to the lack of high-resolution structure
of PIP1 aquaporin, it remains unresolved how the sequence
difference between PIP1s and PIP2s could contribute to CO2

permeability, especially the long N-terminal flexible loop that
only exists in PIP1s. Although it is difficult to obtain structural
details for the flexible loop region, a detailed biochemical assay
might answer this question, such as domain switch or truncated
variants in the case of an N-terminal loop. As indicated in Figure 1.,
conserved residues Leu in helix 5 and Ile at the end of loop E were
reported to be essential to allow the passage of a CO2 molecule based
on either simulation or biochemical assays (Mori et al., 2014;
Tyerman et al., 2021). However, other residues alone the channel
might also be the restriction site, depending on the arrangement of
the helixes structures that form the central channel.

Role of sterols and non-CO2 permeable
proteins and technical challenges in
measuring CO2 permeability

The Singer-Nicolson fluid-mosaic model was widely recognized
as the fundamental model for the structure and molecular dynamics
of the plasma membrane (Singer and Nicolson, 1972). Many basic
properties of biological membranes were characterized on the basis
of this two-dimensional fluid model. Among the basic properties,
the permeability was also intensively investigated using such a lipid
bilayer model both theoretically and experimentally. However, other
factors, such as sterols or integrated membrane proteins were not

considered, which could influence the overall permeability (Suzuki
and Kusumi, 2023). Therefore, lack of such factors could be the
potential source for the inconsistency of measured membrane
permeability. This inconsistency became non-trivial when
determining CO2 permeability. Due to the higher lipophilic
properties of CO2, the phospholipid-formed lipid bilayer exhibits
very low resistance to CO2, while the plasma membrane of X. laevis
oocytes, Madin-Darby canine kidney (MDCK) cells, the
transformed human embryonal kidney SV40 cell line (tsA201), as
well as the apical membrane of the gastric glands, showed extremely
low CO2 permeability (Endeward et al., 2006a; Endeward et al.,
2006b; Endeward et al., 2008; Itel et al., 2012). In a recent review,
Gros et al. proposed that the cholesterol content in the majority
biological membranes dominates its CO2 permeability, regulating
the CO2 permeability by at least 2 orders of magnitude with a
cholesterol content between 0%–70% (Arias-Hidalgo et al., 2018).
However, an exception of normal native human red cells showed
aquaporin-dependent CO2 permeability instead of cholesterol
content, indicating the existence of unidentified factors
(Endeward et al., 2008). Kaldenhoff’s group suggested a
possibility, pointing out the role of non-channel proteins on the
CO2 permeability of the phospholipid bilayer (Kai and Kaldenhoff,
2014). Finally, the existence of lipid rafts, which are rich in both
sterols and proteins, could further contribute to the overall
permeability [see review by Kai Simons and Elina Ikonen
(Simons and Ikonen, 1997)].

One possible reason for the inconsistent permeability of CO2

reported in many previous reports could be the limitations of
different techniques in determining permeability of CO2, due to
the high permeability of the phospholipid bilayer (Endeward et al.,
2014). Both stop flow-based and mass spectrometry-based methods
were questioned for their inability to quantify dynamic fast CO2

across the membrane (Boron et al., 2011; Hannesschlaeger et al.,
2019). On the other hand, the scanning pH electrode could provide
an alternative that was not limited by the fast dynamics of CO2

passing through the black lipid membrane. However, the formation
of a black lipid membrane with the solvent-containing method was
challenged by the presence of organic solvent n-decan, as well as
whether aquaporins still survive as a functional form during the
formation of the corresponding black lipid membrane
(Hannesschlaeger et al., 2019). Therefore, new techniques that
can determine the fast transportation of CO2 across the
membrane and avoid the influence of solvents may be necessary
to improve the accuracy of the CO2 permeability measurements.

Conclusion

Despite the numerous structural and functional studies of aquaporins
in the past several decades, our understanding of the detailed mechanism
of functional and structural diversity of these relatively conserved channel
proteins is still in its infancy. The debate over whether aquaporins are
permeable to CO2 continues, with accumulating both supportive and
contradictory evidence. However, the challenges in directly measuring
CO2permeability across native or artificialmembranesmake it difficult to
fully interpret the results and understand their physiological implications.
More attention should be paid to the interpretation of the data and
investigating the potential effects of aquaporin overexpression on plant
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cultivars and photosynthesis-related parameters. Ultimately, a technical
breakthrough for the direct measurement of CO2 transportation through
aquaporins would be needed to fully clarify the molecular details and
bring an end to the ongoing debate.
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