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Objective: This study aimed to investigate the plasmametabolic profile of patients
with extracranial arteriovenous malformations (AVM).

Method: Plasma samples were collected from 32 AVM patients and 30 healthy
controls (HC). Ultra-high performance liquid chromatography-mass
spectrometry (UHPLC-MS) was employed to analyze the metabolic profiles of
both groups. Metabolic pathway enrichment analysis was performed through
Kyoto Encyclopedia of Genes and Genomes (KEGG) database and MetaboAnalyst.
Additionally, machine learning algorithms such as Least Absolute Shrinkage and
Selection Operator (LASSO) and random forest (RF) were conducted to screen
characteristic metabolites. The effectiveness of the serum biomarkers for AVM
was evaluated using a receiver-operating characteristics (ROC) curve.

Result: In total, 184 differential metabolites were screened in this study, with
110 metabolites in positive ion mode and 74 metabolites in negative mode. Lipids
and lipid-like molecules were the predominant metabolites detected in both
positive and negative ion modes. Several significant metabolic pathways were
enriched in AVMs, including lipid metabolism, amino acid metabolism,
carbohydrate metabolism, and protein translation. Through machine learning
algorithms, nine metabolites were identify as characteristic metabolites,
including hydroxy-proline, L-2-Amino-4-methylenepentanedioic acid,
piperettine, 20-hydroxy-PGF2a, 2,2,4,4-tetramethyl-6-(1-oxobutyl)-1,3,5-
cyclohexanetrione, DL-tryptophan, 9-oxoODE, alpha-Linolenic acid, and
dihydrojasmonic acid.

Conclusion: Patients with extracranial AVMs exhibited significantly altered
metabolic patterns compared to healthy controls, which could be identified
using plasma metabolomics. These findings suggest that metabolomic profiling
can aid in the understanding of AVM pathophysiology and potentially inform
clinical diagnosis and treatment.
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Introduction

Arteriovenous malformation (AVM) is a rare congenital vascular
malformation characterized by abnormal development of the vascular
system at the embryonic stage, resulting in direct anastomosis of
arteries and veins to form a tortuous and dilated vascular mass instead
of a normal capillary bed (Wassef et al., 2015). The incidence of
extracranial AVMs is low and typically diagnosed at birth with no
gender difference. The exact etiology and underlying pathogenesis of
AVMs remain unclear. Lesions are commonly found in the head and
neck (Kohout et al., 1998), followed by limbs, trunk, and viscera,
presenting as skin erythema, high skin temperature, palpable
pulsation, or tremor. Additional symptoms may include local pain,
ulcers, or repeated bleeding, which can lead to heart failure due to
hemodynamic abnormalities in severe cases. AVMs can also cause
appearance malformations, compression of important tissues and
organs, and organ dysfunction. Most AVMs can be diagnosed by
clinical manifestations. However, in some cases, digital subtraction
angiography (DSA) is required as the gold standard for diagnosis and
to guide interventional therapy. Unfortunately, there are no specific
laboratory diagnostic indices available for AVMs. Treatment is often
challenging and associated with a high recurrence rate (Liu et al.,
2010). Available treatment options include interventional
embolization therapy, anhydrous ethanol interventional therapy,
surgery, and combined therapy. However, multiple and repeated
measures are often required (Greene and Orbach, 2011), and there
is no mature medical drug treatment available.

Metabolomics is an emerging field of study in the omics
discipline focusing on systematically analyzing small molecules in
human or animal organisms (Nicholson et al., 1999). This approach
aims to identify and quantify a variety of metabolites such as amino
acids, fatty acids, carbohydrates, and biochemical intermediates. The
ultimate goal of metabolomics is to comprehensively investigate low
molecular metabolites in organisms. Metabolites are downstream
products of the genome, transcriptome, and proteome, and therefore
reflect the end products of gene expression. There are two strategies
in metabolomic analysis: targeted and untargeted. Targeted studies
focus on predefined metabolites, whereas untargeted research aims
to analyze all metabolites as a whole. This latter approach is
particularly useful when comparing two groups of subjects, such
as healthy individuals and patients with diseases, or between two
patients with different diseases. Bymeasuring all metabolites in body
fluids, researchers can identify differences between the two groups
and search for disease biomarkers. This may lead to better diagnostic
methods for clinical uses.

Recent studies have used metabolomic analysis to assess the
metabolic profile of vascular diseases and identify relevant
biomarkers and major metabolic pathways. This approach may
improve our understanding of these diseases and assist in
development of new therapeutic targets. Previous metabolomics
research in the vascular field has largely focused on cerebrovascular
diseases, atherosclerosis, myocardial infarction, heart failure, aortic
aneurysms, and aortic dissection. One untargeted metabolomics
study discovered phenylacetylglutamine (PAGln) and demonstrated
its association with cardiovascular disease and major adverse
cardiovascular events (myocardial infarction, stroke, or death) in an
independent cohort (n = 4,000 subjects) (Nemet et al., 2020). Zhang
et al. (2018) identified 36 differential metabolites related to coronary

artery disease progression including 15 amino acids, 12 free fatty acids,
8 organic acids, and 1 sialic acid in serum using untargeted
metabolomics in 2,324 patients who underwent coronary
arteriography from 4 independent centers. A targeted metabolomic
analysis and functional metabolomics strategy then revealed that
N-Acetylneuraminic acid acts as a potential metabolic marker for
coronary artery disease progression. Targeting N-acetylneuraminic
acid and its regulatory enzyme neuraminidase-1 may potentially
serve as new avenues for therapeutic intervention into myocardial
ischemia injury. Razavi et al. (2020) conducted untargeted
metabolomic analysis of fasting serum samples in 1,050 white and
black participants and identified eight metabolites robustly associated
with left ventricular diastolic functions. Among them were
formiminoglutamate, 1-methyl-histidine, N2, N5-diacetylornithine,
N-trimethyl 5-aminovalerate, N-formylmethionine, 5-
methylthioadenosine, and methionine sulfoxide, which were
positively associated with left ventricular filling pressure, while
butyryl carnitine had a significant positive association with
isovolumic relaxation time. It has been reported that plasma
succinate concentrations were increased in patients with aortic
aneurysm and dissection using untargeted metabolomics and
targeted mass spectrometry (Cui et al., 2021). This suggests that
plasma succinate concentrations can be used as a biomarker for pre-
hospital aortic disease diagnosis and reliable differentiation from acute
myocardial infarction and pulmonary embolism when patients present
with chest pain. Glycocholic acid has been identified as a potential
plasma metabolite marker for the functional outcome after acute
ischemic stroke (AIS) in an untargeted LC/MS metabolomics study
(Wu et al., 2023). Elevated levels of 4-hydroxyphenylacetic acid and
decreased levels of threonine were found to be associated with an
increased risk of cardiovascular events (Ferreira-Divino et al., 2022).
The levels of circulating acylcarnitines’ level indicate the severity of
coronary artery disease (CAD) and may have implications for
stratifying patients in future strategies (Gander et al., 2021). These
findings highlight significant differences inmetabolites between patients
with vascular diseases and normal groups, indicating the potential of
metabolomics researchmethods to identifymetabolites and enable early
diagnosis, targeted therapy, and improved prognosis of vascular
diseases.

However, there has been no previous research using
metabolomics to analyze changes in metabolites and metabolic
pathways in the plasma of patients with AVMs. Therefore, our
study aimed to analyze the plasma metabolic profile of patients with
extracranial AVMs. We used ultra-high performance liquid
chromatography-mass spectrometry (UHPLC-MS) to analyze the
plasma metabolic profile between patients with extracranial AVMs
and healthy controls (HC) (Mullish et al., 2022). In addition, we
employed machine learning algorithms to detect potential
biomarkers. Our findings may help identify new targets for
therapeutic intervention and improve patient outcomes.

Materials and methods

Participants

This study included 32 patients with extracranial AVM who
were recruited from China-Japan Friendship Hospital (Beijing,
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China) between July 2021 and November 2022. The diagnosis of
AVM was based on the protocol formulated by the International
Society for the Study of Vascular Anomalies (ISSVA) (Wassef et al.,
2015). Exclusion criteria included individuals with: 1) other types of
vascular malformations, such as venous malformations or lymphatic
malformations; 2) hemangioma; 3) relevant treatment 4 weeks
before operation; 4) inflammatory, septic, or autoimmune
diseases; 5) age over 75 years; 6) severe dysfunction of heart,
liver, kidney, or other organs; 7) a history of malignancy; 8)
pregnancy or lactation. Thirty healthy volunteers with no
evidence of vascular malformations or metabolic syndrome were
enrolled as healthy controls. This study was approved by the Ethics
Committee of China-Japan Friendship Hospital, and informed
consent was signed by all study participants or their guardians
before collecting blood samples. The research adhered to the
principles of the Declaration of Helsinki. The flow chart of this
study is shown in Figure 1.

Plasma sample collection and preparation

Peripheral venous blood samples were collected from patients
prior to their operation, while blood samples from healthy controls
were collected in the morning. Fresh EDTA anti-coagulated blood
was centrifuged at 3,000 rpm for 10 min at room temperature. The

resulting plasma was immediately stored at −80°C until analysis.
Prior to analysis, the blood samples were thawed at 4°C, and 100 μL
of the sample was transferred to an EP tube. After the addition of
300 μL of extract solution (methanol, containing isotopically
labelled internal standard mixture), the samples were vortexed
for 30 s and sonicated for 10 min in an ice-water bath. The
internal standard (IS) mixture of the negative ion mode (NEG)
comprised L-phenylalanine-D5, decanoic acid-D19, and L-2-
chlorophenylalanine. The positive ion mode (POS) internal
standard mixture comprised L-phenylalanine-D5, L-2-
chlorophenylalanine, and diisobutyl phthalate-D4. Finally, the
samples were incubated for 1 h at −40°C to precipitate proteins.
Samples were then centrifuged at 12,000 rpm (RCF = 13,800(×g),
R = 8.6 cm) for 15 min at 4°C. The resulting supernatant was
transferred to a new glass vial for analysis. To prepare the quality
control (QC) sample, an equal aliquot of the supernatants from all of
the samples was mixed (Alseekh et al., 2021).

LC-MS/MS analysis

Liquid chromatography-mass spectrometry (LC-MS/MS)
analysis were performed using a UHPLC system (Vanquish,
Thermo Fisher Scientific) with a UPLC HSS T3 column
(2.1 mm × 100 mm, 1.8 μm) coupled to Orbitrap Exploris

FIGURE 1
Flow chart of the study as a whole.
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120 mass spectrometer (Orbitrap MS, Thermo). The mobile phase
consisted of 5 mmol/L ammonium acetate and 5 mmol/L acetic acid
in water (A) and acetonitrile (B). The autosampler temperature was
set to 4°C, and the injection volume was 2 μL. The Orbitrap Exploris
120 mass spectrometer was chosen for its ability to acquire MS/MS
spectra on information-dependent acquisition (IDA) mode in the
control of the acquisition software (Xcalibur, Thermo). In this mode,
the acquisition software continuously evaluates the full scan MS
spectrum. The ESI source conditions were set as follows: sheath gas
flow rate as 50 Arb, Aux gas flow rate as 15 Arb, capillary
temperature 320°C, full MS resolution as 60,000, MS/MS
resolution as 15,000 collision energy as 10/30/60 in NCE mode,
spray Voltage as 3.8 kV (positive) or −3.4 kV (negative), respectively
(Dunn et al., 2011).

Data preprocessing and annotation

The raw data underwent conversion to a mzXML format using
ProteoWizard and were subsequently processed with an in-house
program, which was designed using R and based on XCMS (Smith
et al., 2006). This program facilitated peak detection, extraction,
alignment, and integration. The extracted data were annotated
using an in-house MS2 database (BiotreeDB) with a 0.3 cutoff for
annotation, whichmeans that only annotations with a similarity score
equal to or higher than 0.3 are considered for further analysis. (Cai
et al., 2015). XCMSwas used with the centWavemethod, employing a
ppm of 10 and peak widths ranging from 5 to 20. The signal-to-noise
ratio (SN) threshold was set at 3. As a pre-filtering step, only peaks
with at least 3 intensity values greater than or equal to 1,000 were
retained. The function used to calculate the chromatographic peakmz
center was wMean, which represents the intensity-weighted average of
the peak’s mz values. A minimum m/z dimension difference
of −0.001 was required for peaks with overlapping retention times
(Supplementary Table S1). The marking value of metabolites is
calculated based on Euclidean distance and dot product algorithm,
which improves the accuracy of mass spectrum annotation.

PCA and OPLS-DA analysis

The normalizationwas performed using an internal standard. The
derived data was then log-converted and CTR formatted using
SIMCA software (V16.0.2, Sartorius Stedim Data Analytics AB,
Umea, Sweden), followed by automatic modeling analysis (Saccenti
et al., 2014). This software analysis included both unsupervised
principal component analysis (PCA) and supervised orthogonal
projections to latent structures-discriminant analysis (OPLS-DA).
Following this, the validity of the model was assessed via cross-
validation of R2Y (the interpretability of the model to the
categorical variable Y) and Q2 (the predictability of the model).
Additionally, a permutation test was conducted, involving the
random reordering of the categorical variable Y multiple times
(n = 200) to generate various random Q2 values. This assisted in
further testing the validity of the model. R2 and Q2 represent the
model’s interpretability and predictability, respectively, and can be
used to assess the model’s performance. In theory, higher values of R2

and Q2, closer to 1, indicate better model performance, while lower

values suggest poorer fitting accuracy. Generally, R2 and Q2 values
above 0.5 are considered good, and values above 0.4 are acceptable.
Outside of multivariate statistical methods, the significance of
metabolite changes at the univariate level was evaluated using a
Student’s t-test. The contribution of variables in the OPLS-DA
model was summarized via calculation of the variable importance
in the projection (VIP) value.

Bioinformatics analysis

Metabolites exhibiting VIP values > 1 and p-values<0.05 were
identified as significantly altered metabolites. The metabolic
regulations of these metabolites were visualized using a volcano
plot. To perform pathway enrichment analysis, both enrichment
analysis and topological analysis were conducted using the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database (http://
www.kegg.jp/kegg/pathway.html) and MetaboAnalyst (Kanehisa
and Goto, 2000; Xia et al., 2015; Kanehisa et al., 2016).
Characteristic metabolites were screened using two machine
learning algorithms: Least Absolute Shrinkage and Selection
Operator (LASSO) analysis and random forest (RF). Potential
biomarkers were assessed using receiver operating characteristic
(ROC) curve analysis, and the sensitivity and specificity were
evaluated by calculating the area under the curve (AUC).

Statistical analysis

Statistical analysis in this study was performed using SPSS
(Version 26.0) and R software (Version 4.2.0). Continuous
variables were presented as mean ± standard deviation (SD). For
normally distributed data, the Student’s t-test was used for analysis.
Categorical variables were described as number (percentage) and
compared using the Chi-square test or Fisher’s exact test. A two-
tailed p-value <0.05 was considered statistically significant.

Results

Clinical characteristics of AVM patients and
healthy controls

To compare the differences in venous plasmametabolites between
extracranial AVM patients and the healthy population, 32 AVM
patients and 30 healthy controls were included in this study. The basic
characteristics of the sampled population are shown in Supplementary
Table S2. There were no differences present between groups with
respect to age, gender, bodymass index (BMI), and basic diseases such
as metabolic syndrome, autoimmune diseases, severe heart, liver or
kidney diseases, or malignant tumors.

Process quality control and data quality
control

The stability of the retention time and response strength of the
internal standard in quality control (QC) samples was confirmed,
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indicating effective control of substance residue and cross-
contamination between samples within controllable limits.
Furthermore, no detectable peaks originating from internal
standards were detected in the blank samples. The aggregation of
QC samples in the two-dimensional PCA score map was
satisfactory, demonstrating high reproducibility (Supplementary
Figures S1A, B). Additionally, all QC samples were
within ±2 standard deviations in the PCA one-dimensional
distribution plot, confirming the high quality of the experimental
data (Supplementary Figures S2A, B). In summary, the study
exhibited excellent sample quality, experimental methods, and
system stability. Consequently, the experimental data were stable
and reliable, capable of revealing significant differences in
metabolomics between different groups.

PCA and OPLS-DA analysis

After performing various data preprocessing techniques such as
filtering for deviation values, missing values, imputing missing
values, and standardizing the data, the raw data were normalized.
LC-MS was used to identify a total of 8,741 metabolites in the
positive ion mode (POS) and 8,385 metabolites in the negative ion
mode (NEG). These metabolites were classified and counted based
on their chemical classification information (Supplementary Figures

S3A, B). The resulting PCA score map indicated clear clustering
between the AVM group and control group (Supplementary Figures
S4A, B). It was observed that samples from both groups were mostly
within the 95% confidence interval, however, there were significant
differences in metabolites between the groups. An OPLS-DA model
analysis was conducted on the first principal component, which
showed that AVM patients had statistically distinct plasma
metabolic profiles compared to the healthy controls (Figures
2A–D). To evaluate the model, permutation analysis was
performed, and the results confirmed that the model was both
valid and predictive.

Differential metabolites analysis

We utilized a combination of multivariate and univariate
statistical analysis to identify differential metabolite expression
between groups. To determine the significance of the results, we
considered metabolites with VIP scores >1 and p-values< 0.05 as
differential metabolites. The differential metabolites were then
visualized using a volcano plot (Figures 3A, B). In the positive
ion mode, a total of 110 differential metabolites were identified, of
which 17 were upregulated and 93 were downregulated. The names
of the substances were obtained through a qualitative matching
analysis of the secondary mass spectrum (e.g., MS2 name). In the

FIGURE 2
Score scatter plot of the OPLS-DA model for AVM vs. HC group in positive (A) and negative (B) ion mode. Permutation plot test of OPLS-DA model
for group AVM vs. HC in positive (C) and negative (D) ion mode.
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negative ion mode, 74 differential metabolites were identified, with
19 upregulated and 55 downregulated (Supplementary Figure S5B).

Pathway analysis of differential metabolites

We conducted an extensive analysis of differential metabolites
authoritative metabolite databases such as KEGG and PubChem.
We then searched and analyzed the metabolic pathway database of
corresponding species Homo sapiens (human) to map these
differential metabolites. Our results of the metabolic pathway
analysis are displayed in a bubble plot (Figure 4), where we
labeled important pathways after performing enrichment and
topological analyses. These findings suggest significant alterations
in several metabolic pathways, including caffeine metabolism,
aminoacyl-tRNA biosynthesis, linoleic acid metabolism,
propanoate metabolism, D-glutamine and D-glutamate
metabolism, arachidonic acid metabolism, pyruvate metabolism,

lysine degradation, and lysine biosynthesis. Protein translation,
lipid metabolism, and amino acid metabolism were identified as
the main metabolic features in AVM. After obtaining the matching
information of differential metabolites, we conducted pathway
search and regulatory interaction network analysis to capture the
intersection between metabolic pathways and identify potential
enzymes and metabolites. This analysis allowed us to investigate
how perturbations propagate at the pathway level and how pathways
influence each other. The results of the regulatory analysis are
visually presented in a network plot, highlighting the
interconnectedness and regulatory relationships among the
pathways (Supplementary Figures S6A, B).

Biomarkers from serum for AVM disease

We utilized two machine learning techniques, LASSO and
random forest, to identify specific differential metabolites. In the

FIGURE 3
Volcano plot for AVM vs. HC group in positive (A) and negative (B) ion mode. The abscissa represents the log2(Fold Change) of the substance, the
ordinate represents the p-value of the Student‘s t-test. The scatter represents the VIP value. Significantly upregulated metabolites are indicated in red,
significantly downregulated metabolites are indicated in blue, and non-significantly different metabolites are indicated in grey.

FIGURE 4
Pathway analysis for AVM vs. HC group in positive ionmode (A) and negative ionmode (B). The abscissa and the size of the bubble represent the size
of the influence factor. The ordinate and the color of the bubble represent the p-value of the enrichment analysis.
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positive ion mode, LASSO identified a total of 16 differential
metabolites (Figures 5A, B), while the RF model ranked the
variables by their mean decrease accuracy (Figure 5C) and the
top 10 metabolites were selected as characteristic differential
metabolites. Through intersection of the two models, we
constructed a Venn diagram (Figure 5D), representing a total of
5 common differential metabolites: hydroxy-proline, L-2-Amino-4-
methylenepentanedioic acid, piperettine, 20-hydroxy-PGF2a, and
2,2,4,4-tetramethyl-6-(1-oxobutyl)-1,3,5-cyclohexanetrione.
Similarly, we applied the same algorithms in the negative ion mode
(Figure 6) and identified 18 differential metabolites using LASSO.
After intersecting with the RF model, 4 common differential
metabolites were identified: DL-tryptophan, 9-oxoODE, alpha-
Linolenic acid, and dihydrojasmonic acid.

Discriminative ability of serum biomarkers
for AVM disease

We evaluated the discriminative ability of the metabolites by
plotting ROC curves for each metabolite and calculating the AUC.
In the positive ion mode (Figure 7A), Piperettine (AUC = 0.883, CI:
0.795-0.972), hydroxy-proline (AUC = 0.956, CI: 0.907-1), L-2-
Amino-4-methylenepentanedioic acid (AUC = 0.964, CI: 0.925-1),
and 20-Hydroxy-PGF2a (AUC = 0.921, CI: 0.847-0.995)
demonstrated high discriminative ability based on their AUCs.
Similarly, in the negative ion mode (Figure 7B), DL-Tryptophan
(AUC = 0.909, CI: 0.841-0.978), 9-OxoODE (AUC = 0.880, CI:
0.792-0.969), and alpha−Linolenic acid (AUC = 0.888, CI: 0.805-
0.970) exhibited high discriminative ability.

FIGURE 5
Machine learning algorithms were used to screen characteristic metabolites in the positive ion mode. (A) Coefficient profiles of the metabolites in
the LASSOmodel. (B) A total of 16 non-zero coefficients were obtained using optimal lambda (λ). (C) The top 10 characteristic differential metabolites of
the random forest model in the positive ion mode. (D) Venn diagram of characteristic metabolites obtained by the two models.
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Discussion

AVMs are high-risk, complex and rare congenital vascular
malformations that pose significant risks and challenges for
treatment. However, current diagnostic methods lack specificity
and effective experimental animal models for further research are
lacking (Jones et al., 2021). To address this gap, untargeted
metabolomics technology was used in this study to detect and
analyze changes in plasma metabolites and metabolic pathway
patterns in patients with extracranial AVM, with the goal of
identifying AVM biomarkers and exploring their mechanism.
As a result, 110 differential metabolites were screened in
positive ion mode, of which 17 were upregulated and 93 were
downregulated. In negative ion mode, 74 metabolites were

identified, of which 19 were upregulated and 55 were
downregulated. Lipids and lipid-like molecules were the most
prevalent metabolites in both positive and negative ion modes.
Major alterations to metabolic pathways were identified, including
lipid metabolism, amino acid metabolism, carbohydrate
metabolism, and protein translation in AVM patients compared
to healthy controls. Through machine learning algorithms, we
identified some characteristic metabolites for AVMs, including
hydroxy-proline, L-2-Amino-4-methylenepentanedioic acid,
piperettine, 20-hydroxy-PGF2a, 2,2,4,4-tetramethyl-6-(1-
oxobutyl)-1,3,5-cyclohexanetrione in the positive ion mode, and
DL-tryptophan, 9-oxoODE, alpha-Linolenic acid,
dihydrojasmonic acid in the negative ion mode.
Furthermore, the AUCs of the ROC curve indicated that

FIGURE 6
Machine learning methods to screen characteristic metabolites in the negative ion mode. (A) Coefficient profiles of the metabolites in the LASSO
model. (B) A total of 18 non-zero coefficients were obtained using optimal lambda (λ). (C) The top 10 characteristic differential metabolites of the random
forest model in the positive ion mode. (D) Venn diagram of characteristic metabolites obtained from the two models.
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hydroxy-proline, L-2-Amino-4-methylenepentanedioic acid, 20-
Hydroxy-PGF2a, DL-Tryptophan, 9-OxoODE, and
alpha−Linolenic acid had high discriminative ability as
biomarkers for AVM disease. The results of this study provide
new insights into the underlying pathogenesis of AVMs and offer
potential new therapeutic targets for the disease. Overall plasma
metabolomics may be a useful tool in developing objective
biomarkers for identifying AVM and further research in this
area is required.

Our study utilizing untargeted metabolomics demonstrates that
lipid metabolism plays a crucial role in extracranial AVMs. We have
identified 9-oxo-octadecadienoic acid (9-oxoODE) as a potential
metabolite with promising diagnostic and predictive capabilities.
This metabolite is produced from linoleic acid hydroperoxides via
the LOX pathway and has previously been found to be elevated in the
serum of patients with Alzheimer’s disease (Lu et al., 2017) and
primary Sjogren’s syndrome (Han et al., 2022), as well as being a
potential predictor of diabetic macular edema in older type 2 diabetes
patients (Rhee et al., 2021). Furthermore, our study identified other
significant metabolites that are components of the lipid metabolism
pathway, such as alpha-Linolenic acid, dihydrojasmonic acid, and 20-
hydroxy-PGF2a. Alpha-Linolenic acid is a type of omega-3
polyunsaturated fatty acid that has been associated with numerous
health benefits, including cardiovascular disease prevention, diabetes
management, cancer prevention, and improvement of cognitive
function (Shahidi and Ambigaipalan, 2018). Dihydrojasmonic acid
is a decomposition products of linolenic acid and acts as a plant
growth regulator with similar physiological to prostaglandins in
animals (Wasternack, 2007). PGF2a mainly acts on blood vessels
and smooth muscle, participating in various physiological processes
such as platelet aggregation, inflammation, pain, fever, nerve impulse
transmission, and cell growth (Blackwell et al., 2010).

AVMs also have a significant impact on amino acid metabolism
pathways compared to the healthy population. The differential

pathways include aminoacyl-tRNA biosynthesis, D-glutamine and
D-glutamate metabolism, lysine degradation, and lysine
biosynthesis. The involved metabolites are DL-tryptophan and
hydroxy-proline, which can affect protein metabolism. The
enrichment of aminoacyl-tRNA biosynthesis pathways indicates
increased protein translation in AVMs. Glutamine is a non-
essential amino acid involved in various metabolic processes,
such as energy production through the tricarboxylic acid cycle,
synthesis of lipids and purines, and the production of the
antioxidant compound glutathione (Curi et al., 2005). The
metabolism of glutamine/glutamate is linked to
immunomodulatory processes (Cruzat et al., 2018) and oxidative
stress (Di Renzo et al., 2022). The supplementation of glutamine
analogues can reduce endothelial injury (Herzog et al., 2020). This
metabolic pathway also plays a role in the global disease COVID-19.
A meta-analysis was performed on published metabolic data from
COVID-19 patients, and of the 596 identified metabolites, pathway
enrichment indicated that glutamine and glutamate metabolism was
the most significant metabolic pathway (Li et al., 2023). DL-
Tryptophan scavenges H2O2 and •OH more effectively than
melatonin (Wang et al., 2013). However, a recent study (Cohen
et al., 1979) suggested that DL-tryptophan might act as a tumor-
promoting agent during bladder carcinogenesis. Proline is an
important component of collagen and accounts for
approximately 10% of all amino acids in collagen. The synthesis
and degradation of lysine, one of the essential amino acids in the
human body, have undergone changes over time. In a recent study
(Marchesi et al., 2007), lysine levels were found to increase
significantly in the feces of patients with inflammatory bowel
disease. Lysine is metabolized to produce acetyl-CoA, which
participates in the tricarboxylic acid (TCA) cycle. Glutamate can
also be involved in the TCA cycle. This cycle is a crucial metabolic
pathway in aerobic organisms and serves as the final metabolic
pathway for carbohydrates, lipids, and amino acids. As a result, it

FIGURE 7
ROC curve of differentially expressed metabolites for AVM vs. HC group in positive ion mode (A) and negative ion mode (B).
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organically connects the metabolism of these three major
biomolecules together, functioning as the metabolic hub of
energy. These observations are consistent with what is clinically
observed, specifically that there is an increase in blood flow and skin
temperature in AVM lesions. This suggests that the metabolism is
more active than in normal tissue, and the metabolites may be
present in peripheral blood as well.

The positive ion mode showed an enrichment of the caffeine
metabolism pathway. Caffeine, a methylxanthine (1,3,7-
trimethylxanthine), shares a similar molecular structure to
adenosine and can bind to adenosine receptors, blocking the
effects of adenosine and reducing fatigue and improving
responsiveness (Fredholm et al., 1999). Moreover, caffeine may has
been observed to protect against liver fibrosis by antagonizing
adenosine receptor activation, which can promote tissue
remodeling, including collagen production and fibrin generation. It
may also protect against liver steatosis and fibrosis by improving fat
homeostasis and reducing oxidative stress (Klemmer et al., 2011). In
animal models, caffeine metabolites can reduce collagen deposition in
hepatocytes and inhibit liver cancer occurrence (Hosaka et al., 2001).
Furthermore, caffeine may improve energy balance by reducing
appetite, increasing basal metabolic rate and food-induced
thermogenesis (Harpaz et al., 2017). Caffeine may also affect pain
transmission, neuroprotection, mood enhancement, and immune
regulation, which may play a role in the occurrence of burning
mouth syndrome. These mechanisms of caffeine could be relevant
in AVMs by providing pain relief, reducing collagen and fibrin
production, and reducing of oxidative stress to prevent fiber
formation. The enrichment of the caffeine metabolism pathway in
AVM suggests its potential role inAVM treatment. However, the roles
of other distinct metabolites, including L-2-Amino-4-
methylenepentanedioic acid, piperettine, and 2,2,4,4-tetramethyl-6-
(1-oxobutyl)-1,3,5-cyclohexanetrione remain unknown.

Our study is subject to several limitations that need to be addressed.
First, the sample size in this study is relatively small due to the rarity of
the disease, making it challenging to gather sufficient samples. In
addition, all of the patients in this study are from the same ethnic
group and were recruited from a single study center, necessitating the
need for cross-sectional and longitudinal studies involving more
patients. Furthermore, the identification and analysis of all categories
of metabolites simultaneously through non-targeted metabolomics is
impractical due to various factors that influence the identification and
analysis of metabolites, as well as the presence of numerous unknown
metabolites in the metabolite database. Therefore, the differential
metabolites identified in this study must be validated further in
subsequent studies with a larger number of patients.

Conclusion

In conclusion, this study demonstrated that patients with
extracranial arteriovenous malformations exhibit significantly
distinct metabolic profiles when compared to healthy individuals.
By utilizing plasma metabolomics, it was possible to distinguish
between extracranial AVM patients and the from healthy control
population. These findings indicate that metabolomic analysis could
aid in understanding the pathophysiology of AVMs and could serve as
a potential tool for clinical diagnosis and treatment of the condition.
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SUPPLEMENTARY FIGURE S1
Presentation of QC samples in a 2-D PCA score plot. (A) Positive ion mode.
(B) Negative ion mode.

SUPPLEMENTARY FIGURE S2
Presentation of QC Samples in a PCA One-Dimensional Profile. (A) Positive
ion mode. (B) Negative ion mode.

SUPPLEMENTARY FIGURE S3
Pie chart of metabolite classification and proportion. (A) Pie chart of
metabolite classification and proportion in positive ion mode. (B) Pie
chart of metabolite classification and proportion in Negative ion mode.
(Different color blocks in the figure represent different taxonomic
categories, and the percentage represents the percentage of
metabolites belonging to this type in the number of all identified
metabolites).

SUPPLEMENTARY FIGURE S4
Score scatter plot of the PCAmodel for AVM vs. HC group in positive (A) and
negative (B) ion mode.

SUPPLEMENTARY FIGURE S5
Heatmap of hierarchical clustering analysis for AVM vs HC. (A) Heatmap of
hierarchical clustering analysis for all groups in positive ion mode. (B)
Heatmap of hierarchical clustering analysis for all groups in negative ion
mode. In the figure, the abscissa represents different sample groups, the
ordinate represents all metabolites, the color blocks at different positions
represent the relative expression number of metabolites at
corresponding positions, red represents the expression of high content of
the substance, and blue represents the expression of low content of the
substance.

SUPPLEMENTARY FIGURE S6
Regulatory interaction network analysis for AVM vs HC. (A) Positive ionmode.
(B) Negative ion mode. In the figure, the red dots represent metabolic
pathways, the yellow dots represent substances related to regulatory
enzyme information, and the green dots represent the backgroundmaterials
of metabolic pathway. The purple dots represent the molecular module
information of class of substances, the blue dots represent chemical
interactions of substances, and the green squares represent the different
substances obtained by this comparison.
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