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Editorial on the Research Topic
Crosstalk between bone and other cells

Communications between osseous tissues and other organs are very common and
essential for physiology of overall body system. For example, osteoblasts and
osteocytes—now as endocrine cells (Figure 1)—are able to produce and release fibroblast
growth factor (FGF)-23, which, in turn, regulates renal phosphate reabsorption (Vervloet,
2019; Agoro and White, 2023) and calcium transport across the intestinal epithelium
(Khuituan et al., 2012; Rodrat et al., 2018; Wongdee et al., 2018; Wongdee et al., 2021). FGF-
23 also downregulates the expression and activity of 25-hydroxyvitamin D 1α-hydroxylase
(CYP27B1) in the renal proximal tubular cells, thereby reducing the action of 1,25-
dihydroxyvitamin D3 (Perwad et al., 2007). During acute inflammation, osteocytes
release certain mediators including C-terminal FGF-23 peptides to modulate hepatic
hepcidin production and serum iron (Courbon et al., 2023). Moreover, osteocalcin or γ-
carboxyglutamic acid-containing protein—as an osteoblast-derived endocrine factor—is
capable of regulating pancreatic insulin production (Lee et al., 2007), adiponectin release
from adipocytes (Lee et al., 2007) or testicular androgen biosynthesis (Karsenty and Oury,
2014).

On the other hand, several tissues, such as muscle and brain, also send signals to
modulate bone remodeling (Rousseaud et al., 2016; Gomarasca et al., 2020). For instance,
myokines (e.g., interleukin-6 and irisin) have been reported to positively regulate bone
formation (Gomarasca et al., 2020), whereas central sympathetic outflow probably enhances
bone resorption through β2-adrenergic receptor (Bonnet et al., 2008; Huang et al., 2009).
Certain organs such as lung and kidney are principal regulators of plasma pH, a disturbance
of which (e.g., metabolic acidosis) profoundly affects intestinal calcium absorption
(Charoenphandhu et al., 2007) and osteoblast-mediated bone formation (Bushinsky and
Krieger, 2022).

In the present Research Topic, there are publications that clearly point out the crosstalk
between bone and some other tissues and cells, including the respiratory tissues, adipose
tissue, mammary tissue, brain, and immune cells (e.g., monocytes, T-cells, etc.). Specifically,
in an original article by Ivanova et al., the results corroborated that a disruption of Wnt-
sclerostin pathway contributed to osteopathy (i.e., osteopenia and osteoporosis) in patients
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with Gaucher’s disease, a common lysosomal storage disease caused
by acid β-glucocerebrosidase gene mutation with cellular
accumulation of glucocerebroside. Another original article by
Kurgan et al. demonstrated the effects of treadmill exercise on
serum sclerostin levels in male mice. Sclerostin has been
recognized as a secretory glycoprotein that strongly negates bone
formation (Delgado-Calle et al., 2017; Liao et al., 2022), especially
during mechanical unloading (Lin et al., 2009). It is predominantly
expressed by osteocytes in order to suppress osteogenesis by
regulating proliferation, differentiation, mineralization and
apoptosis of osteoblasts (Winkler et al., 2003; van Bezooijen et al.
, 2004; Liao et al., 2022). Sclerostin is also expressed in some other
tissues, e.g., cartilage, heart, kidney, and liver as well (Brunkow et al.,
2001; Weivoda et al., 2017). Since Kurgan and others (Kurgan et al.)
assessed serum sclerostin in exercising male mice and found a
decrease in serum sclerostin in exercising group, mechanical
loading during exercise is probably an efficient way to restrict
sclerostin secretion from both osteocytes and adipose tissue
(Kurgan et al.; Oniszczuk et al., 2022).

Generally, Wnt/β-catenin signaling plays a critical role in bone
homeostasis by promoting osteoblastogenesis and bone formation.
On the other hand, sclerostin—known as a Wnt signaling
antagonist—binds to Wnt co-receptors, i.e., low-density
lipoprotein receptor-related proteins 5 and 6 (LRP5 and LRP6),

thereby preventing Wnt from binding to these co-receptor proteins.
As a consequence, sclerostin blocks the Wnt downstream signaling
pathway and downregulates the expression of genes involved in
osteoblast commitment, such as RUNX2 (Delgado-Calle et al., 2017).
Several factors have been reported to suppress the expression of
sclerostin including parathyroid hormone, estrogen as well as
mechanical loading (Drake and Khosla, 2017). These factors thus
act in concert with the Wnt/β-catenin signaling pathway to
modulate bone homeostasis.

This Research Topic also contains review and mini-review
articles that elaborate the crosstalk between bone and other
tissues. Specifically, Ma and others (Ma et al.) explained how
pulmonary tuberculosis, lung cancers, pollutant exposure
[including particulate matter 2.5 (PM2.5)], asthma and chronic
obstructive pulmonary disease are able to cause or aggravate
osteoporosis. In a mini-review by He and Jiang, the
interdependent interactions between immune cells (e.g., T cells,
macrophages, NK cells, and dendritic cells) and cancer cells in bone
microenvironment are well delineated. Lastly, Athonvarangkul and
Wysolmerski discussed the physiological significances of the
brain–breast–bone axis and maternal skeletal changes. A
maternal pathological condition known as pregnancy/lactation-
associated osteoporosis was also mentioned. Maternal central
nervous system—particularly hypothalamus—controls bone

FIGURE 1
Crosstalks between bone and other organs or cells. Osteoblasts and/or osteocytes are considered endocrine cells that produce a number of
bioactive molecules, e.g., osteocalcin, FGF-23 and sclerostin (see text for details). Some tissues or cells such as skeletal muscle, brain, immune cells, etc.,
also produce bioactive molecules to modulate bone turnover. Arrows indicate communication, modulation and/or regulation. iFGF-23, intact fibroblast
growth factor-23; Cter-FGF-23, C-terminal FGF-23 peptide.
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metabolism by altering a number of humoral factors, e.g., prolactin,
oxytocin and gonadotropin-releasing hormone, the latter of which is
the salient regulator of circulating gonadotropins and estrogen.
Prolactin not only enhances the intestinal calcium absorption
(Charoenphandhu et al., 2009) but also modulates the expression
of osteoblast-derived osteoclastogenic factors (Wongdee et al., 2011)
and sclerostin production (Athonvarangkul and Wysolmerski).

Therefore, the present Research Topic is certainly able to shed
some light on the crosstalks between bone and other distant cells,
especially in lung and adipose tissue as well as cells in the
brain–breast–bone axis (Figure 1). Indeed, interactions between
bone cells and neighboring hematopoietic cells or stem cells
within marrow tissue microenvironment are not uncommon and
their detailed signaling networks are worth exploring.
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