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Enabling supra-aortic vessels
inclusion in statistical shape
models of the aorta: a novel
non-rigid registration method
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Italy, 2Department of Industrial Engineering, University of Rome “Tor Vergata”, Roma, Italy,
3Department of Information Engineering, University of Pisa, Pisa, Italy

Statistical Shape Models (SSMs) are well-established tools for assessing the
variability of 3D geometry and for broadening a limited set of shapes. They are
widely used in medical imaging due to their ability to model complex geometries
and their high efficiency as generative models. The principal step behind these
techniques is a registration phase, which, in the case of complex geometries,
can be a critical issue due to the correspondence problem, as it necessitates the
development of correspondence mapping between shapes. The thoracic aorta,
with its high level of morphological complexity, poses a multi-scale deformation
problem due to the presence of several branch vessels with varying diameters.
Moreover, branch vessels exhibit significant variability in shape, making the
correspondence optimization even more challenging. Consequently, existing
studies have focused on developing SSMs based only on the main body of
the aorta, excluding the supra-aortic vessels from the analysis. In this work,
we present a novel non-rigid registration algorithm based on optimizing a
differentiable distance function through a modified gradient descent approach.
This strategy enables the inclusion of custom, domain-specific constraints in
the objective function, which act as landmarks during the registration phase.
The algorithm’s registration performance was tested and compared to an
alternative Statistical Shape modeling framework, and subsequently used for the
development of a comprehensive SSM of the thoracic aorta, including the supra-
aortic vessels. The developed SSM was further evaluated against the alternative
framework in terms of generalisation, specificity, and compactness to assess its
effectiveness.

KEYWORDS

statistical shape model, non-rigid registration, deformable surface, thoracic aorta,
supra-aortic vessels, correspondence optimization

1 Introduction

Diagnosis and risk stratification of aortic diseases are primarily based on medical
imaging techniques which allow the analysis of the anatomy and structure of the heart and
vessels. The aortic aneurysm is a disease characterized by an enlargement of the diameter
of the aorta. The maximum aortic diameter is the main criterion to understand whether
an elective repair is needed to avoid fatal complications, such as rupture or dissection
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(Erbel et al., 2014). In general, anatomical variations contain
valuable information for: (i) diagnosis of aortic pathologies
(De Nisco et al., 2020); (ii) planning of patient treatment
strategies (Santoro et al., 2021); (iii) design of vascular devices for
treatment, e.g., stents-grafts (Lortz et al., 2018); (iv) patient-specific
computational analysis (Capellini et al., 2018; Pham et al., 2022); (v)
mechanobiological investigation (Mousavi et al., 2021; Vignali et al.,
2021). Given their high information content, quantitative analysis
of anatomical variations is crucial. Focusing our attention on the
thoracic aorta, quantifying its shape and shape variations is difficult
due to its morphological complexity and non-in-plane geometry
(S-shape morphology) (Donazzan et al., 2014). In current clinical
practice, simplified 2d geometrical biomarkers are used to assess
pathologies. One example is during aortic aneurysm prognosis, for
which the maximum diameter measurement is the most common
2d biomarker used (Erbel et al., 2014). However, it is widely thought
that this method has low prognostic significance since it fails
to capture the full three-dimensional geometric variability that
allows a higher comprehension of the disease (Celi and Berti,
2014; Celi et al., 2023). Moreover, the maximum diameter does
not exploit the abundance of information contained in the current
tomographic imaging techniques available in clinics, e.g., computed
tomography (CT) and magnetic resonance (MR) (Celi et al., 2017).
Recent approaches based on radial bases function techniques have
been proposed to cope with the enlargement of the aneurysm
during its progression or during the cardiac cycle (Capellini et al.,
2018; Biancolini et al., 2020; Capellini et al., 2021; Calò et al., 2023).
Despite the promising approach, these studies are limited to the
ascending portion of the aorta, do not invest the whole complexity
of the aorta and of the supra-aortic branches, and are limited
to patient-specific cases. In recent years, statistical shape models
(SSMs) have come into play, being a powerful data analysis tool
for assessing complex anatomical variations starting from patient-
specific cases moving up to a quantitative, population-level analysis
(Goparaju et al., 2022). SSMs have been widely used in medical
imaging applications, where the shape and possible shape variation
of an anatomical structure are derived and quantified from a set
of shape instances of the structure. The power of these models
lies in their data-driven nature and ability to model biological
shapes that have an intrinsic intra-subject high variability and
complexity. In addition, the complexity of developing SSMs is
directly proportional to the morphometric differences between the
shapes under investigation. Indeed, the preliminary phase to create a
SSM requires the establishment of a dense correspondence between
each point of the shape instances, which is a non-trivial task. In the
SSM context, this correspondence problem is commonly addressed
using either group-wise approaches, which simultaneously register
all shapes to a common reference frame, or pair-wise approaches,
which establish correspondences between individual shapes and
a selected reference shape (Oguz et al., 2016). With particular
attention to the thoracic aorta, the solution to this problem is
particularly challenging due to the presence of branch vessels. The
latter are characterized by smaller diameters and different starting
positions along the arch, which increase shape variations and make
the deformation problem a multi-scale issue. Several software
platforms (frameworks) exist to solve the correspondence problem
relying on different modelling approaches and assumptions. The
most widely used are ShapeWorks (Cates et al., 2017), Deformetrica

(Durrleman et al., 2014), and GIAS2 (Zhang et al., 2018). Starting
from these frameworks, several SSMs of the thoracic aorta have
been proposed by Bruse et al. (2017); Sophocleous et al. (2019);
Liang et al. (2018); Du et al. (2022); Thamsen et al. (2021) and
Bruse et al. (2016). However, all these studies are characterized
by significant geometrical simplifications, such as considering
the aorta as a curved tubular vessel without including supra-
aortic vessels. These branches are of fundamental importance not
only for the physio-pathological aspects, but also because their
position and orientation angle are crucial pieces of information for
the design and evaluation of thoracic endografts with branched
components. Moreover, from the computational fluid dynamic
(CFD) point of view, they allow the definition of the boundary
flow conditions (Boccadifuoco et al., 2016; 2018; Numata et al.,
2016), so their removal represents an important limitation for
these applications. In order to take into account the role of the
supra-aortic vessels for CFD simulations, in Thamsen et al. (2021),
the SSM was limited only to the centerline coordinates and the
correspondent maximum diameters, and then, the aorta and the
supra-aortic vessels were approximated to tubular (axial-symmetric)
surfaces.

This paper presents a novel non-rigid registration algorithm,
able to accurately solve the correspondence problem considering
the whole aorta and the supra-aortic vessels. This algorithm
optimizes a differentiable distance function through a modified
gradient descentwith a combinatorial Laplacian regularization term,
which allows the inclusion of specific constraints in the objective
function. Specifically, the following innovations were introduced
compared to previous work, which allowed a better solution of
the correspondence problem for the entire thoracic aorta with the
inclusion of supra-aortic vessels:

• Integration of the regularization term within the optimization
process, rather than typical addition to the objective function.
• Introduction of amulti-scale approach in the registration phase.
• Introduction of open-boundaries as landamarks to achieve a
proper registration of the supra-aortic vessels.

Our method is firstly described and then tested on a dataset of
healthy and aneurysmatic thoracic aortas.

2 Theoretical background

In this section, we briefly introduce the key concepts related
to the proposed SSM algorithm, with particular reference to the
metric (d) associated to the objective function (ϕ), its minimization
and the regularization technique to enhance the convergence of the
solution. In the context of shape analysis, amanifold is discretized by
a polygonal mesh (M). This mesh is characterized by a set of points
v ∈ V and edges e ∈ E: M = (V,E) where V contains all the vertices
of each polygon (nodes of the mesh), and E contains the set of edges
eij connecting the vertices vivj. Each vertex vi ∈ V is described by
its spatial coordinates xi ∈ ℝ3. The non-rigid registration process
requires two manifolds: a source (Ms) and a target (Mt) polygonal
mesh. In this context, the problem of registration can be defined
as the minimization of an objective function ϕ(Ms,Mt) which
quantifies the distance betweenMs andMt, as in Eq. 1:
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min
xs∈Vs

ϕ(Ms,Mt) (1)

where xs ∈ Vs are the Cartesian coordinates ofMs.

2.1 Chamfer distance

Chamfer Distance (CD), dCD(Ms,Mt), is a commonly used
loss function in learning-based reconstruction networks (Lu et al.,
2022). It has been chosen as descriptive metric for ϕ, Eq. 2:

dCD (Ms,Mt) =
1
|Vs|
∑
xs∈Vs

min
xt∈Vt
‖xs − xt‖22

+ 1
|Vt|
∑
xt∈Vt

min
xs∈Vs
‖xs − xt‖22 (2)

where xt ∈ Vt are the Cartesian coordinates ofMt, and |Vs| denotes
the cardinality of the set Vs, i.e., the number of vertices. This metric
works in two steps: firstly, it computes the distance between a point
on one mesh and the nearest point on the other mesh and, finally,
averages all of them. The choice of CD is due to its two main
advantages: it is simple to implement and it is differentiable (once
nearest neighbours are established). It is important to note that
dCD(Ms,Mt) is defined between point clouds V, not on the whole
mesh surfaceM = (V,E).

2.2 Gradient descent-based registration

Theminimization problem is solved by using a gradient descent-
based algorithm, which, in its simplest implementation, is:

xs← xs − η
∂ϕ
∂xs

(3)

where ϕ has to be a differentiable function and η is the learning
rate which governs the amplitude of steps during optimization.
Performing the registration using simple gradient descent to
minimize the objective function ϕ, as in Eq. 3, introduces some
issues yielding a final tangled mesh with multiple inverted elements,
such as turning parts of the mesh inside-out and local self-
intersections. In order to address this problem, a smoothness
regularization term (Ψ) is commonly added in the objective function
in order to penalize irregular deformations.

xs← xs − η
∂ (ϕ+Ψ)

∂xs
(4)

2.3 Combinatorial Laplacian

The Laplacian operator Δf = ∇ ⋅∇f is a well-established
differential operator which arises in countless physical problems.
One of itsmost important properties is that it can be used to quantify
the overall smoothness of a function on a domain Ω. The Dirichlet
energy is a measure of how variable a function is and its formulation
is reported in Eq. 5. Given a function f on a domain Ω, the energy
E(f)measures how much the function f changes over Ω. A constant
function, for instance, will have zero Dirichlet energy, while a wildly
changing function will have higher values of E(f). Let us define

the Dirichlet energy of a function E(f) and apply the first Green’s
identity:

E ( f) = 1
2
∫
Ω
‖ ∇ f ‖2 dx3 = C− 1

2
∫
Ω

f Δ f dx3 (5)

where C is a constant which depends only on the values of f and ∇f
on the boundaries of the domainΩ. It follows that the smoothness of
a function f is inversely proportional to the inner product ⟨f,Δf⟩. In
the context of manifolds, a generalized discrete Laplacian operator L
can be defined to operate on surface meshes (Bern and Plassmann,
2000) according to the formulation reported in Eq. 6:

Lij

{{{{
{{{{
{

−wij, if eij ∈ E

∑
k∈N (i)wik = deg (i) , if i = j

0, otherwise

(6)

where deg(i) is the number (N (i)) of neighbours of node i− th.
The weights wij ∈ ℝ discretize the first derivative along an edge,
while the sum of multiple first derivatives within L resembles a
discretization of the second derivative of signals on M. Various
weights wij can be chosen; when the operator is based only on
the topology of the input graph, wij = 1 for all edges eij ∈ E and
the operator is called combinatorial Laplacian (Botsch and Kobbelt,
2004; Nealen et al., 2006). In the following, the operator L will be
referred to as the combinatorial Laplacian. Similarly to Eq. 6, using
L, a discretized version of the Dirichlet energy can be defined for
signals f on surface meshes E(f) = ⟨f,Lf⟩. This term is conventionally
used to build the regularization termsΨ inside the objective function
(Eq. 4) (Nicolet et al., 2021). Despite this, a different approach will
be adopted in this work. Rather than including extra terms in the
objective function, the Laplacian operator will be used to smooth
out the irregularities from the gradient of the objective function, as
better detailed in the following section (Subsection 3.2).

3 Materials and methods

A population of 47 patients (15 females and 32 males; age
65.7± 13 years) was considered for this study; 26 were scheduled for
surgical thoracic aortic aneurysm treatment, while the remaining
21 were control subjects not affected by aortic diseases. For the
aneurysmatic patients, the CT images corresponding to the last
radiological follow-up available prior to a recommendation for
interventional treatment were considered. The CT scans were
performed with a 320-detector scanner (Toshiba Aquilion One,
Toshiba, Japan), using iodinated contrast medium (an average pixel
size of 0.625 mm, slice thickness of 0.5 mm). Starting from this
population, four different datasets are defined and reported in
Figure 1.

The raw dataset is obtained froma semi-automatic segmentation
process performed in 3DSlicer (Fedorov et al., 2012) with an
initial refinement in MeshMixer software (Autodesk, 2018) in
order to keep the length of the supra-aortic vessel of about
30 mm from the arch surface. It is worth noting that these
meshes are affected by several issues, caused by the specific
CT scan settings and by the segmentation process. These issues
make the meshes unsuitable for the generation of a reliable
SSM. A homogenization process is therefore a necessary and
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FIGURE 1
Workflow of the procedure followed to generate the SSM. Focus on
datasets with a representation of their key features.

fundamental step before the application of the automatic registration
algorithm and the subsequent development of the SSM. Specifically,
our homogenization procedure involves both discretization and
geometrical aspects. Regarding the discretization, meshes with
similar initial resolution will be obtained through a remeshing
process to a common vertex density (number of vertices of the
mesh per surface area); while geometric aspects refer to the fact
that each aorta must be aligned to a common reference system
(removing translations or rotations) and that aortic branches are
clipped at approximately similar lenghts to define a corresponding
mapping. This process allows to build a correct parametrization
of the shape by factoring out every extrinsic feature of each
shape.

3.1 Homogenization procedure

As stated above, the homogenization procedure involves
geometrical aspects, but it also requires the definition of a template
geometry. To minimize the initial distance from each aorta, the
template geometry must be enstablished as the “average” geometry
in terms of size and shape within the raw dataset. Given that a pair-
wise approach will be employed to construct the SSM, the average
geometry is crucial for facilitating the non-rigid registration phase
required to establish point correspondence between each shape.
Due to its importance, the template geometry creation follows an
iterative approach within the overall procedure. In the first iteration,
a qualitatively selected “average” shape is used to obtain an initial
correspondence mapping estimate. The resulting correspondence is
then utilized to compute a new average geometry and then to repeat
the correspondence optimization. The iterative process concludes
when the average geometry converges to a stable shape (Euclidean
distance less than 0.1 mm). Figure 2 depicts the first qualitatively
selected template, with indications of the four main districts of a
thoracic aorta (left part of the figure). For the template geometry, the
surface areaAt and the centerline have been computed as references.

In order to homogenize the geometry of each model, the
following steps are applied:

1. Surface area (A) calculation.
2. Cluster-based remeshing at 35,000(A/At) vertices.
3. Centerline and longitudinal coordinate system computation.
4. Vessels clipping.
5. Cluster-based remeshing at 20,000(A/At) vertices.

Regarding the cluster-based remeshing (Valette et al., 2008) a
number of vertices equal to n = 35,000 ⋅A/At was selected for each
aorta in order to guarantee the same average edge length. The
centerline (Antiga, 2002), the associated longitudinal coordinate
system, and the boundaries marking the separation of the various
branches (black lines, Figure 2C) were computed for each branch
of the geometry using the VMTK library (Antiga et al., 2008). An
example of a centerline is shown in Figure 2 for the template
geometry. The longitudinal coordinate system of the centerline was
projected on the walls (Figure 2B) and then, exploited in custom
scripts, to clip the descending aorta and the three supra-aortic
vessels to a fixed length L equal to 140 mm and 18 mm, respectively,
for each geometry of the raw dataset. This choice was made in order
to keep as much length as possible for each clipped vessel, according
to the raw geometry with shortest vessels. This clipping process was
done by generating the green contours (Figure 2C) considering the
locus where the longitudinal coordinate on the surface assumed
the predefined values L̃ = C+ L. C is the average value of the
longitudinal coordinate where each branch (supra-aortic vessels and
descending aorta) starts. Finally, the centerline and surface area
A were re-computed for each mesh. In order to homogenize the
spatial aspects in terms of translation and rotation, a rigid alignment
was also applied with respect to the template geometry. A rigid
transformation T was computed through the Iterative Closest Point
(ICP) algorithm (Besl and McKay, 1992; Zhang, 1994) applied to
the centerlines. A final cluster-based remeshing to a fixed number
of vertices scaled by surface area n = 20,000 ⋅A/At is applied. The
final result is the homogeneous dataset (see Figure 1) characterized
by meshes with different connectivity but with homogeneous
geometries. To quantitatively analyze the changes induced by the
cuts, the lengths l = ⟨L̃−C⟩ were computed, where ⟨⋅⟩ refers to
the average along the open boundary. Specifically, lraw and lhomo of
each vessel were computed for the raw and homogeneous dataset,
respectively. Lengthswere then normalized separately for each vessel
with respect to the raw dataset, as:

lrawnorm = (l
raw − ̄lraw)/σraw

lhomo
norm = (l

homo − ̄lraw)/σraw

where ̄lraw and σraw are the mean and standard deviation,
respectively.

3.2 Non rigid registration algorithm

As defined in Section 2, the non-rigid registration process is
based on the minimization of an objective function ϕ(Ms,Mt).
In order to enforce the supra-aortic vessel registration, a specific
additional term was added as anatomical constraints, according to
Eq. 7:

ϕ(Ms,Mt) = dCD (Ms,Mt) +
5

∑
j=1

αjdCD (B
j
s,B

j
t) (7)
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FIGURE 2
Selected template geometry and longitudinal coordinate system based on the centerline. In Panel (A) the different regions of the thoracic aorta,
including the ascending, arch, supra-aortic, and descending portions, are displayed with the computed centerline shown in white. The centerline is
utilized to establish a longitudinal coordinate system, depicted in Panel (B). This reference system is projected from the centerline onto the aortic
surface, as shown in panel (C), and is used to determine specific lengths for clipping the branch vessels. In Panel (C), the black contours at the beginning
of each region serve as references for measuring fixed lengths L, after which the green contours are subsequently computed to clip each vessel.

FIGURE 3
Visualization of two aortas from the homogeneous dataset. Open
boundaries Bis and Bit used as anatomical landmarks during
registration are highlighted in purple and green for source and target
meshes, respectively.

where Bj
s and Bj

t stand for the set of points on the j-th open
boundary of the source and target mesh, respectively. The resulting
objective function ϕ(Ms,Mt) includes both the distance between
the twowhole surfaces d(Ms,Mt) and the distance between pairs of
open boundaries ∑5j=1αjd(B

j
s,B

j
t). The coefficients αj are the specific

weights defined for each boundary that take into account the
discrepancies between the number of nodes on the Bj edge and
on the whole surface. In order to balance this difference, αi = 0.1
was set ∀i. Figure 3 depicts the five open boundaries and the

FIGURE 4
Multi-scale non rigid registration (R) with n = 3. First, coarser
discretizations of the initial meshes Ms and Mt are created (inner
black boxes). R is first applied to the coarsest meshes Ms(2) and
Mt(2) on the bottom. Then, the resulting displacement field is
interpolated through RBF and applied to the finer source mesh Ms(1)
to obtain M′s(1). The process is repeated until the finest scale, i.e., the
original resolutions Ms and Mt.

relative correspondences (Bj
s - B

j
t) as anatomical constraints: the first

one B1 near the aortic root, the second one B2 at the end of the
descending aorta, and the remaining B3 B4 and B5 on the open ends
of the three supra-aortic vessels. As discussed in Section 2.2, the
solution of the minimization problem with a pure gradient descent
approach (Eq. 3) results in poor-quality meshes. A preconditioned
gradient descent algorithm, described in Nicolet et al. (2021), was
implemented to overcome this problem. The new update rule is:

xs← xs − η(1+ γL)−1(
∂ϕ
∂xs
) (8)

where L is the combinatorial Laplacian operator of the source
mesh Ms. The gradient calculation of Eq. 8 was implemented
using automatic differentiation with PyTorch and PyTorch3D

Frontiers in Physiology 05 frontiersin.org

https://doi.org/10.3389/fphys.2023.1211461
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Scarpolini et al. 10.3389/fphys.2023.1211461

TABLE 1 Parameters for the n = 3 different spatial scales of the non-rigid
registration algorithm R.

# Points N γ η

4,000 700 120 0.007

18,000 1,000 80 0.01

20,000 1,500 50 0.02

“# Points” indicates the number of points of the source and target meshes at the
corresponding spatial resolution. N is the number of iterations, γ the regularization factor
and η the initial learning rate.

libraries (Paszke et al., 2019; Ravi et al., 2020). The preconditioning
matrix (1+ γL)−1 diffuses the gradient ∂ϕ/∂xs along the mesh,
resulting in smoother and more consistent deformations during
the optimization. The coefficient γ acts as a regularization
parameter: higher values of γ prioritize the smoothness of the final
mesh (more regular deformations), while smaller values improve
the reproduction of fine details of the target mesh. For γ = 0
the optimization method corresponds to the standard gradient
descent. It is worth mentioning that, since the Laplacian contains
second-order derivatives, it can be shown how this new update
rule resembles a Newton-like second-order optimization scheme
(Nicolet et al., 2021). The choice and control of the learning rate
η during optimization is made by adding momentum terms using
theUNIFORMADAMoptimizer (Nicolet et al., 2021).The resulting
registration algorithm (R(Ms,Mt)) is applied between a source and
a target mesh, producing a registered mesh (Mr), isotopological to
Ms, but with different coordinates xr:

Mr = R(Ms,Mt) . (9)

Specifically, Mr is the surface mesh with vertex coordinates
obtained from the minimization problem defined in Eq. 1.

3.2.1 Multi-scale registration
To increase the registration performances, R(Ms,Mt) is

iteratively applied in amulti-scale fashion: the registration results are
subsequently interpolated to a gradually finer surface discretization
for a total of n different spatial scales. Given two initial polygonal
meshes Ms =Ms(0) and Mt =Mt(0), n− 1 coarser meshes are
created by remeshing at a smaller number of points:

Ms (0) →Ms (1) → ⋅ ⋅ ⋅ →Ms (n− 1)

Mt (0) →Mt (1) → ⋅ ⋅ ⋅ →Mt (n− 1) .

As depicted in Figure 4, the registration is initialized between
the coarsest meshes Ms(n− 1) and Mt(n− 1). The first registered
mesh Mr(n− 1) = R(Ms(n− 1),Mt(n− 1)) is obtained and the
deformation field is computed by interpolating the displacement of
each point fromMs(n− 1) toMr(n− 1) using radial basis functions
(RBF). The resulting deformation field is applied to Ms(n− 2)
to obtain M′s (n− 2). At this point, the registration at the next
refinement level brings to Mr(n− 2) = R(M′s (n− 2),Mt(n− 2)).
This process is repeated until the last registration at original
resolutionMr(0) = R(M′s (0),Mt(0)) is obtained.

The final result of the multi-scale non rigid registration R

between the source meshMs and the target oneMt will be:

Mr =Mr (0) =R(Ms,Mt) . (10)

Three spatial scales (n = 3) were considered, resulting in two
remeshing steps with 4,000 and 18,000 points for the coarser meshes
Ms(2)/Mt(2) and Ms(1)/Mt(1), respectively. This configuration
was selected following a fine-tuning phase that indicated no
significant improvements for n > 3. Different values of γ and η were
chosen for each resolution level, as detailed in Table 1. The gradual
decrease of the regularization parameter γ is justified by the multi-
scale nature of the registration. At larger scales (when the number
of surface points is reduced), the deformation field must capture the
target shape’s large-scale features, while at smaller scales, finer details
need to be registered, necessitating a lower γ value.

3.2.2 Shape dataset creation
Shape is defined as a property which does not change under

similarity transformations, i.e., it is invariant to translation, rotation
and scaling. In general, shape changes induced by these global
transformations should not be modelled by a SSM to keep the
model as specific as possible. Concerning our initial dataset, the size
variation of the aorta was not considered a similarity transformation
(scaling) because it is an integral part of the anatomical variability.
In order to create a SSM, all the 3d models has to be represented by
the same number of k-points and the same points correspondence.
The shape s is the vector where the coordinates of the k-points are
concatenated:

s = (x1,y1,z1,…,xk,yk,zk)
T (11)

The multi-scale non-rigid registration algorithm described in
3.2.1 was applied between the source Ms template geometry and
each model of the homogeneous dataset Mi

t (i = 1,…,M with M =
47 the total number of aortas).This allowed (i) to correctly distribute
the elements of s on each surface model, (ii) to create a dataset
of shapes with the same connectivity E and (iii) to obtain a set of
isotopological surface meshesMi

t where:

Mi
r =R(Ms,Mi

t) (12)

Finally, a generalized procrustes alignment (GPA) (Goodall,
1991; Heimann and Meinzer, 2009) was performed to describe
the pure shape of each aorta by the removal of any possible bias
introduced by the selection of the source template Ms. The GPA
aligns a set of shapes si to their unknown average ̄s by iteratively
applying a rigid transformation to each shape of the dataset to
minimize the distance from ̄s, which changes at each iteration.

̄s = 1
M

M

∑
i=1

si (13)

The procedure ends when the maximum difference between the
coordinates of ̄s from one iteration to the next is less than 0.001 mm.
The resulting set of shapes constitutes the shape dataset. In order
to assess the similarity between the obtained shape dataset and
the related target shapes, both the Chamfer (Eq. 2 and Hausdorff
distance (Eq. 14) were computed. The Hausdorff distance is defined
as:

dH (Ms,Mt) =max(max
xs∈Vs

min
xt∈Vt
‖xs − xt‖2,

max
xt∈Vt

min
xs∈Vs
‖xs − xt‖2) (14)
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TABLE 2 Mean ± standard deviation of Chamfer and Hausdorff distance across the whole dataset.

Method (Chamfer distance)1/2 [mm] Hausdorff distance [mm]

reference method 1.44 ± 1.32 8.73 ± 9.93

proposed method 0.92 ± 0.39 1.56 ± 0.96

FIGURE 5
Boxplot of the normalized lengths lnorm of each vessel (descending
aorta desc and first, second and third supra-aortic vessel SA,
respectively) of the raw (violet) and homogeneous (green) datasets.
The green boxes are not clearly visible due to the reduction of the
homogeneous lengths range achieved with the clipping procedure.

In order to make the two distances comparable, the square root
of the Chamfer distance was considered because of the quadratic
terms in its definition (Eq. 2). These distances are two of the
most popular evaluation criteria to compare the similarity between
different point clouds (Urbach et al., 2020; Lu et al., 2022). Both
metrics are based on the nearest neighbours; while the Chamfer uses
the average values, the Hausdorff metric works with the maximum
ones. Moreover, to provide insights into the robustness of the
algorithm, a stability analysis was carried out by introducing small
random perturbations to the surface node coordinates of the same
target geometry.This analysis is reported in the “Sensitivity study on
target geometry” section of the Supplementary Material.

3.3 Dimensionality reduction

Dimensionality reduction is the final step in constructing a
SSM. Principal Component Analysis (PCA) is the most widely used
algorithm in the context of SSMs, as it (i) reduces the dimensionality
of a dataset, (ii) enhances its interpretability, and (iii) minimizes
information loss. PCA calculates the eigendecomposition of the
covariance matrix S of the shape dataset as follows:

S = 1
M− 1

M

∑
i=1
(si − ̄s)(si − ̄s) (15)

Subsequently, PCA extracts the m =min((M− 1),3k) principal
modes of variation (eigenvectors ϕi) and their associated variances

(eigenvalues λi). The dimensionality reduction of the SSM can be
further optimized by limiting the number of modes to the first
m′ <m eigenvectors, as these are ordered by decreasing values of
variance (λ1 ≥… ≥ λm). The optimal m′ value is typically made by
analyzing the percentage of cumulated variance:

Λi =
∑i

j=0
λj

∑m
j=0

λj
(16)

When a satisfactory cumulated variance value is achieved, e.g.,
when Λm′ = 99%, the number of modes can be truncated and the
initial dataset can be represented in a considerably more compact
manner without significant information loss. Finally, new shapes
can be created by varying the coefficients ωi, for which a Gaussian
distribution is assumed, of the linear combinations:

s = ̄s+∑
i
ωiϕi (17)

To intrinsically evaluate a SSM, three key metrics are
commonly employed (Davies, 2002; Ericsson and Karlsson, 2007):
generalisation G(K), specificity S(K), and compactness C(K). The
variation of these metrics with respect to the number of employed
modes (K) provides valuable insights into the quality of the
dimensionality reduction. Generalisationmeasures the SSM’s ability
to accurately reconstruct shapes not included in the training dataset
through leave-one-out cross validation. Specificity assesses the SSM’s
capability to generate shapes that are solely representative of the
original dataset’s shape variability; while compactness evaluates
the efficiency of the SSM by determining the minimal number of
principal components required to represent a given percentage of
the total shape variability.The generalisationmetric is defined as the
mean squared leave-one-out reconstruction error

G (K) = 1
M

M

∑
i=1
ϵ2i (K) (18)

where ϵ2i (K) is the reconstruction error for shape i (the one left
outside the training dataset) using only the first K modes. The
leave-one-out cross validation was computed by creatingM reduced
datasets, with M− 1 meshes each (meshes from the shape dataset),
excluding a different sample from time to time. M reduced SSMs
were therefore generated out of these reduced datasets and each
of these reduced SSMs was used to reconstruct the corresponding
excluded shape. In order to achieve this, each excluded shape
was projected into the relative PCA latent space to compute the
eigenvector coefficients ωi. The similarity between the original
excluded shape and the resulting approximated one was assessed in
terms of the Euclidean distance between the corresponding points.
The compactness is defined as the percentage of cumulative variance
explained by the model up to a certain number of modes (i.e., the
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FIGURE 6
Loss function during the multi-scale non-rigid registration (R) between the template geometry (grey) and a random sample from the homogeneous
dataset (red). Changes in slope are due to the related changes in resolution.

FIGURE 7
Square root of the Chamfer (x-axis) and Hausdorff (y-axis) distances
between each registered shape (shape dataset, i. e., after registration)
and its original 3d model (homogeneous dataset, i.e., before
registration). Results of both the proposed method (orange) and the
reference one (blue). In the top and right subplots, the marginal
probability density functions of the distances are shown (estimated
through kernel density estimation).

previously defined Λi in Eq. 16)

C (K) =
∑K

i=1
λi

∑m
j
λj

(19)

Specificity can be quantified by randomly generating j = 1,…,H
(a large number of) samples from the shape space, using the first
K eigenvectors and eigenvalues, assuming a multivariate normal
distribution, and computing the Euclidean distance to the closest
training sample

S (K) = 1
H

H

∑
j=1
ϵ′j (K)

2 (20)

where ϵ′j (K) is the mean Euclidean distance between the
generated shape and its nearest sample of the training set
(point correspondence is already defined). Specifically, ϵ′j (K) =
min
i
( 1
P
∑Ph=1‖x

h
j (K) − x

h
i (K)‖2), where P is the number of vertices

in the two meshes, xhi (K) are the coordinates of the h-th vertex of
the i-th shape of the shape dataset and xhj (K) are the coordinates of
the h-th vertex of the j-th randomly generated shape. The nearest
sample was determined by calculating the mean Euclidean distance
between the generated shape and all the samples in the training
dataset, and then taking the one that gave the smallest value. If
for two SSMs A and B, SA(K) ≤ SB(K) for most of K values we can
conclude that model A is more specific than model B. The same
is true for generalisation, while for compactness a higher value of
C(K)means that the dimensionality reduction wasmore effective. In
the construction of a SSM, a trade-off between these three metrics
should be achieved.

In order to evaluate the effect that the selection of different open-
boundary constraint (α values) has on generalisation, specificity
and compactness, the results of a sensitivity analysis with αj
equal to 0.01, 0.1 and 1.0, are included in a dedicated section of
the Supplementary Material (Sensitivity study on boundary loss
coefficient). Moreover, to evaluate the relative contribution of
the two innovative aspects introduced in our algorithm (multi-
scale approach and open-boundary constraint), we repeated the
whole procedure for generating a SSM with only one of the two
contributions active. For each, we then calculated the generalisation,
specificity, and compactness metrics and made an extrinsic
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FIGURE 8
Comparison of non rigid registration between the proposed approach (R) and the reference method. Four representative target geometries of the
homogeneous dataset (A–D); results of the multi-scale non-rigid registration algorithm, i.e., the proposed approach (E–H); results obtained with the
reference method (I–L).

FIGURE 9
Compactness, Generalisation and Specificity metrics in comparison between the SSMs built using the proposed method (orange) and the comparative
one (blue). The proposed method shows better compactness and generalisation metrics, while the comparative method presents a slightly better
specificity.

qualitative assessment. It is worth to notice that the deactivation of
the open-boundary constraint corresponds to setting αj coefficients
equal to zero.Whereas, the deactivation of themulti-scale approach,
was performed with only one registration R by setting the number
of points equal to 20,000 (finest resolution), γ = 50 and η = 0.02. In
order to address the slower convergence speed of this version, the
number of iterations N has been increased from 1,500 to 4,000.

3.4 Implementation

The overall statistical analysis and the registration algorithm
were implemented in Python 3.8 using PyTorch 1.11 library

(Paszke et al., 2019). The latter was used to develop the
computationally intensive routines and allowed us to obtain both a
CPU (multi-threaded) and GPU version of the algorithm. A Linux
workstation running Ubuntu 20.04LTS with an Nvidia GeForce
RTX 3090 GPU (24 Gb) was used to develop and execute the code.
The most computationally demanding operation of the registration
algorithm is the evaluation of the Chamfer distance and its gradient
at each iteration. In order to speed up this operation, the PyTorch3d
Library was used (Ravi et al., 2020). In our fixed-iteration setting,
in which the number of iterations remains constant regardless of
the source and target mesh geometries, the registration process
between these two meshes, each consisting of 20,000 points, takes
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FIGURE 10
Example of new shapes generated by the SSM of either the proposed or the comparative method through Eq. 17. In each sub-panel, the variation of
only one mode was considered by setting all the other modes’ coefficients equal to zero. Extreme shape variations (left ad right side of the mean shape

μ) were generated by setting the varying coefficient to three times its standard deviation ωi = μi ±3√λi. The average shape of the two methods is very
similar; while the extreme shapes of the comparative method exhibit geometrical artifacts due to the wrong correspondence mapping of particular
regions.

approximately 135 s using the hardware specified above (GPU
version of the code).

4 Results

In this section, the main results of our workflow are reported
with particular attention to the obtained homogeneous shape and
reduced dataset.

4.1 Homogeneous dataset

The effects of the automatic clipping procedure developed to
homogenize the lengths of each branch vessel of the dataset are
reported in the boxplots in Figure 5 where the statistical distribution
of the normalized lengths lrawnorm and lhomo

norm (before and after the
clipping procedure) are depicted. It is worth noticing that the green
boxplots associated with the homogeneous dataset are not clearly
visible due to the clipping procedure that reduces the range in which
the length distributions of the homogenized vessels fall in.

4.2 Non-rigid registration algorithm

In Figure 6, the loss function ϕ(Ms,Mt) during the
registration between the template geometry and a random
sample from the homogeneous dataset is depicted. An animated
visualization of the registration process has been included in the
Supplementary Video S1. It is worth noting the abrupt changes
in the slope of the loss function as the mesh resolution changes

according to the setting reported in Table 1. In fact, when large-
scale details are detected, ϕ starts to converge; the change in
resolution provides an opportunity to capture finer details of the
target geometry, and then ϕ begins to decrease again.

4.2.1 Shape dataset
In order to assess the geometric differences between each

geometry before and after the registration process, we calculated
the Chamfer and Hausdorff distances for each sample within
the homogeneous and shape datasets. Ideally, with infinite mesh
resolution, these distances would be zero if the registration-
induced deformations did not introduce any geometric artifacts.
However, with finite mesh resolution, the minimum value for
these distances is of the order of the average edge length of each
surface mesh. To further evaluate the performance of our non-rigid
registration method, we compared it with the Deterministic Atlas
in Deformetrica, a leading statistical shape modeling framework
(Goparaju et al., 2022), by processing our homogeneous dataset
using both methods. This comparison was motivated by the fact
that all studies on statistical shape modeling of the aorta that relied
on surface correspondence (and not just centerline) utilized this
framework (Bruse et al., 2016; Sophocleous et al., 2019; Du et al.,
2022). In the following sections, the deterministic atlas method
of Deformetrica, which serves as the benchmark for our non-
rigid registration algorithm, will be referred to as “the comparative
method” or “the reference method” for the sake of simplicity
and clarity. Hyperparameter tuning for the comparative method
was carried out in order to obtain best results in terms of the
metrics that will be later presented in this article. It is important to
emphasize that the comparative method was employed according to
the methodologies followed by the cited articles. Figure 7 illustrates
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FIGURE 11
Qualitative comparison between shapes registered with three distinct versions of the proposed method: the full method, the method without the
multi-scale feature, and the method without the boundary loss constraint. Four examples of different shapes from the original dataset (A–D) are shown
in red; while the registered meshes are superimposed in white.

the values of both distances, along with their estimated probability
density functions, for bothmethods. For our approach, the Chamfer
distance consistently shows values below 1 millimeter, which is
in accordance with the average edge length of the homogeneous
dataset (1.2 mm). The averaged distances across all shapes are
reported in Table 2. The proposed method shows both smaller and
narrower distributions of these two distance metrics. In addition,
a qualitative comparison of four random samples is reported
in Figure 8. For each sample, the figure shows the original 3d
model in the homogeneous dataset (Figures 8A–D) and the final
registered shapes (with the enstablished point correspondence) for
both our method (Figures 8E–H) and the comparative framework
(Figures 8I–L). In the magnification boxes, the original geometries
(red mesh in transparency) are superimposed to better appreciate
the details of the supra-aortic vessels. From subfigures (I) and (J)
we can see how the surpa-aortic vessels are completely mismatched
(and also the descending aorta presents geometrical artifacts in

(J)). On the other hand, for subfigures (k) and (L), supra-aortic
vessels are correctly matched, but very small scales features, such
as their orientation, are not recovered. The outlined defects reflect
the limited flexibility imposed by the fixed kernel size of the
deformation field of the comparative method. Precisely because of
this, supra-aortic vessels are often incorrectly registered, whereas in
the proposed algorithm this problem is solved by the more flexible
nature of the deformation field and the addition of open-boundaries
constraints in the landmark term of Eq. 7.

4.3 Dimensionality reduction

The values of the intrinsic metrics (compactness, generalisation,
and specificity) are reported in Figure 9 for both the proposed
algorithm and the comparative method. From the compactness
analysis, it can be observed that, with our approach, it is possible
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FIGURE 12
Generalisation, specificity, and compactness metrics measured on SSMs built with the three different methods, both for the complete geometries
(A–C) and the supra-aortic branches alone (D–F).

to reduce the dimensionality of the problem by using only the first
7 modes of the SSM as they explain the 90% of the variability in
the dataset (22 modes for 99%). In contrast, using the comparative
method, it necessitates 10 modes to explain 90% of the variability
(26 modes for 99%). Concerning the generalisation metric, for
low values of K, the reconstruction error of the two methods
is comparable; while for K > 4, the proposed approach exhibits
superior generalisation properties. Regarding the specificity metric,
the results indicate that the comparative method consistently yields
a specificity value approximately 0.5 mm lower than our proposed
approach. As an extrinsic qualitative assessment of the SSM’s quality
it is possible to generate new shapes, by varying the coefficients
ωi = ±3√λi (Eq. 17) for i = 1,2,6 and 15, and assess the anatomical
variability captured by the SSM.This analysis is reported in Figure 10
The first modes (i = 1,2) explain most of the variability within the
dataset, as they account for most of the variance. On the other hand,
considering higher modes (i = 6,15), large-scale details do not vary
substantially, while changes are observed in fine details such as the
position and the orientation of supra-aortic vessels.

Regarding the evaluation of the relative contribution of the
two innovative aspects introduced in our algorithm (multi-scale
approach and open-boundary constraint), the results in terms of
qualitative evaluation and intrinsic metrics are shown in Figures 11,
12, respectively; Figure 11 presents a qualitative comparison of
results for four sample aortas from our dataset. An animated
visualization of the registrations with the three different methods

has also been included in a video in the Supplementary Video S2.
The original model is marked in red, overlaid with: 1) our
proposed registration, 2) our proposed registration without the
open-boundary loss, and 3) our proposed registration without the
multi-scale approach. It is evident from this figure that, both the
multi-scale method and the open-boundary loss, are necessary to
achieve a high-quality final result, depending on the specific case.
Specifically, the multi-scale method ensures faster convergence, and
amore homogeneous deformation of elements distributed across the
entire surface of each aorta. Moreover, the different regularization
terms used at each scale allow to match the large-scale geometric
features first, and then focus on smaller details. The open-boundary
constraint, on the other hand, ensures a precise match between the
various supra-aortic branches, which does not occur in its absence
when the branches are small and in close proximity. Figure 12, on
the other hand, includes the threemetrics (generalisation, specificity,
and compactness)measured on the three differentmethods, both for
the complete geometries (A–C) and the supra-aortic branches alone
(D–F).

5 Discussion

In this work, we have presented a novel non-rigid registration
algorithm for the development of SSMs able to solve the
correspondence optimization problem for complex anatomical
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structures.Thenovelty of the algorithm lies in its unique approach of
integrating the regularization term within the optimization process,
rather than appending it to the objective function. Additionally, by
employing the algorithm in a multi-scale manner, the significance
of multi-resolution registration and the presence of landmarks is
emphasized when dealing with datasets with complex geometries.
Here we applied our algorithm to the whole thoracic aorta. To
the best of our knowledge, this is the first SSM that exhibits the
inclusion of the supra-aortic vessels succeeding in handling the
full complexity and 3D variability of the entire thoracic aorta.
Specifically, we implemented the method in the context of a real
population of both healthy and aneurysmatic subjects, considering
different types of dilations within the sinus-tubular junction, the
aortic arch and the ascending and descending aorta. Our tool has
demonstrated to be able of handling different types of geometric
deformation due to its capability to manage complex scenarios. The
developed framework holds potential for several applications from
both a clinical and computational perspective. From the clinical
point of view, crucial for the successful treatment of thoracic aortic
diseases is a deep knowledge of the whole anatomy of the aortic arch
in relation to the origins of the supra-aortic arteries. This area is
affected by several pathologies, such as aneurysms and dissections,
which can currently be treated with open surgery, endovascular or
hybrid procedures (Pérez et al., 2017; Sengupta et al., 2022). In all
cases, the fundamental aspect is to ensure the vascularization of
the supra-aortic vessels in order to avoid adverse events such as
ischemic strokes, which lead to brain cell damage or death.The size,
position and orientation of the supra-aortic vessels are a crucial
factor also in hemodynamic numerical simulations, where their
cross-sectional area plays a key role in setting the outflow boundary
conditions, while their position influences the entire hemodynamic
pattern of the thoracic district (Boccadifuoco et al., 2016; 2018;
Antonuccio et al., 2021). The developed non-rigid registration
method can be applied to any shape, especially to those without
evident landmarks, as in the case of the aorta. In this latter case, it
has been shown that, when open boundaries are available, they
can be efficiently used as artificial landmarks after an accurate
pre-processing of the shapes. This procedure could be applied to
any vessel-like geometry of arbitrary topology and also to many
other anatomical structures where open boundaries are created by
clipping the region of interest from the other structures. In addition,
the methodology could also be used to study shape modification
over time using prospective studies of the same patient, as in
Capellini et al. (2018) and Sophocleous et al. (2022). Again, as in
the previously mentioned studies, the latter one does not include
supra-aortic vessels in the analysis. Besides the analysis of shape
variations, a SSM can also be used as a generative model. In order to
do this, once the reduced space is created, new realistic shapes can
be generated by sampling the probability distribution of each shape
coefficient ωi in the PCA latent space. This is particularly useful in
medical applications where the lack of available data often prevents
further investigations. In the landscape of themost widely used tools
for SMMs, Deformetrica has emerged as the predominant choice
due to its power and versatility (Bruse et al., 2016; Bruse et al., 2017;
Sophocleous et al., 2019; Goparaju et al., 2022; Sophocleous et al.,
2022). Despite its popularity, Deformetrica necessitates the selection
of at least three parameters which determine the spatial resolution
of the method: two kernel sizes and one regularization parameter.

Conversely, the spatial resolution of our non-rigid registration
algorithm is influenced by only one regularization parameter (γ).
Another salient feature of our method is its multi-scale nature. Our
experiments have demonstrated that, for the successful alignment
of two distinct shapes, it is crucial to initiate the registration
process with large-scale geometrical features and progressively
refine smaller details (a comparison of the results of the twomethods
is shown in Figure 8). Our algorithm also exhibits high robustness
with respect to changes in the surface node coordinates of the
target mesh, as demonstrated by the sensitivity analysis results
(Supplementary Table S1). As regards the comparison between the
intrinsic metrics, the improvement in generalisation of our method
is mainly attributed to the enhanced parametrization of the supra-
aortic vessels, which only becomes evident for higher modes. On
the other hand, with regard to specificity, it is worth noting that
a smaller value is more desirable. A possible explanation for our
method having a higher specificity value could be the comparative
method’s incorrect parametrization of the supra-aortic vessels. In
fact, these small branch vessels have a high variability in terms of
morphology, resulting in new shapes that may exhibit significantly
different supra-aortic geometries. Therefore, if the supra-aortic
vessels are correctly parametrized, random shapes would present
larger variations in these regions, resulting in a decrease of the
generalisation error and in an increase of the specificity value.
However, it is also crucial to recognize that these three metrics
(compactness, generalisation, and specificity) are intrinsic to each
SSM and may not provide a comprehensive representation of the
actual quality of the results Ericsson and Karlsson (2007). Thus,
while our proposed method demonstrates superior performance
in terms of compactness and generalisation, and slightly worse
performance in specificity, an extrinsic analysis of the SSMs and
their applications was made to further assess their differences.
Moreover, from Supplementary Figure S1, it can be seen that there
are almost negligible variations among the three metrics across
different values of α. Although it would seem that generalisation
and specificity are better for α = 1.0, the qualitative comparison
yields intriguing insights (Supplementary Figure S2). Notably, when
α = 1.0, the conformity of the open boundaries outweighs that of
the surface (Supplementary Figure S2, shape c), resulting in an
inaccurate registration of the supra-aortic vessel surface. Conversely,
for certain shapes (Supplementary Figure S2, shape a), an α value of
0.01 proves to be inadequate to achieve an accurate registration
of the supra-aortic vessels. This leads us to point out that, as
already stated above (and also in the literature), these three metrics
are intrinsic to the SSM and should be taken with caution when
comparing SSMs created from different shapes. In conclusion, we
decided to set α equal to 0.1 to gain a good compromise between
all these considerations. When evaluating the SSMs of the entire
shape (Figures 12A–C), the three metrics demonstrate similar
values across the different methods. This indicates that, on the
majority of the surface, the inclusion of the boundary loss and
the multi-scale feature does not significantly impact the proposed
method. The use of Chamfer distance as a objective function and
the application of a regularized optimization process prove sufficient
for addressing the correspondence problem on most of the surface,
as confirmed by the qualitative comparison in Figure 11, where
the surfaces exhibit a satisfactory alignment, except for branch
vessels and small regions. However, when calculating the three
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metrics exclusively for the supra-aortic vessels (Figures 12D–F),
noticeable differences arise. Notably, the proposed method without
the boundary loss term (green line) demonstrates distinctly higher
values for the compactness and generalisation metrics. This is
also evident in the qualitative comparison of Figure 11, where the
absence of the boundary loss term leads to incorrect matching
of several branch vessels. Lastly, we emphasize once again the
need for caution when interpreting these three metrics, as they
are inherent to the Statistical Shape Model (SSM) and may not
fully represent the true quality of the SSMs when they are built
on different shapes. In this work, we have also developed an
automatic workflow to obtain a SSM without bias often associated
with the segmentation process. Our procedure allows the removal
of artifacts from the shapes that a SSM should not model. The
selection of predetermined lengths is attributable to technical
motivations with the aim of standardizing the dataset concerning
vessel length to accommodate the shortest vessels. Nonetheless, for
datasets exhibiting greater heterogeneity in terms of age and size,
such as those including pediatric patients or adults with a wide
range of heights (our dataset only has 1.73± 0.08 m), this selection
could be refined by considering lengths normalized with respect to
each shape’s dimensions. Moreover, the proposed homogenization
process is entirely automatic and this is important since the results
will not depend on any manual operations performed by the
user. The selection of the initial template geometry (needed for
the homogenization and the non-rigid registration phases) is the
only user-dependent choice. However, due to the iterative process,
this dependence is highly suppressed. To assess the robustness of
the methodology, we repeated the whole process two times by
considering a different template geometry qualitatively similar
to the average shape. Very small differences were encountered
in the final average template (less than 0.1 mm). In this study,
a predetermined number of fixed iterations was set as hyper-
parameter to ensure convergence of the loss function for every
geometry within the homogeneous dataset. Further improvements
could include the optimization of this number of iterations at each
single scale. This will result in a variable number of iterations for
each scale that, for example, terminates when the maximum vertex
displacement in the source mesh falls below a specified threshold.
In our work, neither geometrical nor topological simplifications are
assumed. The vessels are treated as fully-3D surface meshes, with
respect to other works in which only the centerline coordinates
and maximum radii are considered. Despite this, our SSM can
explain the overall geometrical variation within the dataset with
fewer modes than other works. In Bruse et al. (2017), 90% of the
variance was explained with 19 modes, while in Sophocleous et al.
(2019) 72% of the variance was explained with nine modes. In
our work, the corresponding amounts of variance were explained
with seven and two modes, respectively (see Figure 9). This can
be related to several reasons. The dimensionality reduction phase
is greatly affected by the nature of the analyzed dataset in terms
of geometrical variations. In our dataset, in addition to healthy
subjects, only aneurysmatic aortas previous to surgical intervention
have been considered. In Bruse et al. (2017), they considered post-
surgical aortas which were affected by two different pathologies, as
well as healthy control subjects. The size of the dataset is also an
important factor. A wider cohort of patients brings a potentially
larger anatomical variability, which will need a greater number

of modes. In Bruse et al., the dataset was composed of a total of
60 subjects, while in Sophocleous et al. (2019) 108 patients were
considered. In our dataset a cohort of 47 patients was considered.
Another possible reason that could explain the smaller number of
modes could be the different homogenization procedure (automatic
clipping) of our work. Clipping each vessel at specified lengths
given by the centerline could substantially reduce the spurious
geometrical variations of the shapes. Future work could enhance
this study by enlarging the analyzed cohort of patients in terms of
number of healthy and aneurysmatic subjects as well as by including
new pathologies such as coarctations and pseudo-aneurysms.
This would improve the generalisation capabilities of the SSM,
while reducing errors in reconstructing new shapes (Figure 9).
Moreover, the power of the SSM as a generative model of new
shapes could be exploited to investigate the correlation between
the morphological features and the related hemodynamic indices
calculated through computational fluid dynamics simulations.
In our case, for example, the study of shapes resulting from the
variation of the first mode would lead to a comparative analysis of
fluid dynamics in healthy and aneurysmatic aortas. Alternatively,
variations in other modes would rather highlight other anatomical
variations related in turn to different hemodynamic features. Finally,
different non-linear dimensionality reduction methods could be
explored as substitutes for PCA. In this context, Kernel PCA
(Wang, 2012) or Deep auto-encoders (Hinton and Salakhutdinov,
2006) are two possible alternatives, since they could represent
shape variations in more compact ways by exploiting non-linear
transformations.
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Supplementary Video S1
Non-rigid registration process between two different aortic shapes: the template
(source) and another random sample (target) of the homogeneous dataset. The
left and top-right panels contain the source and the target displayed as the white
and red surfaces, respectively. The changes of resolution of the source shape can
be noticed in the left panel where the edges of the mesh are marked in black. The
lower-right panel presents the evolution of the loss function throughout the
registration process.

Supplementary Video S1
Non-rigid registration process between the template aorta (source) and a random
sample (target) of the homogeneous dataset, compared across three different
versions of the proposed approach. In each registration, the source and target
shapes are displayed as white and red surfaces, respectively. The left panel
represents the proposed full non-rigid registration algorithm. The central panel
represents the proposed method without the boundary loss term. Finally, the right
panel shows the proposed algorithm without the multi-scale feature (see section
3.3 of the paper for more details).
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